Skip to main content
. 2025 May 13;13:tkaf010. doi: 10.1093/burnst/tkaf010

Table 2.

Performance of different ML algorithms in training dataset I

Algorithm AUROC AUPRC
Mean SD Mean SD
GNB 0.966 0.013 0.805 0.057
LR 0.968 0.012 0.892 0.027
SVM 0.974 0.008 0.884 0.024
RF 0.963 0.009 0.823 0.033
XGB 0.973 0.012 0.905 0.022
LGB 0.946 0.016 0.793 0.040
CAT 0.968 0.011 0.873 0.028

AUROC Areas Under the Receiver Operator Characteristic curve, AUPRC Areas Under the Precision-Recall Curve, GNB Naive Gaussian Bayes classification model, LR logistic regression, SVM support vector machine, RF random forest. XGB eXtreme Gradient Boosting classifier, LGB Light Gradient Boosting Machine, CAT CatBoost