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ABSTRACT 
Mapping  quantitative  trait loci in outbred populations is important because many populations of 

organisms are  noninbred. Unfortunately,  information about  the genetic architecture of the trait may 
not be available in outbred populations. Thus,  the allelic effects of genes  can not be estimated with 
ease. In  addition,  under linkage equilibrium,  marker  genotypes provide no information about  the 
genotype of a QTL (our terminology for a single quantitative  trait locus is QTL while multiple loci are 
referred  to as QTLs). To circumvent this problem,  an interval mapping  procedure based on a random 
model approach is described. Under a random model,  instead of estimating the effects, segregating 
variances of QTLs are estimated by a  maximum  likelihood method. Estimation of the variance component 
of a  QTL depends  on  the  proportion of genes identical-by-descent (IBD) shared by relatives at the locus, 
which is predicted by the IBD of two markers  flanking the QTL. The  marker IBD shared by two relatives 
are  inferred from the observed marker genotypes. The  procedure offers an advantage over the regression 
interval mapping in  terms of high power and small estimation errors  and provides flexibility for large 
sibships, irregular  pedigree  relationships and  incorporation of common environmental and fixed effects. 

T HERE are two primary types  of data used for map- 
ping a quantitative trait locus (QTL): data derived 

from  inbred lines that  include back cross, F2 or  more 
derived populations and field collected data such as 
those sampled from human  populations. With data 
from line crosses, the  parental genotypes, the linkage 
phases of  loci and  the  number of alleles of the putative 
QTL are known  precisely. In addition, such data from 
designed  experiments can be considered as being from 
one large family because all individuals share  the same 
parental genotypes. As a result, the effect of QTL substi- 
tution and  dominance  are directly estimated (LANDER 
and BOSTEIN 1989; HALEY and KNOTT 1992; ZENC 
1994).  The  linear  model describing such data is a fixed 
model. With field data, however, the  parental genotypes 
may not be known. In addition,  there will be many 
different families and  the probability of a QTL geno- 
type conditional on a marker genotype will differ from 
family to family. The linkage phases of parents  are usu- 
ally not known. Although they can be inferred from 
genotypes of  family members,  the family  size is usually 
not large enough to allow accurate estimation. As a 
result, one must try all possible linkage phases and 
choose the  one with the greatest probability (KNOTT 
and HALEY 1992).  Furthermore,  the  number of alleles 
of the putative QTL is never known if the  origin of the 
population is unclear.  Corresponding to the compli- 
cated situation with  field data, robust methods, based 
on a random  model  approach, were developed (HASE- 
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MAN and ELSTON  1972; AMOS and ELSTON 1989; A M O S  

et al. 1989) where knowledge of the actual genetic 
model of the QTL is not absolutely required. 

Mapping quantitative trait loci  with data derived from 
crosses between two outbred  populations is occasionally 
possible, but these analyses are  more difficult than 
those with other types  of data. A population derived 
from such crosses is in linkage disequilibrium, which 
violates the assumption required by the  random model 
approach.  The  uncertainty in the  number of alleles and 
linkage phases of linked loci leads to serious difficulties 
when a fixed model  approach is used. Assuming alterna- 
tive fixation for QTLs in two diverged outbred lines, 
the least squares approach (fixed model) of HALEY et 
al. (1994)  for  gene  mapping can be used. Mapping 
QTLs in data from crosses between outbred lines has 
been carried out in pigs by ANDERSON et al. (1994). 

The random  model  approach to gene  mapping in 
outbred  populations (also referred to as random  popu- 
lations because linkage equilibrium is assumed) are 
based on  differentiated  proportions of genes identical- 
by-descent (IBD) shared by  two relatives. The assump- 
tion is that  the  greater  the  shared  proportion of  IBD, 
the  more similar the phenotypes of the two relatives. 
Indeed, HASEMAN and ELSTON (1972) proved the nega- 
tive linear  relationship between the  squared phenotypic 
difference and  the IBD proportion. This permits use  of 
a simple regression analysis  to detect linkage. HASEMAN 

and ELSTON (1972) regressed the squared phenotypic 
difference between sibs on  the shared IBD and  the re- 
gression coefficient is negatively proportional to the 
variance explained by the QTL. 
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However, the genetic variance and linkage parame- 
ter  are  confounded in the Haseman-Elston sib-pair 
method. A sib-pair interval mapping  procedure was re- 
cently developed by FULKER and CARDON (1994) using 
two flanking markers simultaneously to separate these 
two terms and to locate the quantitative trait locus at a 
specific position on a chromosome. Although statistical 
power has been improved, it is still a least squares based 
method  and  therefore does not optimally utilize infor- 
mation from the  data. GOLDGAR (1990) developed a 
multipoint IBD method to estimate the total amount 
of genetic material shared by relatives in a given chro- 
mosomal region and eventually used a maximum likeli- 
hood (ML) approach to estimate the genetic variance 
explained by that  particular region. GOLDGAR’S ML is 
a general  method  that can be used for any number of 
sibs or irregular  pedigree relationships. This method 
was extended by SCHORK (1993) to simultaneously esti- 
mate variances of  several chromosomal regions and  the 
common  environment  shared by family members. The 
ML method takes advantage of the distributional prop- 
erty of the  data and therefore is more efficient than 
the Haseman-Elston test (GOLDGAR 1990; GOLDGAR and 
ONIKI 1992). Both regression (HASEMAN and ELSTON 
1972; FULKER and CARDON 1994) and ML analyses 
(GOLDGAR 1990) estimate the variance associated with 
a QTL (or a  chromosomal region).  Therefore,  the  mod- 
els used in these two methods  are  random models. 
SCHORK (1993) and VAN ARENDONK et al. (1994) also 
considered  the same problem from a mixed model  per- 
spective. 

Although GOLDGAR (1990) used two flanking mark- 
ers  to  define  a  chromosomal  segment and a ML method 
to estimate the genetic variance, his method was not 
designed for interval mapping.  Rather, it is intended 
to test whether  at least one QTL is located somewhere 
in the  region.  It has been suggested that GOLDGAR’S 
ML method can be used as a first step in mapping QTLs 
(GOLDGAR and ONIKI 1992). When significant variation 
due to a particular region is detected by GOLDGAR’S 
method,  other  approaches  could be used to character- 
ize the specific position of the QTL. If there  are large 
numbers  of markers covering the whole genome,  the 
interval flanked by two adjacent markers is expected to 
be small, e.g., 10 or 15 cM.  With a sparse distribution of 
QTL positions, i.e., there  are only a few  QTLs randomly 
distributed  along a chromosome,  the  chance of two 
QTLs occurring  in  the same interval may be negligible. 
In this case, i t  is feasible to use  GOLDCAR’S ML method 
for interval mapping. Interval mapping using the ML 
method will be more efficient than  the sib-pair regres- 
sion method if the distributional properties of the  data 
are known. 

The aim of this study is to develop a general QTL 
mapping  procedure using a  random  model  approach 
(estimating variance) for  outbred  (random) popula- 
tions. We extend GOLDGAR’S (1990) ML method to in- 

terval mapping and use Monte Carlo simulation to com- 
pare  the efficiency and statistical  power  of this new 
interval mapping  procedure with the existing regres- 
sion mapping (FULKER and CARDON 1994). 

THEORY AND METHODS 

Herein, we introduce two models: a single QTL 
model where one QTL is assumed on a tested chromo- 
some and a multiple QTL model where more  than one 
QTLs exist on the tested chromosome. 

Single QTL model: The random  model is defined 
by GOLDGAR (1990) as 

= Y + g ,  + (~ t ,  + e,, (1) 

where yjj is the phenotypic value of the  jth  member in 
the zth family, p is the population mean, g,, - N(0, of) 
is the additive genetic effect (random) of the QTL to 
be tested on a chromosome, ai, - N(0, o:) is the poly- 
genic additive effect (random)  and et, - N(0,  a:) is the 
environmental deviation. The polygenic term is the 
summation of effects of all trait loci located on  other 
chromosomes (excluding  the putative QTL). Domi- 
nance effects are  ignored here  for simplicity. Note that 
other  random effects, such as common  environmental 
effect, can be easily incorporated  into  the  model,  but 
we have chosen this simple model solely to demonstrate 
the maximum likelihood interval mapping  procedure. 

The random  model is generalized for any pedigree 
relationship within a family, but to diminish the confu- 
sion caused by complicated notation  for arbitrary pedi- 
gree relationships, only  full-sibs are  considered in this 
presentation.  Under  the  random  model, E(yrj) = 1-1. 
Assuming linkage equilibrium,  the variance of y4 is 

Var(y,) = 2 = a% + of + a: (2) 

The coviariance between two noninbred sibs is 

Cov(y,,, y $ )  = 7rL7c7; + ( 3 )  

where 7 r i g  is the  proportion of alleles IBD shared by 
family member j and j’ at  the putative QTL. The coeffi- 
cient of the polygenic variance in ( 3 )  is )$ because, by 
expectation, two noninbred sibs share genes IBD. 
The IBD  of the QTL, 7r+ will be different from one 
sib-pair to another. This is fundamentally different from 
the polygenic treatment  of a quantitative trait where 
the IBD value always takes )$. If  we do  not observe or 
do  not have  any information  about  the genotypes of 
the two sibs for  the trait locus, i t  is natural to replace 
7 r j g  by its expectation, Le., x. However, the actual 7rz,, is 
a variable that ranges from 0 to 1. 

Let us consider  the genotypic configurations of 
progenies  from the mating type, X AsA4. There 
are  four possible types of progeny,  each with an equal 
frequency. The  four possible genotypes are ~ A I A ~ ,  
%A,A4, I/4A2A3 and I/4A2A4. If two sibs are sampled  from 
this family, ignoring  the  sampling  order,  there  are 10 
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possible sib pairs. Suppose we observe two sibs  with 
AlA3-A1A3. We know they have received exactly the 
same alleles from  their  parents  and  the IBD  is 1. The 
two sibs behave just like identical twins for this locus. 
If  we observe AIA3-A2&, then we know they do  not 
share any IBD alleles, thus behave like two unrelated 
individuals. This  means  that if  we happen to know the 
genotypes of  two sibs at a  particular locus, the covari- 
ance between sibs at this locus conditional  on  the geno- 
types  may be different  from what is expected. For ex- 
ample,  Cov(yjf,yg,) = 1 of + %a: for  a  pair of sibs  with 
genotypic configuration of A,A3-A1A, at  the QTL and 
Cov(y,,yj,,) = 0 uf + xoz with A1A3-A2A4. It is incorrect 
to use Cov(yg,yqr ) = &uf + xo; if  we already know that 
j and j '  share no IBD at  the QTL. 

In practice, genotypes of QTL are  not observable. 
However, we can observe the genotypes of markers 
linked to the QTLs.  HASEMAN and ELSTON (1972) devel- 
oped  the  joint probability for two linked loci and 
showed that  the  expected IBD  of one locus is a  linear 
function of the IBD  of another locus. FULKER and CAR- 
DON (1994)  proposed IBD  of two flanking markers to 
calculate the conditional  mean of rj7. The conditional 
mean of rjq is also a  linear  function of r s  of the two 
flanking markers (FULKER and CARDON 1994). Let OI2 
be the  recombination fraction between the flanking 
markers while 8,q and 8q2 are recombination fractions 
between the trait locus and marker 1 and marker 2, 
respectively. Then 

*;q  = E(rqIri1 = a + P1rt1 + P p r z x  (4) 

where 7 r z l  and rL2 are the IBD values  of the two flanking 
markers. FULKER and CARDON (1994) showed 

p1 = [ ( I  - 28J - ( I  - 28,)*(1 - 2e,,)*i/ 

[ ( I  - ( I  - 2&2)41; 

p2 = [ ( l  - 28f# - (1 - 2O1,)*(1 - 281,)*]1/ 

[ ( I  - ( I  - 2012)41; 

The term rj7 in the covariance given in Equation 
3 is substituted by this conditional  mean (ei7) when 
estimation of variances is performed. 

With two sibs in the ith  family, for  example,  the covar- 
iance matrix is 

where 

r; = *& + '/&E 
Here we define hf = a$'02 as the heritability of the 
putative QTL and h: = oE/u2 the heritability of the 
polygenic effect. Let us first define C, as 

If there  are k sibs in  each family, Ci is simply a k x 12 
matrix. If normal  distribution of the  data (y) is assumed, 
we have the following joint density function of  observ- 
ing  a  particular vector of data, 

where yi = [ y i l ,  . . . , yEk] 'is a k X 1 vector of phenotypes 
of the zth sibship and k is the family  size, and 1 is a k 
x 1 vector with  all entries  equal to 1. In fact, normal 
distribution of the QTL effect is not absolutely required 
as long as the QTL variance is small compared with the 
sum of the polygenic and environmental variances, but 
normality of ug and ezI is required  to make yi normal. 
The overall log likelihood for n independent families 
is 

n 

L = c log[f(y,) 1 (8) 
i= 1 

This likelihood function relates to  the position of the 
trait locus flanked by the two markers through ri. The 
unknown parameters  are p, 02, hi, h: and el, Common 
practice of interval mapping is not maximizing L with 
respect to all the  parameters  but first treating B1, as a 
known constant,  then varying el, throughout  the  entire 
interval, and eventually every interval in  the whole  ge- 
nome.  The maximum likelihood estimate of the QTL 
position takes the value of &,in  the  appropriate interval 
that maximizes L throughout  the  entire  chromosome. 

At any particular position in  an interval, the algo- 
rithm employed here does the following: first, for given 
prior hi and h:, the maximum likelihood estimates 
(MLEs)  of p and o2 can be expressed as functions of 
hi and ht , i.e., 

and 

If  family  size  varies, nk should be replaced by nkz. 
These two equations  are  obtained by setting  the partial 
derivatives of L with respect to p and o2 equal to zeros, 
respectively. 

Second, substitute p and o* in the original likelihood 
function  (Equation 8) by their MLEs, so that  the log 
likelihood is expressed as a  function of hi and h;, as 
given  below 
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1 1 "  
2 

L = - - nk lOg(P) - - log( ICil) (11) 
2 t = l  

Note that after the substitution, p and 0' are absorbed 
in the likelihood function. We do not  treat p and 0' as 
fixed, rather, we replace them by (9)  and (lo),  respec- 
tively. Here we directly maximize (11) with respect to 
hi and h: via the simplex algorithm (NELDER and MEAD 
1965).  It should be  noted  that substitution of p and 0' 
by u and u implies that when hi and h: are  updated, 
the two functions, jl = u(hE, h:) and b' = u(hi,  h:), 
are also updated. 

In fact, we can directly use the simplex algorithm to 
maximize the  likelihood  function given  in (8) with 
respect to all four  parameters ( p ,  o', hi and h:) simul- 
taneously, but it is computationally inferior because 
the dimensionality of unknowns will be  four  instead 
of  two. 

Symbolically, let us express Equations 8 and 11 by 

L, = function(p, 02, hi, h:) @a) 

and 

& = function[u(hi, h:), u(hi, h:),  h:,  h:], ( l l a )  

respectively. The algorithm presented  here is to max- 
imize LL with respect to two parameters (hi  and hz), 
which is equivalent to maximizing Ll with respect to 
four parameters ( p ,  o', hi and h:) . A similar dimension- 
reduction  technique has been used by  GRASER et al. 
(1987). 

The null hypothesis is H,:hi = 0, i e . ,  there is no QTL 
segregating in the tested interval. The ML under the 
null hypothesis is denoted by L. The likelihood ratio 
(LR) test  statistic is 

LR = -2(Lo - Ll) (12) 

which  follows a chi-square distribution with 2 2 d.f. > 
1 under H , .  One degree of freedom is due  to fitting 
hi and  the remaining degree of freedom is for fitting 
the QTL position (HALEY and KNOTT 1992). For a given 
interval, the  remaining  degree of freedom  depends on 
the size  of the interval (el2) and  it is  less than one 
because we only search the QTL within the tested inter- 
val, rather  than  the  entire genome. If the null hypothe- 
sis is no QTL  in the whole genome (notjust  one inter- 
val) covered by the markers, then df = 2 under the 
null hypothesis.  With  many markers on a  long  chromo- 
some, the  number of degrees could be  greater  than two 
(ZENG 1994) for a chromosomal wise test. 

Multiple QTL model: The above model assumes 
there is only one QTL in the linkage group where the 
tested interval is located. If there  are multiple QTLs in 
the same linkage group,  the estimation tends to be bi- 
ased because of interference caused by QTLs located on 
the same chromosome but outside the tested interval 
(HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992; 

JANSEN 1993,  1994; ZENG 1993, 1994).  The multiple 
QTL model is described by 

S W 

yq = p + aij + ut.+ g;, + u; + e,j (13) 

where ut and ub are  the kth  QTL effect on the left side 
and the 7th QTL effect on the right side of the putative 
QTL, 5' and  Ware  the  numbers of trait loci  in the left 
and right sides  of the  current QTL. Under  the assump- 
tion of linkage equilibrium, the variance of ye is 

k= I F l  

Y W 

Var(y,) = 0' = CT: + x 0: + ui + CT: + a: (14) 
k= 1 

and  the covariance between noninbred sibs is 
r - l  

r W 

cov(yj/j ri/') = & 0: + + Tiq0: + Tj,a: (15) 
k= 1 ,= I 

Note that these 7rs are  the IBD proportions of the QTLs, 
and they are  not observable. 

SCHORK (1993) proposed a similar model and sug- 
gested to include more chromosomal regions into  the 
conditional covariance for purpose other  than interval 
mapping. Theoretically, we can define the conditional 
covariance given the 7rs of  all markers in the linkage 
group  and  include all variance components explained 
by each marker into  the likelihood function to control 
other QTL  effects.  However,  technically this is not feasi- 
ble because of so many variance components and also 
it is not necessary. The IBD variable  has the same prop- 
erty as the  indicator variables ( ZENG 1993) in that condi- 
tional on  the 7r of a marker locus, the 7r of a QTL on 
one side of the  marker is not  correlated to that of a 
QTL on the  other side. This will become evident when 
we reexamine Equation 5 by treating the QTL  as a 
neutral marker. Let us define the two flanking markers 
and  the QTL by i, j and k,  respectively. Equation 5 is 
then rewritten as 

pl ZZ [ ( I  - 28jk)2 - (1 - 28kj)'(1 - 28,)2]/ 

[(I  - (1 - 28tj)41; 

p2 = [ ( I  - 28,)' - (1 - 28jk)*(1 - 28,)2]/ 

[(I  - (1 - 204~1 

This equation holds regardless of the order the  three 
loci are arranged on the chromosome. If the  order is i 
< k < j ,  this equation is required  to  predict T k .  How- 
ever, if the order is k < i < j ,  then (1 - 28jk)' = (1 - 
28jk)'(1 - 28,)',  which leads to p1 = (1 - 28,k)' and 
p2 = 0. On  the  other  hand, if i < j < k, then (1 - 
2 8 i k ) '  = (1 - 28,,)'(1 - 28,)' leading to = O and 
p2 = (1 - 2Qjk)'. This means that conditional on IBD 
of a marker in the middle, the IBD  of a locus on  one 
side provides no information about  the IBD  of a locus 
on the  other side. Furthermore, conditional on two 
flanking loci, the IBD  of an  intermediate locus provides 
no information about  the IBD values of loci outside the 
flanking region. These properties have been  found in 
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ZENG (1994) for  the  indicator variables. The only differ- 
ence is that  the  indicator variables are observed without 
error while the IBD proportions  are estimated with 
some uncertainty if the mating type  is not fully informa- 
tive. 

These  properties are the bases  of the composite inter- 
val mapping of ZENG (1993, 1994) and JANSEN (1993, 
1994) for line cross populations, which will be directly 
adopted  here for the  random model approach.  Theo- 
retically, one marker is enough  to block correlation 
between a locus on  the left and a locus on  the right. 
Therefore, we only need two additional markers flank- 
ing  the  current interval to block interference caused by 
outside QTLs. Here we still  use markers 1 and 2 to 
denote  the two flanking markers that  define  the tested 
interval, but use L and R to denote  the next-to-flanking 
markers. Now the  four markers have the  order: L - 1 
- 2 - R The tested QTL is between markers 1 and 2. 
Let T ~ ~ ,  and riIt be  the IBD values  of the left ( L )  and 
right (R) additional markers, respectively, and Okl. and 
OrR be  the recombination fractions of the kth QTL with 
locus L and the rth QTL with locus R Given the  four 
markers the  conditional covariance between sibs is 

COv(yi1, JB I Tll.*ivrd 

= a2[[nll.H;, + ?tiqh: + T R H ; ~  + %hz] (16) 

where H;- = E;==,, (1 - 2O&)'hi, H;, = E:,, (1  - 
20:R)2h:, hi = a:/a' and h: = o:/a'. At a particular 
position, the  parameters in the likelihood function  are 
p, a2, H;., hi, HYt and hz, but only h: is tested. 

The computing algorithm follows that  for single QTL 
model,  but now there  are  more unknown variance com- 
ponents. The solutions of the unknowns must be 
searched within the  appropriate solution space, other- 
wise the covariance matrix is not assured to  be positive 
definite. A method of reparameterization described in 
the APPENDIX is used to obtain a positive definite covari- 
ance matrix and thus  guarantee convergence to a solu- 
tion. 

There will be some interference if QTLs exist be- 
tween markers L and l or  Rand 2. However, under  the 
assumption of a dense  marker  map and a few QTLs 
randomly distributed  along a chromosome,  there may 
be small chance of two QTLs existing in two adjacent 
intervals. Theoretically, the tests  of different intervals 
are  independent (ZENC 1993),  though  independence 
may not  be  guaranteed with  small population sizes. 

The multiple QTL method has both advantages and 
disadvantages when compared with the single QTL one. 
The advantage is when the  other intervals do contain 
QTLs  whose  effects can then be absorbed by the next- 
to-flanking markers. The disadvantage is when there is 
no QTL in the  other intervals, in which  case we loose 
power because the next-to-flanking markers will pick 
up random noise instead of QTL effects. In other words, 
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FIGURE 1.-Empirical cumulative distributions of the likeli- 

hood ratio (LR) test statistic. The curve is compared with the 
distributions of x&=, and x.$=2. 

by using the multiple QTL model we may gain accuracy 
at the price of loosing power. 

SIMULATION  STUDIES 

Test statistic under  the null hypothesis: To further 
investigate the behavior and  the threshold value of the 
test statistic  of the ML method, we simulated data under 
the null hypothesis of no QTL on  the tested chromo- 
some. Under  the null hypothesis, we simulated the poly- 
genic effect with a heritability of  0.5.  Six codominant 
markers each with  six  equally frequent alleles  were  sim- 
ulated. The six markers were linked 20  cM apart  and 
covered a linkage group of 100 cM length. The IBD 
values  of markers were calculated using the  method of 
HASEMAN and ELSTON (1972). Five hundred indepen- 
dent full-sib  families, each with  two sibs,  were simulated 
in each experiment. The simulation experiment was 
repeated 1000 times. In each experiment,  the maxi- 
mum LR  of the single QTL model was recorded 
throughout  the  entire chromosomal segment. The em- 
pirical distribution of the LR test statistic over 1000 
replicates was examined and shown in Figure 1. The 
95th percentile of the empirical distribution was 5.85. 
This figure also gives two chi-square distributions with 
1 and 2 d.f.,  respectively. The empirical LR test statistic 
has a distribution almost indistinguishable from the 

distribution. Therefore,  the critical  value  of 5.99 
(= x : . ~ ~ ( ~ ) )  was used to determine  the level  of  signifi- 
cance in subsequent simulation studies. 

To compare our method with FULKER and CARDON'S 
(1994) regression approach, we also calculated the em- 
pirical distribution of the t statistic for  the same set of 
simulated data. We found  that  the 95th percentile of 
the t statistic (one-tail test) was -2.448 for a chromo- 
somewise  test. Note that  the critical  value reported by 
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FULKER and CARDON (1994) was -1.856 for an inter- 
valwise test. Because we were interested in chromo- 
somewise test, the critical value -2.448 was used in this 
study. Note  that the t statistic is approximately the 
square  root of x&=‘ under  the null hypothesis. This 
becomes obvious by looking at (-2.448)‘ = 5.993, 
which is virtually identical to the critical value of 
distribution.  Therefore, instead of t, the t2 test  statistic 
was used for the sib-pair regression analysis. Before con- 
verting t into t‘ statistic, we replaced any  positive  value 
of t by 0 so that the t‘ test is still a one-tail test. In 
subsequent analyses, the  threshold value of 5.99 was 
used for  both  the LR and t‘ tests. 

Experimental  design: Extensive simulation was done 
on  the single QTL model. The genetic  model is as  fol- 
lows: there was one QTL  with either two or six  allelic 
states of equal frequency. The allelic  effects  were set 
such that  the additive variance explained by the QTL 
was 12.5 squared units. Dominance effect was assumed 
to be absent. No polygenic effect was simulated, but t.he 
polygenic term was fitted  in  the  model when the ML 
method was used. Heritability was set at 0.25 and 0.50 
by adjusting the  amount of random  environmental devi- 
ation assigned to the  phenotype. Six codominant mark- 
ers each with  six alleles of equal frequency were simu- 
lated. The six markers were linked 20  cM apart  and 
covered a linkage group of 100 cM length.  The simu- 
lated QTL was located in the middle of the  chromo- 
some segment, i.e., 50  cM.  Two  sibs in each family  were 
simulated, and  the  number of families (sample size) 
varied at 250,  500 and 1000. In each set of parameter 
combination, the simulation was repeated 100 times. 

Results: Result from a single replicate of simulation 
was depicted in Figure 2, where the  parameters were: 
heritability = 0.50, number of alleles = 2, sample size 
= 500. The test statistic of the ML method was com- 
pared with that of the regression (RG) method, showing 
that  the LR profile had  a  higher peak than  the t2 profile. 

Mean estimates and standard deviations (over 100 
replicates) of the QTI, location (cMA), variance ex- 
plained by the QTL (a i )  and  the polygenic variance 
(a:) are summarized in Table 1, which demonstrates: 
(1) the  number of alleles in the QTL had little influ- 
ence  on estimation of both  methods; (2) standard devi- 
ations of parameter estimates in ML were smaller than 
those in the regression method, ie., ML had smaller 
estimation errors  than RG; and (3) QTL variance was 
overestimated by the regression method, especially 
when heritability and sample size  were small. 

Clearly, the maximum likelihood method  performs 
much  better  that  the regression method. 

It is  well known that  the regression method  generates 
unbiased estimates of regression coefficients. At first 
glance it  might seem that estimation of the QTL vari- 
ance  should be unbiased with the regression method 
because it is estimated by a term proportional to the 
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FIGURE 2.-Comparison of the LR profile of maximum 
likelihood (ML, -) with the ? statistic profile of regression 
(RG, * . * . ) drawn from  a single simulation experiment of 
500 full-sib families each with two members. The QTL  is lo- 
cated at 50 cM, has two alleles and explains 50% of the total 
phenotypic variation. 

regression coefficient. However, the  property of unbi- 
asedness only holds when the QTL position is fixed. If 
the QTL location varies, then  the variance associated 
with the QTL tends to be overestimated because the 
method always chooses a location with the highest t’ 
that is proportional to the  squared QTL variance. 

The average test  statistics and power estimates (at a 
= 0.05) over  100 replicates are summarized in  Table 2. 
The test  statistics  were likelihood ratio (LR) for  the ML 
method  and ? for RG method,  both having a critical 
value of  5.99 under  the null hypothesis. The ML 
method in general has a  higher statistical  power than 
the regression method. 

Multiple QTL model: Because intensive computa- 
tion is involved for  the multiple QTL model, we only 
simulated one sample of 1000 sib-pairs for  the multiple 
QTL model to demonstrate  the behavior of the LR 
profile. More extensive simulation is left for a  later pa- 
per.  In this paper, we simulated two QTLs located in 
the  15  and 45 cM positions on  a linkage group of size 
50  cM. The two QTLs  have an equal effect on  the trait 
with a total heritability of  0.5. The result from the multi- 
ple QTL model was compared with that of the single 
QTL model.  These LR profiles are shown in Figure 3. 
The multiple QTL model clearly indicates two QTLs at 
the correct positions while the single QTL model shows 
two major peaks, but each with two subpeaks. The two 
subpeaks in the middle are  the  “ghost images” (HALEY 
and KNOTT 1992) of the QTLs in the opposite sides. 
With the multiple QTL model approach, these ghost 
images are removed and  the positions of the two QTLs 
are precisely mapped  on  the chromosome. The behav- 
ior of the LR test statistic under this model is unknown. 
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TABLE 1 

Comparison of maximum likelihood  and  regression  analyses of simulated  data 

Sample 
Two  alleles Six alleles 

size Heritability  Comparison CMA e; 8 CMA e:,  e: 
250 0.25 ML 49.66 (26.61) 12.64 (5.39) 1.61 (4.16) 49.90 (27.02) 12.54 (5.19) 1.63 (3.88) 

RG 49.84 (28.48) 21.36 (11.09) - 52.00 (28.16) 21.56 (11.71) 
0.50 ML 49.44 (19.15) 11.56 (2.97) 1.99 (3.09) 50.98 (19.08) 11.69 (2.91) 1.36 (2.74) 

RG  49.10 (19.58) 14.35 (5.65) - 52.74 (19.62) 14.63 (5.66) 
500 0.25 ML 46.12 (24.53) 12.05 (4.25)  1.53 (3.33) 48.46 (23.43) 11.78 (4.34) 1.54 (3.43) 

RG 45.02 (26.85) 18.04 (8.41) - 46.18 (26.43) 17.94 (8.52) 
0.50 ML 49.32 (12.64) 11.67 (2.45) 1.20 (2.23) 51.94 (14.42) 11.55 (2.49) 1.12 (2.17) 

RG 50.74 (14.04) 13.75 (4.33) - 49.18 (15.30) 13.69 (4.43) 

RG 45.92 (24.04) 15.48 (7.29) - 51.80 (23.19) 17.91 (6.94) - 

RG  49.42 (8.15) 13.60 (3.55) - 46.86 (11.80) 13.49 (3.33) - 

- 

- 

- 

1000 0.25 ML 46.62 (23.77) 11.34 (3.57) 1.74 (3.18) 53.28 (20.28) 12.26 (3.37) 1.27 (2.94) 
- 

0.50 ML 49.26 (6.36) 11.83 (1.85) 0.68 (1.44) 48.60 (8.68) 11.59 (1.76) 0.94 (1.68) 

ML, maximum likelihood; RG, regression; cM,, QTL location; 6:; variance  explained by the QTL; e:, polygenic  variance. 
The  standard  deviations of the  estimates  over 100 replicates are given In parentheses.  The  true  location (cMA) and QTL  variance 
(ai) are 50 cM and 12.5 squared units, respectively,  while  the true polygenic  variance is zero. 

If  we had used the critical value from the single QTL rectly estimates the QTL effect. The ML and regression 
model,  the power would  have been  reduced with the compared in this study deal with a  random  model  that 
multiple QTL model. By using the multiple QTL estimates the QTL variance. Under some circum- 
model, we  may gain accuracy at  the cost of power. Simi- stances, e.g., the QTL being at  one flanking marker, 
lar results are  present  in  the composite interval map- estimates of the QTL effect by the regression and ML 

ping  procedures of ZENG (1994). are equivalent under  the fixed model. If the QTL is not 
at a flanking marker,  the difference is expected to be 

DISCUSSION negligible if the QTL effect is small  relative to the resid- 
ual standard deviation. Therefore, regression mapping 

Recent studies that  compare ML with regression in is an approx~mat~on of ML mapping  under a fixed 
line find no difference between the model.  In  contrast to the fixed model,  random  model 

methods (mEY and lg92; and regression mapping is not  an approximation of ML un- 
cumow 1992). At first glance it might Seem that Our der any circumstances. The two methods may generate 
ML should not be significantly different  from F U L m R  similar results if sample sizes are large, but  there is 
and CARDON'S (1994) regression. However, the ML and no mathematical basis for any equivalence. The higher 
regression compared by HALEY and K N O n  (1992) and power of ML compared with regression is probably due 
others  are based on a fixed model  approach  that di- to the fact that ML uses the phenotypic values  as the 

TABLE 2 

Comparison of statistical powers  between  maximum  likelihood  and  regression  analyses of simulated data 

Two alleles Six alleles 

Sample  size  Heritability  Comparison  Test  statistic  Power (%) Test  statistic  Power (%) 

250 0.25 ML 2.70 (1.95) 08 2.65 (1.94) 06 
RG 2.55 (2.04) 10 2.62 (2.16) 09 

0.50 ML 6.63 (3.74) 52 6.59 (3.68) 51 
RG 5.35 (3.36) 35 5.37 (3.51) 31 

500 0.25 ML 3.94 (2.56) 17 3.82 (2.69) 19 
RG 3.55 (2.66) 14 3.55 (2.63) 15 

0.50 ML 11.46 (5.23) 83 11.22 (5.43) 83 
RG 8.88 (4.92) 71 8.70 (4.90) 71 

RG 4.93 (4.24) 27 6.04 (4.19) 42 
0.50 ML 20.61 (7.47) 96 19.94 (8.03) 100 

RG 16.36 (7.62) 91 15.18 (6.57) 96 

1000 0.25 ML 6.05 (4.17) 44 6.92 (3.82) 54 

Values are mean estimates of the test statistic  and  power at an error rate of 0.05 (with standard deviation of the estimate Over 
100 replicates  in  parentheses). 
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FIGURE S.-Comparison  of the LR profile of the  multiple 
QTL  model (-) with that of the single  QTL one ( * - * ). 
Results  were  drawn from a single simulation  experiment of 
1000 full-sib families each with two members. The two QTLs, 
accounting  for  50% of the total phenotypic  variation,  are 
located  at  15 cM and 45 cM positions  with an equal effect. 

raw data and takes advantage of the  property of normal 
distribution, whereas the regression uses the  squared 
phenotypic differences as the raw data. As a conse- 
quence,  property of normal  distribution is not utilized 
and also some information may have been lost. 

The question now is how to calculate the  proportion 
of genes shared IBD. If the parental  mating type  of the 
sibs are known, it is relatively  easy to obtain  the T S  for 
all  possible  sib-pairs.  However, this is difficult if the 
parental genotypes are unknown. However,  given the 
allelic frequencies of the  marker locus and assuming 
H-W equilibrium,  the T S  can be estimated. In  both situa- 
tions, the  proportions of genes shared IBD between 
sibs are given in HASEMAN and ELSTON (1972). The 
proportions of genes IBD shared by half-sibs and  other 
types  of  relatives in a complicated pedigree  are usually 
estimated using a maximum likelihood approach (see 
A M O S  et al. 1990).  In this paper, we do  not  attempt to 
estimate the m ,  rather we assume that  the n-s are known 
and thus focus on  mapping procedures using these T 

values. 
We have borrowed ZENG'S (1994) idea of composite 

interval mapping  for  the multiple QTL model where 
we can treat genotypes of other markers outside the 
tested interval as fixed effects to control  the genetic 
background. The problem here is that  at linkage equi- 
librium the  conditional probability of a QTL genotype 
given a  marker genotype will remain  unchanged in the 
whole population,  leading to zero regression coeffi- 
cients for all the  marker genotypes. In fact, we must 
treat  marker genotypes as nested within each family, 
which will increase the levels  of the fixed effect. For 
instance, if all markers are fully informative, potentially 
there will be four genotypes per  marker within each 

family. In  the whole population,  the  number of levels 
for  each  marker may be  up to 4n, where n is the  number 
of families.  Unless there  are  a few families and each 
has large number of members, we can not simultane- 
ously put all marker genotypes into  the  model.  There- 
fore,  the  four  marker  approach  in  our multiple QTL 
model is appropriate. 

The regression interval mapping of FULKER and CAR- 
DON (1994) still offers an advantage over the ML 
method  in terms of computing  speed. Hypothesis test- 
ing with a computationally fast algorithm can be easily 
accomplished by a recently developed permutation test 
method (CHURCHILL and DOERGE 1994) when an exact 
test is not available. In  addition,  the  idea of composite 
interval mapping of ZENC (1994) and JANSEN (1994) 
can be directly adopted to FULKER and CARDON'S 
(1994) mapping  procedure by simply incorporating  the 
IBD  values  of other  important markers to control  the 
genetic background and reduce  the residual variance. 
To select important  markers,  one  should ConsultJANsEN 
(1994). 

One major advantage of using ML over regression is 
that  the ML presents no difficulty for large sibships and 
irregular  pedigree relationships. Although extension 
has been  made to include large and complicated pedi- 
grees by using weighted or generalized least squares 
methods (BLACKWELDER and ELSTON 1982; OLSON and 
WIJSMAN 1993),  the  methods still represent ad hoc ap- 
proaches  in terms of statistical testing, because the  data 
(squared differences) are not normally distributed. In 
addition,  the ML method  presents  no  problem in incor- 
porating fixed  effects into  the  model to control  the 
residual variance (SCHORK 1993). For such a mixed 
model, variance components  are easily estimated using 
the well developed restricted maximum likelihood 
(REML) programs (e.g., MEYER 1988).  Upon  incorpora- 
tion of the interval mapping  procedure  into REML pro- 
grams, QTL mapping in livestock and  human popula- 
tions will become routine. It is not feasible to use the 
ML method  for extensive simulation studies due to pro- 
hibited  computing  load,  but it can be widely used in 
real data analyses. 

We are deeply indebted to Professors WII.I.IAM M. MUIR and ZHAO- 
BANG ZENC for helpful  comments on  an earlier version of the manu- 
script. We also want to acknowledge Professor SURIR GHOSH for evalu- 
ating  the ML algorithm presented  in the  manuscript. The  current 
work was supported by National  Institutes of' Health grant GM-45344 
and National Science Foundation  grant BSR-910718. 
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APPENDIX 

A method of reparameterization is described here to 
ensure  the simplex algorithm to search the unknowns 

in the  appropriate solution space. Recall that  the condi- 
tional covariance is  Cov(yil,yi21 7r&ig7r iK)  = a‘r,, where 

r, = TLG, + T,,hi + T ; E P R  + xh: 

The permissible space of the heritabilities is 

l r H ~ ~ O , l r h ~ ~ O , l ~ ~ K r O , l ~ h ~ ~ O ,  

and 1 z h2 2 0 

where h2 = #, + hi + PR + hi is the overall heritability. 
These various heritabilities have to be searched within 
this space to  guarantee  a positive definite covariance 
matrix. Although we could borrow a  technique of non- 
linear  programming from operations research that 
maximizes the likelihood function subject to these con- 
straints, in this particular situation, we found  that it 
is easier to use a  method of reparameterization. The 
method of reparameterization is justified by the invari- 
ance property of the maximum likelihood estimators 
(DEGROOT 1986, p. 348). Defining y1 = @,/h2, y 2  = 
hi/h2 and yy = pR/ h2 and y4 = h:/h2, we have 

ri = [TzLyl + f i zq72  + ‘ITiR73 + %y41h2 

We  now  have  five unknowns with a permissible space 
defined by 

1 z h 2 z 0 , ~ y z = 1  and y i r O  f o r i = l ,  . . . ,  4 
4 

i= 1 

These newly defined terms can be reparameterized as 

h2 = expb) and y i  = 1 + exp(z) Zf= exp ( x,) 
exp ( xi) 

f o r i =  1, . . . ,  4 

where z and x, are any real numerals without any con- 
straints. Instead of maximizing the likelihood function 
(L )  with respect to ys and h2, we will maximize L with 
respect to these xs and z. Let gi and i denote  the ML 
estimates of xi and z, then  the ML estimates of the 
original heritabilities are 

p = exp(8 fi;, = p exp ( 21 1 
1 + exp(2) ’ Z f z l  exp(2,) ’ 

In fact, the  method of reparameterization presented 
here can be applied  to any ML based methods for esti- 
mation of variance components. The usual practice that 
negative estimate of a variance component is replaced 
by zero (SAS Institute 1988, p. 967) is not  correct, thus 
should not  be used. 


