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ABSTRACT 
A  model is introduced describing  nucleotide  substitution  in ribosomal RNA (rRNA) genes. In this 

model, substitution  in the stem and  loop regions of  rRNA  is modeled with 16 and four-state continuous 
time Markov chains, respectively. The mean  substitution rates at nucleotide sites are assumed to follow 
gamma distributions that  are different for  the two types of regions. The simplest formulation of the 
model allows for explicit expressions for transition probabilities of the Markov processes to be found. 
These expressions were used to analyze several 16Slike rRNA genes from  higher eukaryotes with the 
maximum  likelihood method. Although the observed proportion of invariable sites was only slightly 
higher in the stem  regions, the estimated average substitution rates in the stem  regions were almost two 
times as high as in the  loop regions. Therefore,  the  degree of site heterogeneity of substitution rates in 
the stem  regions seems to be higher  than in the  loop regions of animal 16Slike rRNAs due to presence 
of a few rapidly evolving sites. The model  appears to be  helpful  in understanding  the regularities of 
nucleotide  substitution  in rRNAs and probably minimizing errors in recovering phylogeny for distantly 
related taxa from these genes. 

R IBOSOMAL RNA (rRNA) genes  are used exten- 
sively for  inferring  evolutionary  relationships 

among species because they allow for meaningful com- 
parison of sequences from very distant taxa (e.g., see 
WOESE 1987; SIMON et al. 1993; WAINRIGHT et al. 1993; 
RAGAN et al. 1994; SMOTHERS et al. 1994) and  are  found 
in all nonviral organisms. Almost  all of the previous 
phylogenetic analyses  of rRNAs have been  performed 
with either  the maximum parsimony method, which 
does  not  incorporate any explicit model of nucleotide 
substitution, or with various model-based tree-making 
methods  under JUKES and CANTOR’S (1969) or KI- 
MURA’S (1980) models of nucleotide  substitution.  These 
models are  built on a number of restrictive assumptions 
that  are  often violated in real data. Even though the 
results of the published phylogenetic analyses are  in 
most cases supported by independent morphological, 
paleontological or biogeographical data,  the robustness 
of the tree-making methods is not generally guaranteed 
if the underlying mathematical model does not fit the 
data. While the  computational cost  of application of 
parameter-rich models to real data may become  prohib- 
itively high, it is desirable to match specific properties 
of data with the  model to minimize the risk associated 
with using an oversimplified model. 

There  are a  considerable number of existing mathe- 
matical models that  are applicable to rRNA genes to 
varying degrees. Most  of these models assume indepen- 
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dence of nucleotide sites and homogeneity of substitu- 
tion rates across sequences but allow for various pat- 
terns of nucleotide substitution (for review see NEI 
1987; RODRIGUEZ et al. 1990). Some of them allow for 
rate variation across sites (e.g., see GOLDING 1983; NEI 
and GOJOBORI 1986; JIN and NEI 1990; LI et al. 1990; 
TAKAHATA 1991; YANG 1993), and a few recently pro- 
posed models allow for  nonindependence of nucleo- 
tide substitution in certain sites  within the same gene 
(SHONIGER and VON HAESELER 1994; TII,I.IER 1994; 
MUSE 1995). However, none of these models was de- 
signed specifically to describe nucleotide substitution 
in rRNA genes, where both site dependence  and vari- 
ability  of substitution rates across the sequences are 
known to be important (VAWTER and BROWN 1993; KU- 
MAR and RZHETSKY 1995). Below I describe a mathemat- 
ical model designed with the objective of incorporating 
the most important  features of  rRNA evolution while 
keeping  the  number of parameters small. Although this 
paper is written from the perspective of estimating evo- 
lutionary distances between extant  sequences, it also 
provides some new  analytical expressions that will be 
useful in phylogenetic analysis  of  rRNA sequences with 
the maximum likelihood method. 

To explain the choice of assumptions and parameters 
used in  the  model, I shall first briefly  review the set of 
known functional constraints that affect the  pattern of 
nucleotide substitution in rRNA genes. 

FUNCTIONAL  CONSTRAINTS ON NUCLEOTIDE 
SUBSTITUTION IN  RRNA  GENES 

The most prominent characteristic of all rRNAs  is their 
highly  conserved secondary structure defined by comple- 
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mentary regions within the same molecule.  Two  types of 
intramolecule interactions are known in rRNAs: short- 
range pairings creating hairpins and long-range  pairings 
that  order several short-range pairings into more sophisti- 
cated structures (JAMES et al. 1988; GUTELL 1992). About 
half  of nucleotide sites [e.g., 57% in the case of 1GSlike 
rRNAs of vertebrates (VAWTER and BROWN 1993) and 
48% in the case  of 23s rRNA  of Escherichia coli (NOILER 
et al. 1981)l do  not participate in the Watson-Crick inter- 
actions with other sites in the same RNA strand. Hence, 
a mature rRNA molecule comprises both singlestranded 
(loop)  and double-stranded (stem) regions that presum- 
ably  differ  in their modes of substitution. 

A significant proportion of sites that are critically  im- 
portant for a normal function of a ribosome  reside in the 
loop regions of  rRNAs. For example, in 16s rRNA  of E. 
coli, the single-stranded regons are responsible for associa- 
tion of ribosome subunits, binding of peptidyl tRNA, rec- 
ognition of Shine-Dalgarno sequence in  bacterial mRNh, 
and interaction with the protein factor IF3 (e.g., see 
WOESE et al. 1980; GL.OTZ et al. 1981). Since the vast major- 
ity  of mutations in the highly constrained sites are deleteri- 
ous, such  sites  display  little or  no variation (GUTELL et al. 
1985). Other sites  in the loop regions are more variable, 
and their functional constraints, although not well under- 
stood, seem  to be less demanding. The pattern of nuclee 
tide  substitution appears to vary among different loop 
regions and, at least in the case  of 16Slike rRNAs  of 
vertebrates (VAWER and BROWN 1993), there seems  to 
be no consistent transition/transversion substitution  bias. 

The primary function of the stem  regions is thought 
to  be the maintenance of the secondary structure of the 
molecule. Therefore, mutations occurring in a stem  re- 
@on are individually deleterious if  they  destabilize a func- 
tionally important structure, but fitness  can  be restored, 
when a compensatory mutation occurs that reestablishes 
the pairing potential (JAMES et al. 1988).  Among  all non- 
Watson-Crick nucleotide pairs, the U e G (uracil * guanine) 
pair appears to  be the least deleterious (JAMES et al. 1988) 
and in  some  cases  even at selective  advantage (ROUSSET 
et al. 1991). This pair is not rare in the stem  regions of 
functional rRNAs. For example, in human 18s rRNA 15% 
of site  pairs  in  stem  regions are occupied by U - G. 

The rates of nucleotide substitution may not be con- 
stant across  sites  in the stem regions. One reason to 
expect the rate heterogeneity is the so-called distance 
effect that was described by STEPHAN and KIRBY (1993) 
for  the stem regions of Adh precursor messenger RNAs 
in Drosophila but was not directly studied in rRNA genes. 
The regularity found by STEPHAN and KIRBY (1 993) im- 
plied that substitution rates in the stem region tend to 
decrease as the physical distance between the paired sites 
becomes larger. To explain this  observation STEPHAN 
and KIRBY (1993) referred to KIMuRA’s (1985) model 
describing fixation of compensatory mutations in a h a p  
loid population. Although this model is not directly a p  
plicable  to nucleotide substitution in rRNA stem regions, 
it indicates qualitatively that  the  per site substitution rate 

in the stem regions should decrease as recombination 
distance between two paired sites becomes larger pro- 
vided that nucleotide substitution in the double-stranded 
regions occurs through alternation of neutral (Watson- 
Crick pairs) and deleterious (non-canonical pairs)  states. 
Another factor that is  likely to contribute to  variation 
in the substitution rates in the stem regions is a set of 
constraints imposed by interaction of  rRNAs  with ribo- 
somal proteins (e.g. ,  see WOESE et al. 1980; NOI.I,ER et al. 
1981; AAGAARD and DOUTHWAITE, 1994). 

An approximate analysis of the distribution of  substi- 
tution rates across rRNA sequences can be performed 
with the maximum parsimony method  (FITCH 1971; Uz- 
ZEL and CORBIN 1971; WAKELEY 1993). If substitution 
rates do  not vary among sites and nucleotide substitu- 
tion along branches of the  true tree is governed by a 
Markov chain in continuous time, the actual numbers 
ofnucleotide substitutions per site  must  follow a Poisson 
distribution. This assumption is roughly tested as  follows 
(UZZEL~ and CORBIN 1971). First, a preliminary tree to- 
pology is obtained from the  data of interest assuming 
that substitution rates are  homogeneous across  sites. 
Next, basing on this preliminary tree, the number of 
changes required  at each site is computed using parsi- 
monious reconstruction of ancestral states at each inte- 
rior node. Theoretical curves are  then fitted to the ob- 
served distribution of the  numbers of nucleotide 
substitutions per site. A frequency distribution obtained 
in the described way from  both stem and  loop regions 
of eukaryotic 1GSlike rRNAs (KUMAR and RZHETSKY 
1995) was clearly different from a Poisson distribution 
but was sufficiently  close to a negative binomial distribu- 
tion  with the same mean and variance. The negative 
binomial distribution of substitution counts is expected 
under the assumption that nucleotide substitution in 
each site is governed by a Poisson  process, where the 
rate is itself a  random variable that follows a gamma 
distribution (see UZZEL and  CORBIN 1971; GOLDING 
1983; .JIN and NEI 1990; TAKAHATA 1991; YANG 1993). 
For the  present study  it is important to note  that  the 
observed distribution cannot be satisfactorily fitted by a 
weighted  sum of two Poisson distributions (which 
should be expected if the stem and  the  loop regions 
evolved at different rates but substitution rates within 
each class  of  sites  were homogeneous), since the com- 
posite distribution with the same mean and variance 
(7.5 and 80, respectively)  must be bimodal. In contrast, 
the  shape of the observed distribution is consistent with 
a weighted sum of  two negative binomial distributions. 
This indicates that  a model assuming that substitution 
rates in the stem and the  loop regions follow two differ- 
ent gamma distributions is not incompatible with  16% 
like  rRNA data in an obvious way. 

Now we are  in position to introduce  parameters and 
assumptions defining  the  model. 

MODEL 
Assumptions and parameters: Consider a set of m 

present-day rRNA sequences of total length 1. Our ob- 
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jective is to estimate parameters of the evolutionary pro- 
cess that  generated these sequences under  the follow- 
ing assumptions. 

1. The genes under analysis are homologous and re- 
lated by an  (unknown)  true  tree. 

2. The homologous sites in different genes are known 
and  the only source of change in the  sequence evolu- 
tion is nucleotide substitution. 

3. The sites  of the present-day genes can be unambigu- 
ously  classified into two groups, n pairs of sites in the 
stem regions and ( I  - 2n) sites in the  loop regions. 

4. The patterns of nucleotide substitution are different 
for  the stem and  the  loop  regons. Each pair of inter- 
acting sites in a double-stranded region and each 
site in a single-stranded region are  modeled by the 
first-order continuous-time Markov  processes  with 16 
and  four discrete states, respectively. 

5. The Markov process in each pair of interacting sites 
in the stem regions is independent of the Markov 
processes in other sites. Furthermore, each site in 
the single-stranded regions evolves independently of 
other sites, and the 16- and four-state Markov pro- 
cesses are  not  correlated. 

6. The Markov  process describing substitution in the ith 
pair of sites in a stem region along the jth branch of 
the true tree is defined as  follows. To describe the 
heterogeneity of substitution rates  across  sites, we fol- 
low a  number of authors (e.g.,  see GOLDING 1983; NEI 
and GOJOBORI 1986; JIN and NEI  1990; LI et al. 1990; 
TAKAHATA  1991; YANG 1993) and assume that the rate 
of the Markov  process  in the ith  site pair of the se- 
quence alignment is determined by a random variable x that is sampled from a gamma distribution with 
density function Ax; us).  Subscripts S and L will indi- 
cate hereafter the quantities related to the stem and 
loop regions, respectively. Notation Jz; a) stands for 

-a e 
, 7.20, 

f(7.; a)  = l-(a) lo, (1) 

7. < 0. 

Density function 1 is obtained by replacing both 
shape and scale parameters of the conventional 
gamma density function with a single parameter, a, 
where 0 < a 5 00. This one-parameter gamma distri- 
bution has mean 1 and variance l/a. We assume 
that  random variables Xz’s for different pairs of  sites 
( i  = 1, . . . , n) are  independently and identically 
distributed and therefore  the  parameter of the 
gamma distribution, as, can be estimated from data. 
The probability of  having pair of nucleotides (or 
dinucleotide  for brevity) u replaced with dinucleo- 
tide w (U f w )  within a small time interval [ T ,  T + 
A T ]  in the ith pair of  sites is defined by 

[ Qs] v u , X t p j ( ~ )  AT + [small terms 

including (AT)’, (AT)’, etc.]. (2) 

Stems 

pair of sites i + P site k Q 

FIGURE 1.-Hypothetical true  tree for three extant rRNA 
sequences and matrices of transition  probabilities along each 
branch  shown  separately for the stem and the loop regions. 

Here p j ( r )  is a nonnegative function specific to the 
jth branch,  and  Qs is 16 X 16 rate matrix indepen- 
dent of T .  All off-diagonal elements in matrix Qs are 
nonnegative and  the diagonal elements are chosen 
to  ensure  that elements in each row sum to zero. 
Matrix Q s  summarizes information about  the pat- 
tern of dinucleotide substitution, whereas function 
p j ( r )  specifies fluctuations in the mean substitution 
rate throughout evolutionary history. In  a special 
case, when p , ( ~ )  is a  constant  independent ofj, the 
Markov process defined by (2) is homogeneous in 
time. In  more general case we can consider a new 
time parameter 5 defined as the integral of pi(.) 
over time interval between endpoints of the jth 
branch.  Then  the matrix of transition probabilities 
is expressed by P,s, = exp(QsX,tj), where subscripts 
i andjrefer to the ith pair of  sites and  thejth branch 
of the  true  tree, respectively (see Figure 1). 

7. The four-state Markov process is defined by analogy 
with the 16-state  process. In this  case 16 X 16 matrix 
Qs in (2) is replaced with 4 X 4 matrix QL, and the 
site-specific rate in the kth site of a  loop region is 
assumed to be  determined by random variable Yk 
(see Figure 1). As before, we assume that all Yk’s are 
independent  and follow the same gamma distribu- 
tion with densityf(y; uI,) as defined by (1). The  inten- 
sity functions, p j ( r )  ’s, are postulated to be the same 
for both types  of  Markov  processes for each branch 
of the  true  tree. 

8. Markov  processes of the two  types  allow for existence 
of equilibrium distributions defined by (1 X 16) vec- 
tor ns and (1 x 4) vector nI~. Vector ns satisfies 

16 

~ S Q S  = 0, C T ~ Y h  = 1, (3) 
h= I 

where 0 is a zero vector, and vector mI, is defined by 
analogy  with (3). 

9. Distributions of  states in the most recent  common 
ancestor of m extant sequences are assumed identi- 
cal to  the equilibrium distribution vectors ms and mI. 
for the stem and  the  loop regions, respectively. 
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Note that it is possible to estimate products, (Qs t j )  
and (QJ. $), but  not Qs, Ql,, and $separately. Neverthe- 
less, it is convenient to keep  the “redundant” parame- 
ters in the following derivation since this allows the 
Markov processes that  are not homogeneous in time to 
be treated as time homogeneous. The length of the jth 
branch (S,sj and S I , , ,  for  the stem and  the  loop regions, 
respectively) is defined by the  mean  number of nucleo- 
tide substitutions per site along this branch, where 

1 t i  

6, = -x n.dQ,~I,~t~, and 
I =  I 

4 

61.7 = n , k [ Q r , l ~ d ~ -  (4) 
k= 1 

The evolutionary distance between a  pair of extant 
rRNA genes is then  defined by the sum of branch 
lengths  along  the  shortest  path  connecting these se- 
quences  in  the  true  tree. For example,  in  the case  of 
present-day sequences 1 and 2 in Figure 1, the distance 
between their stem regions (d,?) is given by 

I t i  

d,s = -% C n . ~ t [ Q ~ I i z ( t ~  + h) .  (5) 
i= 1 

Finally, we can introduce  the total distance, d.r, between 
two present-day sequences by d,. = d,y + dl., where dr, is 
the distance between the  loop regions. In the following 
we shall consider  certain simplifying assumptions about 
matrices Qs and QJ.. 

The loop regions: In the most general case matrix 
QI, may comprise 12 different  parameters. Since the 
pattern of nucleotide substitution in the single-stranded 
regions seems to vary across the  sequence  (see VAWTER 
and BROWN 1993), for  the  moment we shall use the 
simplest possible matrix Q,, defined by 

i -3t, i = j ,  
[QJ. 1 ,I = (6) 

E ,  i f j ,  

which specifies the  model described first by JUKES and 
CANTOR (1969). The length of the  jth  branch of the 
true  tree [see (4)] under this model is defined by 

6,, = 3 q .  (7) 

Omitting  the derivation of transitional probabilities un- 
der this model,  consider  the estimation of the distance 
(drJ between the  loop regions of two present-day se- 
quences, say sequences 1 and 2 in Figure 1. It is impossi- 
ble to estimate a  pair of parameters,  the evolutionary 
distance (d,) and  the gamma parameter (al.) simulta- 
neously from a  pair of present-day sequences  that  pro- 
vide  only one  independent observation (the  proportion 
of differences) under  the Jukes-Cantor model. How- 
ever, assuming that  the value of nL is known, the maxi- 
mum likelihood estimate of dl, can be obtained by  solv- 
ing  the following equation with respect to dl, (see 
GOLDINC; 1983; NEI and GOJOBOM 1986; JIN and NEI 
1990; LI et nl. 1991). 

jL = X{ 1 - [ad ( a/. + X &  ) 1 “4 ,  (8) 

where !I, is the observed proportion of differences be- 
tween the  loop regions of sequences l and 2. 

The stem regions: Matrix Qs combines information 
about  patterns of both  mutation and selection in the 
stem regions of  rRNAs. By virtue of the  requirement 
that  entries  in  each row of this matrix sum to zero, in 
the most general case matrix Qs includes 16 X 16 - 16 
= 240 independent parameters. In reality it is hardly 
practical to use a model with hundreds of parameters, 
especially when a  moderate amount of data is available. 
Therefore, some assumptions about  entries of Qs must 
be introduced. First, assuming that  mutations  occur in- 
dependently at different sites and that  their  number 
for  a fixed time interval follows a Poisson distribution, 
one can set all instantaneous rates of two-substitution 
transitions (such as  A-T + C-G) to zero. [This assump- 
tion was used by SHONIGER and VON HAESELER (1994) 
and MUSE (1995), but  not by TILLIER (1994).] This 
brings the  number of parameters in Qs down to 98, 
which is still rather large. One can further decrease 
the  number of parameters to 16 by setting all nonzero 
entries within each column of the matrix to the same 
value (see SHONIGER and VON HAESELER 1994). This 
can be considered to describe a case when mutation 
changes any nucleotide to  any other with equal proba- 
bility but selective  values of the 16 nucleotide pairs are 
different. [MUSE (1995) incorporated somewhat differ- 
ent symmetry of the substitution process into his model. 
In contrast, TILLIER (1994) reduced  the overall number 
of parameters by postulating that only  six dinucleotide 
states out of 16 possible are allowed  in the stem re- 
gions.] Finally, assuming that  dinucleotides can be clas- 
sified into  three equivalence classes (the Watson-Crick 
pairs, T .  Gand G. Tpairs,  and  the rest of noncanonical 
pairs) and that  dinucleotides within each group  are 
selectively identical, we can decrease the total number 
of parameters to three.  Therefore, matrix Qs consid- 
ered in this paper is a special case  of the  SHONIGER- 
VON HAESELER matrix. The off-diagonal elements ofthis 
matrix are  defined as follows. 

‘a,  j is a Watson-Crick pair, one 

difference between i and j ,  

y ,  j is GT or TG pair, 

[as] j j  = < one difference between i and j ,  (9) 

/3, j is any other  noncanonical  pair, 

one difference between i and j ,  

,0, two differences between i and j .  

The diagonal elements  are chosen to ensure  that row 
sums are zero. Biologically reasonable values of a,  /3, 
and y should probably satisfy the inequality 

a z y r p > o .  (10) 
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FIGCRE P.-Two-parameter matrix Q,,. Emptv cells correspond to  zero entries of the  matrix.  Borders  and shadows are used - 
to emphasize symmetric properties of the matrix. 

. I  

Before considering  the distance estimation, let us high- 
light several important  properties of the substitution 
model defined by matrix 9. First,  in the caqe cv = = y 
the Ih t a t e  Markov model reduces toJUKES and CANTOR'S 
(1969) model with four  independent nucleotide states. 
Second, the rate of nucleotide substitution is higher in 
the case cv = = y than in the case cv > y > 0. The 
third useful ohsenlation is that matrix Qs in (9) defines 
a time-reversible  Markov process, ix., matrix diag(n,s)Q,s 
is real  symmetrical (see KE:IISOX 1979), where diag(ns) is 
a square matrix with element5 of vector n,% on  the main 
diagonal and all off-diagonal elements  equal to zero. 

Estimating  evolutionary  distance  between  the  stem 
regions: Here we shall consider only a special case of 
matrix 9 where P = y (see Fi'gures 2 and 3) and  there 
are  just hvo groups of identical  states,  paired (A-T,  T-A, 
CG,  and GC) and  unpaired (all other  dinucleotides), 
because the derivation of the  corresponding  equations 
under  the three-parameter  model  turned out to  be very 
cumbersome. 

To obtain  an expression  for  estimating d, from the 
observed  differences  behveen present-day sequences, 
one has  to go through a number ofwell-defined  compu- 
tational steps. The first step is to determine  the matrix 
of transition  probabilities behveen 16 states, PS(l, x), 

where [PS(/, X)],.,, is the probability of having dinucleo- 
tide u replaced by dinucleotide 7 0  after  amount of time 
1 given that  the relative substitution  rate at  the pair 
of sites considered is equal to x. The symmetry of the 
substitution process (see  Figure 3) allows this matrix to 
be determined  in a simple and elegant way (see APPEN- 
DIX A). Namely, we have 

Ps(t, x) = RI + exp(-2(a + P)/x}R2 

+ exp(-4Pl~}R:~ + exp{-2(cv + 3P)/x}R,, ( 1 1 )  

where  matrices, RI  , R2, R,, and R, are as shown in 
Figure 4, and  the  equilibrium  frequencies  ofpaired  and 
unpaired states are given by 

respectively. 
Once Ps(/, x) is determined, it  is easy to  compute 

probabilities of ohsenring  dinucleotide u and dinucleo- 
tide 711 in homologous sites of two present-day sequences 
(say, sequences 1 and 2 in Figure 1 )  given that  the 
relative substitution  rate at this site is equal  to x. We 
denote  the matrix of these  probabilities by X,$( f I  , t2, x), 
where 
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CA cc 

1. Paired stme No > P a i d  State (AT -+ AT) 

2. paired state Paired state (AT -+ CG) 

3, Paired rtafe One dfference 

4. Paired state *fferencrs > Unpaired state (AT -+ CA) 

5 .  Unpaired State No*.@rences > Unpaired state (AA -+ AA) 

6. Unpaired state One > Unpaired state (AG "t AA) 

7, unpaired State Two dfferences 

8. Unpaired state One > Paired state (AG + AT) 

9. Unpaired state *firences > Paired state (AG "t GC) 

> Unpairedstate (AT -+ AA) 

> Unpaired state (AG -+ CA) 

FIGURE 3.-Graph of adjacency of dinucleotide states in 
matrix Qs in Figure 2. There  are two types of identical states: 
paired (0 )  and unpaired (0). Only dinucleotides  one  differ- 
ence apart  are  adjacent.  The symmetry of this graph suggests 
that the entries of matrix Ps in (14) can be  classified into 
nine  equivalence  groups. 

Xdtl, tr, x) = [Ps (~I ,  ~ ) l ~ d i a g b , d P d t r ,  4 ,  (13) 

(e.g., see TAV& 1986).  It is then possible to find the 
weighted average of matrix 14 over all  possible  relative 
rates, x's, using density function 1. 

Xs = Iom f(x; U , ~ ) X . ~ (  tl , tr, x) dx. (14) 

The resulting  matrix Xs is shown in  Figure 5. This 
matrix  can be used to obtain  expressions for estimat- 
ing ds from  the observed  frequencies of dinucleotide 
pairs  between two present-day  sequences. The most 
statistically efficient way to  estimate  parameters ds and 
as from two extant  sequences is to  find the values of 
parameters  that maximize the  appropriate  likelihood 
function.  Noting  that  matrix Xs comprises 256 entries 
of only nine  different types (A ,  B, C, D, E, F, G, H, 
and I) and omitting  a  constant  multiplier, we can 
express the  logarithm of the  likelihood  function as 
follows: 

log L = 12A log(A) + 488 log(B) + 48c log( C) 

+ 1 2 6  log(D) + 48E log(@ 

+ 24Rlog(F) + 48c  log(G) 

+ 4Alog(H) + 12jlog(l), (15) 

where A, B, C, D, E, F, G, H, and  Iare parameters  defined 
in Figure 5, and  the same letters with hats denote  the 
observed frequencies of dinucleotide pairs correspond- 
ing to each probability value. For example, 12a stands 
for sum of the observed frequencies of  all pairs of iden- 
tical noncanonical  dinucleotides (e.g., A A/A * A) in 
the present-day sequences, see Figure 5. Unfortunately, 
the values  of dS and as that maximize function  15 could 
not be recovered analytically and  one has to  rely on a 
numerical  technique. 

It is still  possible to derive various (nonmaximum 
likelihood) closed-form expressions that provide consis- 
tent estimate (&) of ds from real data assuming that 
the value of as is known. We shall consider  here only 
one expression of this kind introducing  parameter S = 
48B + 48G + 4H + 121 (see Figure 5).  One can verify 
that 

2+"- ]"''L'5} , (16) 
37r,  487rp7r, 

where ds is expressed in terms of parameters 7rp, 7ru, S, 
and as. Parameters 7rP, xu, and S can be directly esti- 
mated from two present-day sequences, and parameter 
as is assumed to be known. Hence, & can be computed 
by substituting parameters in the  right side of (16) with 
their estimates, and  the variance of this estimate can 
be evaluated by the  "delta-technique'' (see KFLNDALL 

and STUART 1958). 
Considering the properties of expression 16, observe 

that in the case ( tl + 4) = 00 we have S = 16rp (7rp + 
67r,), and ds = 00. Therefore,  (16) is inapplicable for 
estimating dS when is greater  than 16f?p(f?p + 6f?,). 
Equation 16 can be used to derive corresponding for- 
mula for ds under  the assumption that substitution rates 
are  homogeneous across stem regions, Le., parameter 
as tends to infinity. In the following sections we shall 
consider estimation of parameters as and a,. from real 
sequences and compare various ways  of computing dis- 
tances between the stem regions. 

Estimating parameters of the model: To  get  a feeling 
about  the values  of parameters  that can be expected in 
real data analysis, I analyzed a set of eukaryotic 16s-like 
rRNA genes. This set included sequences representing 
mammals (Homo sapiens), arthropods (Acyrthosiphon  pi- 
sum), nematodes ( Caenorabditis elegans and Strongyloides 
stercmalis) , and fungi (Saccharomyces cermisiae) . Because 
the evolutionary relationships of these taxa seem to be 
noncontroversial, one can concentrate on estimation 
of the  model  parameters  for  a  predetermined  tree in- 
stead of discriminating among alternative phylogenies 
first. The aligned sequences were retrieved from the 
Ribosomal Database Project (LARSEN et al. 1993) (see 
legend to Figure 6). To identify the  boundaries of the 
stem and loop regions, previously published secondary 
structures  (GUTELL et al. 1985; GUTELL 1991) were used. 
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FIGURE 4.--Spectral  matrices R,, R2, R:%, and R,, each of size 16 X 16. All empty  cells correspond to zero entries of the 
matrices.  Borders and shadowvs are used to emphasize  the  symmetric  properties of matrices. 

Two data set5 for  the  stem  region were  used. The large 
data  set (387 pairs of sites from  four  animal  sequences) 
included all sites that were likely to  belong  to  the  stem 
regions, and in  the small data  set (343 pairs  of  sites 
from  the  same  sequences) all sites  where alignment was 
equivocal  were deleted.  The  data  set  for  the  loop re- 
gions  included 804 sites from  the five sequences. All 
sites containing  insertions,  deletions or  ambiguous 
characters were excluded  from  these  data sets. 

The maximum  likelihood  method used in these  anal- 
yses was implemented as described by FELSENSTEIN 
(1981), who  introduced  an  algorithm of evaluating a 

likelihood  function  for  unrooted  trees  under a time- 
reversible model of nucleotide  substitution,  and by 
YANG (1993), who considered new aspects of this com- 
putation associated with acljusting this  model  to varia- 
tion  of  substitution  rates  across sites. In the case of the 
16state  model it was convenient  to  express  matrices R3, 
and R, in Figure 4 in terms of parameters T,, and T , ~  by 
introducing a new parameter, IC = n / P  = T,,/T,~. In this 
case the  entries of matrices R:l and R, were easier  to 
compute because parameter  Kcan  be directly estimated 
from  the  extant  sequences.  The estimates  of  parameters 
as (from  the  large  data  set)  and a,, obtained in the 
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I =  3P(a + 2 1 )  
2(a’+4a/3+3P2)’ 

analysis as well as estimated branch  lengths of the  tree 
are shown in Figure 6. All  five sequences were  used 
in  analysis for  the  loop regions, but only four animal 
sequences were used in estimation of parameters for 
the stem region. (This is because optimization of the 
likelihood function  for the four sequences under  the 
“continuous  gamma”  model  required  about 36 hr with 
a SUN SPARC 5 workstation. An analogous computa- 
tion for five sequences would require -256 times as 
much as for  the  four sequences.) Results obtained for 
the  loop regions (Figure 6B) were independently veri- 
fied  with a computer program BASEMLG (YANC 1993) 
provided by Z. YANG. 

The  outcome of these analyses turned  out to be inter- 
esting in two respects. First, the estimate of a.s was a p  
proximately twice as small as the estimate of a,, (see 
Figure 6). The estimate of a,% from the small data set 
was a little more  extreme (0.268) than from the large 
data set (0.287). Second,  the estimated branch  lengths 
for  the stem region tree  turned  out to be on average 
twice as large as corresponding estimates for  the  loop 
region tree (see Figure 6). Although the  branch  lengths 
for  the stem-region tree were somewhat shorter when 
estimated from the small data  set  (data  not  shown), 
they were still longer than the  branch  lengths  for  the 
loop region tree  (see also VAWER and BROWN 1993). 

Curiously, the proportion of invariable sites in the  four 
animal genes was somewhat larger in the stem regions 
(0.62 and 0.69 for  the large and  the small data set.., 
respectively) than in the  loop regions (0.59). This sug- 
gests that  the stem regions include a few sites that evolve 
very rapidly but  the rest of the sites  in the stem regions 
change  rather slowly. In other words, the selective  pres- 
sure in the  loop regions seems to be higher  but distrih 
uted  more evenly than in the stem regions. 

A  crude analysis  of distribution of the fastevolving 
sites along  the double-stranded regions suggested that 
the “distance effect” (STEPHAN and KIRBY 1993) was 
not  dominating in the evolution of 16Slike rRNA 
genes. More  precisely, there were no clear-cut correla- 
tion between the relative substitution rate in a pair of 
sites and  the physical distance between these sites (data 
not  shown).  Instead,  the fast-changing sites tended to 
be situated in the middle of long stems, in the  optional 
helices that  are  absent in some species (see WOESE et 
al. 1983) and  at  the boundaries of short conservative 
stems, i . ~ . ,  in the regions where the impact of nucleo- 
tide substitution on  the rRNA secondary structure 
seems to be  the least harmful. To  support these observa- 
tions statistically an additional data analysis using a 
larger data set needs to be performed. The reader is 
also addressed to the  paper by G. R. GOLDINC (1994) 
where distribution of  selective strength across  stem  re- 
gions of 16Slike rRNA genes was estimated with the 
maximum likelihood method under a population-ge- 
netics model. 

Application of (16) to estimating distances between 
the real sequences indicated that  the variances of the 
estimates were large. To verify  this I compared alterna- 
tive estimators of evolutionary distances between the 
stem regions in computer simulation assuming that  the 
value of as is fixed (0.287) and known.  Results  of  this 
comparison were somewhat surprising (see Table 1). I t  
was anticipated  that  the distance estimates obtained 
with (16) would be less efficient than those derived 
by maximizing the likelihood function 15. The actual 
difference in the efficiency was striking: although both 
estimators are consistent (see the last row of Table l ) ,  
the variances of estimates obtained with (16) in some 
cases  were about two orders of magnitude higher than 
the variances of the maximum-likelihood estimates. In 
addition,  the estimates obtained from  relatively short 
simulated sequences displayed  positive  bias that was 
small for the maximum-likelihood estimates but quite 
large for  the estimates computed with (16).  Therefore, 
the. practical importance of (16)  for analysis  of short 
sequences is rather limited, say, to finding  the starting 
values for maximizing the likelihood function in  15. 
The maximum likelihood estimates of distances oh 
tained from a set of sequences were rather close to 
those obtained from a pair of sequences (see Table 2), 
although  the pairwise estimates appeared to be  consis- 
tently larger. 

I also experimented with estimating parameters as 



Substitution Rates  in  rRNA Genes 

Matrix XS 
779 

FIGURE 5.-Matrix of the expected 
frequencies of dinucleotide pairs  in the 
stem regions of sequences 1 and 2 in 
Figure 1 .  The values of parameters a, II, 
c, d, P, J g, it, i, j ,  k, and 1 are  as shown 
in  Figure 4, and  superscript 1 indicates 
transpose of a vector. 

= 4(128 + 12G + 3I + H). 

and dS simultaneously from a  pair of sequences. In con- 
trast to the case described by YANC (1994), it was not 
impossible to obtain consistent estimates of the parame- 
ters from two extant  sequences under  the 16-state 
model. However, computer simulation indicated  that 
these estimates had  a tendency to have both large sam- 
pling variances and considerable positive  biases when 
simulated sequences were not very long  (data  not 
shown).  Therefore, estimation of parameter as from a 
pair of sequences  does not seem to be practical with 
real data. 

DISCUSSION 

The model  considered in this paper is built on a 
number of assumptions that can be tested in subse- 
quent analyses. One important assumption is that fluc- 
tuations in substitution rates in the stem and  the  loop 
regions are synchronized, it., the ratio between the 
expected  lengths of the analogous branches in the stem 
and  the  loop region trees (6 ,v/bf j )  remains constant 
over all branches of the  true  tree. If this assumption 
is violated, one cannot meaningfully combine painvise 
distances computed  for  the stem and  the  loop regions 
into  a total distance, dT. Since, here,  the values  of 
gamma-parameters (us and u,J were assumed constant 
for all lineages, it is worthwhile to check whether esti- 
mated values  of these parameters differ significantly 

among taxonomic groups. Another set of  biologically 
important hypotheses is associated with sets of  symmet- 
rical restrictions on  the entries of rate matrices ( Q S  and 
Q,J and possible variation of these restrictions among 
evolutionary lineages. All these hypotheses can  be 
tested in the framework of the maximum likelihood 
analysis. 

The practical use  of the above model in real data 
analysis can be substantially complicated by uncertain- 
ties in alignment of nucleotide sequences. When  apply- 
ing this model to analysis  of  real genes one has to ex- 
actly  specify the position of paired sites in the double- 
stranded regions and  the boundaries between the stem 
and  the loop regions throughout  the set of sequences 
in addition to usual identification of homologous sites 
in different genes. All nucleotide sites that  cannot be 
unambiguously aligned and assigned to either class 
should be excluded from further analysis. The  number 
of excluded sites can be particularly large when  dis- 
tantly related rRNA genes representing, say, different 
eukaryotic kingdoms are  compared, because both size 
and position of the stem and  the  loop regions tend to 
vary across taxa (GUTELL 1992) and  are  not well  known 
for  certain species. Hopefully, efforts to overcome these 
complications will be rewarded by insights into regulari- 
ties  of nucleotide substitution in  rRNA genes. In addi- 
tion, application of the  appropriate mathematical mod- 
els in phylogenetic analysis  of rRNA genes may help to 
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FIGURE 6.-Branch lengths and parameters of gamma distributions estimated from the stem regions (A) and  the loop regions 
(B) of several 16Slike rRNA sequences with the maximum-likelihood method. In both cases the likelihood functions were maximized 
for  the same predetermined  tree topology that appears to be almost certainly true from a taxonomist's point of view. The taxa 
represented  in the tree  include mammals (H. s u p k s ) ,  arthropods (A. pisum), nematods (C. ekguns and S. stercoralis), and fungi 
(S .  cmmisiue). The branch  lengths of the trees are shown in terms of the average number of nucleotide substitutions per site. The 
model parameters were estimated from 387 site pairs for the stem regions (four sequences) and 804 sites from the  loop regions 
(five sequences). The small subunit rRNA genes used in the analysis  were derived from the Ribosomal Database Project on  the 
anonymous ftp server at the University of Illinois in Urbana, Illinois updated  on August 7, 1993 (LARSEN et al. 1993). 

reduce risk  of making systematic errors  in estimating 
the actual relationships among taxa (see TILLIER and 
COLLINS 1995; VON HAESELER and SCHONIGER 1995). 

An interesting and somewhat counterintuitive prop- 
erty of the  model  for  the stem regions considered in this 
paper  (see matrix Qs in Figure 2) is that  the  numbers of 
nucleotide substitutions occurring in two interacting 
sites in a stem follow two independent distributions 

[this is also true  for  the  model by S. V. MUSE (1995), 
see APPENDIX B]. One might suspect that by analogy 
with (8) for  the  loop regions, the distance between 
the stem regions can be expressed just in terms of the 
expected  proportion of differences between the stem 
regions, ps. This turns out to be indeed  the case.  Com- 
bining  the  expected  frequencies of dinucleotide pairs 
having a difference at site 1 (and any configuration in 

TABLE 1 

Comparison of the  distance  estimates  calculated with (16) with those  obtained 
by maximizing the  likelihood  function 15 

d.7 = 0.05 ds = 0.25 

n (is (16) 2,s (15) & (16) L (15) 

250 0.0794 (0.0112) 0.0505 (0.0002) 0.3929 (0.2860) 0.2533 (0.0027) 
500  0.0622 (0.0031) 0.0502 (0.0001) 0.3049 (0.0483) 0.2515 (0.0013) 

1500 0.0537 (0.0007) 0.0501 (0.0000) 0.2655 (0.0088) 0.2505 (0.0003) 
1000  0.0559 (0.0012) 0.0501 (0.0000) 0.2759 (0.0161) 0.2506 (0.0005) 

m 0.05 0.05 0.25 0.25 

The average values of estimates and  their variances (shown in  parentheses) were computed in 1000 simula- 
tion replications forAeach value of the expected  distance (d,y) and  the  number of paired sites under analysis 
(n). The values of d,s for n = 00 were obtained by setting the observed frequencies of dinucleotide pairs to 
their expected values. In all computations, the  true values of parameters as (=0.287) and R (=a/p = 8.19) 
used in generating  the  extant sequences were assumed to be known. 
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TABLE 2 

Comparison of distance  estimates  computed  with  the 
maximum likelihood  method  from  pairs of sequences with 

those  computed  from  the set of four  sequences 

Sequences" & (15) & (four sequences) 

1 and 2 0.526 
1 and 3 0.885 
1 and 4 1.277 
2 and 3 0.992 
2 and 4 1.442 
3 and 4 1.135 

0.464 
0.725 
1.121 
0.839 
1.235 
1.046 

~~ 

a The sequences  are  enumerated as follows: 1, H. sapiens; 
2, A. pisum; 3, C. elegans; 4, S. stercmalis. 

site 2), we find  that ps = 24(B + C + D/2 + 2E + F + 
2G + I / 2 ) ,  see Figure 5, and 

US 

- 3(Tu + us + ds/[6(.rr, + x,)] 1". (17) 

Letting CY = P (in which  case nu = .rrp = and R 
= 1) and substituting parameters ps and ds with their 
estimates, . 2 can transform (17) into (8). Although 
estimates of ds obtained with (17) (assuming that us is 
known) are  not very efficient, this expression has certain 
appeal in not requiring knowledge about the exact posi- 
tion  of paired sites  within the stem  regions. It should be 
emphasized that the independence of  two distributions 
does not imply that paired sites  in the stem  regions 
evolve completely independently and,  hence, that the 
rate of nucleotide substitution in the stem repons can 
be equivalently estimated under a four-state  Jukes-Can- 
tor-like model. In contradistinction to the usual four- 
state Markov  process, the waiting  times  between two sub  
sequent substitutions at the same  site  in a stem region 
under the current model follow  two different exponen- 
tial distributions rather  than  one,  depending on the type 
of nucleotide pair occupying the paired sites. 

The model for  the stem regions considered in this 
paper  appears  to  be analytically tractable and simple 
in implementation due to relatively  small number of 
parameters. Nevertheless, computation of the likeli- 
hood  function  for a few sequences requires consider- 
able time. Although it is possible to invoke techniques 
to significantly reduce  the  computational complexity 
PANG 1994), a point where a model becomes computa- 
tionally unfeasible is usually reached quickly  as the 
number of sequences under analysis increases. There- 
fore,  to  reconstruct phylogenetic trees from sizable data 
under multiparameter models of nucleotide substitu- 
tion it might be reasonable to  combine distance-matrix 
tree-making algorithms with efficient estimation of evo- 
lutionary distances between sequences. The efficiency 
of the distance estimation can be increased by a careful 
selection of the distance estimator or using more  than 

two sequences at a time for estimating painvise  dis- 
tances between them. Being  statistically consistent and 
relatively fast, the distance matrix methods may provide 
a reasonable compromise between computational com- 
plexity and statistical  efficiency in phylogenetic infer- 
ence from large data sets. 

COMPUTER PROGRAM 

An ad hoc computer program that was used in the 
data analysis described in this paper is available on re- 
quest. The  author could spend an additional amount 
of time and efforts to write a more general program if 
this is requested. 
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APPENDIX A DERIVATION OF TRANSITION 
PROBABILITIES FOR  THE  IGSTATE 

MARKOV PROCESS 

The explicit form of P,s( t, x) can be found from spec- 
tral decomposition of matrix (Qstx). 

I ti 

P s ( 6  X) = exp(Q.& = exp(Xktx)ukvk, (AI) 
k =  I 

where Xk, uk, and vk, are  the kth eigenvalue of matrix 
Qs and associated left (row) and right  (column) eigen- 
vectors, respectively (e .g . ,  see HUNTER 1983). To com- 
pute  exp(Q,& with (Al)  we start with finding  the eigen- 
values of matrix Qs in Figure 2 .  Only four  out of 16 
eigenvalues of Qs turn out to be distinct, namely 

X1 = 0, X2 = AX = X4 = -2 (CY + p ) ,  
X5 = X6 = X7 = -4p, 

and X8 = X!, = - - = A l e  = -2(a + 3p) .  (A2) 

It is clear from ( 3 )  that  the equilibrium distribution 
vector rrTs satisfies the  equation  for  the left eigenvector 
(ul)  associated with eigenvalue X, = 0. Therefore, we 
can choose 

u1 = (Tu, TfTp, TU> X,', Tp, Tu, TU> 

Tu, T,', T u ,  nu, T p ,  T u ,  T u 9  Ti,, T I L ) ,  ('43) 

where T?, and Ti, are given in (12). Corresponding  right 
eigenvector, v, , satisfying equation ulvl = 1, is given by 

v ~ = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) .  (A4) 

The straightforward calculation of the  remaining 15 
pairs of left and right eigenvectors of matrix Qs would 
require  a repulsive amount of algebra. Fortunately, one 
can avoid  this computation with the following trick. 
Noting that only four  out of 16 eigenvalues of Qs are 
distinct, we can rewrite (Al)  in the form ( l l ) ,  where 
matrices, R 1 ,  R,, R,, and & are  defined by 

4 7 

R1 = UlVl ,  R2 = 1 ukvk, R:a = u k v k ,  
k=2 k= 5 

Ih 

% = 1 Ukvk. (A51 
k=X 

Since  matrix R1 is already known (see A3 and A4), it turns 
out to be  much  easier  to determine matrices R2, R3, and 
& directly than compute the eigenvectors  first.  It will be 
shown  below that these  matrices  can  be  readily found by 
using information about relationships of their entries. 
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The first set of relationships follows from  the symmet- 
rical properties of the  model. Figure 3 indicates that 
there  are  at most nine different expressions for 256 
conditional probabilities constituting  entries of matrix 
P,J t, x) in (Al) .  Therefore,  each of the matrices R2, 
R,, and & has at most nine different  entries, and we 
have to solve a system  of 27 equations (rather than 256 
X 3 equations as  would be required in the  absence of 
the symmetry). Figure 3 is helpful to identify positions 
of identical entries within these matrices. 

Another set of constraints emerges from  theory of  spec- 
tral decomposition of a square matrix (eg., see HUNTER 
1983) and the properties of orthogonal projectors (RAo 
1973). Indeed, since our lh t a t e  Markov  process is irre- 
ducible (any  state can be accessed from any other  state), 
ergodic [there is a nonnegative  vector n,s satisfying (3)] 
and time-reversible,  matrices ukvk in (Al) are all  real-val- 
ued, idempotent, orthogonal, and each of  them  has rank 
one (see KEILSON 1979). It is then easy to obtain the 
following  restrictions on matrices R1 , R,, R,, and &. 

Rl[0lk + R2[-2(a + P)Ik + RS[-4Plk 

+ %[-2(a + 3P)lk = Q.“i (A6) 

where ( k  = 0, 1, 2, . . .). 

R,Rj = S,R, (i, j = 1, 2, 3, 4).  (A71 

rank[R1] + rank[R2] + rank[%] + rank[%] 

= rank[I] = 16,  (A8) 

trace [RJ = rank[R,] = pz,  (A91 

where I is 16 X 16 identity matrix, 6, is Kronecker’s 
delta, pi is the algebraic multiplicity of the eigenvalue 
associated  with the matrix q, and trace[ ]  and rank[ ] 
denote sum of diagonal elements and rank of the ma- 
trix in brackets, respectively. Combining (A2),  (A8), 
and (A9), we obtain 

trace[R,] = 1, trace[R,] = trace[R,] = 3, 

and trace[%] = 9. (A10) 

Finally, the identity 

16 f l  L - 1  

,= I 

follows from (Al)  and  the observation that every  row 
of matrix Ps( t, x) must sum to 1 for any t 2 0. 

Note that (A6) by itself  allows for  unambiguous iden- 
tification of matrices R2, R3,  and &, and all the addi- 
tional equations serve just to simplify computation. The 
explicit expressions for matrices R2,  R3,  and & are 
given in Figure 4 and can be readily  verified to satisfy 
the above equations. The closed form expressions for 
conditional transition probabilities are immediately 
available due to (Al) .  

We can save quite  a few additional algebraic opera- 

tions by using the  property of time-reversibility of the 
Markov processes under consideration.  Indeed, instead 
of evaluating (13) directly, we can rewrite it as 

X.4t1, LL,  x) = diagbdPdtl + t.r, x) (-412) 

(TAVAF& 1986). That is, we reverse direction of the pro- 
cess leading from the  common  ancestor of sequences 
1 and 2 (see Figure 1) to sequence 1 and evaluate transi- 
tion probabilities for  amount of time ( t ,  + tL) given 
that  distribution of states at  the  starting  point 1 is speci- 
fied by vector m,y. Next, we can get rid of variable x in 
expression for X,s( tl , 4 ,  x) [see (14) ]  noting  that matri- 
ces R1 , R,, R3,  and & are independent of x (see Figure 
4).  The resulting matrix X,? is shown in Figure 5. 

APPENDIX B: THE NUMBERS OF NUCLEOTIDE 
SUBSTITUTIONS  OCCURRING IN TWO 

INTERACTING  SITES IN A STEM FOLLOW 
TWO INDEPENDENT  DISTRIBUTIONS 

One can verify  this assertion in the following way. 
Consider the kth pair of sites  in the stem region that 
evolve  with the relative rate X,. Denote by n1 and Q the 
numbers of nucleotide substitutions that  occurred in 
sites 1 and 2 within the kth pair, respectively. As far as 
the process of dinucleotide substitution is Markovian, 
the actual number of transitions between 16 states for 
a fixed time interval follows a Poisson distribution. Be- 
cause  only dinucleotide states one difference apart  are 
adjacent (see Figure 3),  the total number of transitions 
between states is equal to the total number of nucleotide 
substitutions in  both sites, nI + Q. Therefore,  the proba- 
bility of observing i + j substitutions in two sites is 

where p is the  expected  number of transitions between 
dinucleotide states for  amount of time t, where p = 
[48(.rr, + .rru)PXkt]. Due to the symmetry of the adja- 
cency graph (Figure 3) the probability of observing a 
substitution in site 1 is  always exactly equal to probabil- 
ity  of observing substitution in site 2 for any dinucleo- 
tide state. Therefore,  the  conditional probability of  hav- 
ing i substitutions in site 1 given the total number of 
substitutions in both sites is ( i  + j )  is equal to 

032) 

Combining (Bl)  and (B2), we obtain thejoint distribu- 
tion of n, and m2. 

P{n, = i, n, = j )  

= P{n1 = i I  n, + nf? = i + j }P{n ,  + Q = 2 + j ]  

Therefore, n1 and nf? are  independent variables  follow- 
ing  the same Poisson distribution with parameter p/2. 


