Skip to main content
. Author manuscript; available in PMC: 2025 May 13.
Published in final edited form as: Comput Biol Med. 2024 Aug 27;181:109062. doi: 10.1016/j.compbiomed.2024.109062

Table 8.

Evaluation metrics for assessing the performance of ECG beat type classification using the deep learning model. The table presents various statistical measures, including sensitivity, precision, F1-score, and overall accuracy, calculated for each beat type class.

Metric N/A N (Normal) V (PVC) A (PAC) Macro AVG Micro AVG
True positive 3 4244 108 90 1111.2 1111.2
False positive 1 1 5 4 2.75 2.75
False negative 0 8 1 2 2.75 2.75
True negative 4452 203 4342 4360 3339.2 3339.2
Precision 0.75 0.9998 0.9558 0.9575 0.9157 0.9975
Sensitivity 1 0.9981 0.9908 0.9783 0.9918 0.9975
Specificity 0.9998 0.9951 0.9989 0.9991 0.9982 0.9992
Accuracy 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975
F1-measure 0.8571 0.9989 0.9730 0.9677 0.949 0.9975