Skip to main content
. Author manuscript; available in PMC: 2025 May 13.
Published in final edited form as: Comput Biol Med. 2024 Aug 27;181:109062. doi: 10.1016/j.compbiomed.2024.109062

Table 5.

Comparative evaluation of the deep learning model’s performance in ECG waveform delineation across four classes: P-wave, QRS complex, T-wave, and “N/W” (non-waveform regions) using QTDB. The table reports sensitivity (equivalent to recall), precision, and F1-score metrics for each class, indicating whether input signals are filtered. The best values are highlighted in bold. The * symbol denotes references utilizing datasets other than MIT-BIH arrhythmia, while the • symbol indicates metrics not available in the references.

Metric Sensitivity Precision F1-score Filtering
Class N/W P QRS T N/W P QRS T N/W P QRS T
Ref. [30] 0.95 0.90 0.95 0.92 0.95 0.92 0.94 0.90 0.95 0.91 0.94 0.91 No
Ref. [31] 0.93 0.92 0.95 0.93 0.95 0.90 0.90 0.92 0.95 0.91 0.94 0.93 No
Ref. [11] (%) 84.39 76.80 85.54 82.40 95.11 87.83 96.24 91.43 89.43 81.95 90.58 86.68 No
Ref. [11] (%) 98.75 96.53 99.70 96.81 98.36 89.74 99.19 95.44 98.55 93.01 99.45 96.12 Yes
Ref. [18] (%) 94.39 92.66 95.29 92.30 94.20 93.17 95.22 92.52 No
Ref. [19]* (%) 94.52 97.40 92.94 94.03 97.25 94.92 94.27 97.32 93.92 No
Our approach (%) 98.48 98.13 97.44 98.29 98.36 97.82 97.55 98.67 98.42 97.98 97.49 98.48 No