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ABSTRACT 
Suggested  molecular  mechanisms  for  the  generation of new  tandem  repeats of simple  sequences 

indicate  that  the  microsatellite loci evolve  via some form of forward-backward mutation. We provide a 
mathematical  basis for  suggesting  a  measure of genetic  distance  between  populations  based on microsat- 
ellite  variation.  Our  results  indicate  that  such  a  genetic  distance  measure  can  remain  proportional  to 
the  divergence  time of populations  even when  the  forward-backward  mutations produce variable and/ 
or  directionally  biased  alleles  size  changes.  If  the  population  size  and  the  rate of mutation  remain 
constant,  then  the  measure will be proportional to the  time of divergence of populations.  This genetic 
distance  is  expressed  in  terms of a ratio of components of variance of allele  sizes, based on expressions 
developed  for  studying  population  dynamics of quantitative  traits.  Application  of  this  measure  to  data 
on 18 microsatellite  loci  in nine human  populations  leads  to  evolutionary  trees  consistent  with  the 
known ethnohistory of the  populations. 

T HE  study  of human  genome diversity for  inferring 
the history of human genetic differentiation has 

been  a focus of attention of  biological anthropological 
investigations since the discovery  of the first  polymor- 
phic marker  in  the  human  genome.  Traditional sero- 
logical and immunological markers used for this pur- 
pose generally do  not provide a  high resolution for 
distinguishing populations with  close historical connec- 
tions. This is so because genetic distances between pop- 
ulations are generally small, except for the major racial 
groups. This causes  statistical error in phylogenetic re- 
construction of the history of genetic differentiations 
of world populations. The advent of hypervariable DNA 
polymorphisms has the  potential for increasing the ac- 
curacy  of such studies, as  has been empirically demon- 
strated (BOWCOCK et al. 1994; DEKA et al. 1995a,b). 
Hypervariable tandem  repeat markers have the poten- 
tial for  being particularly efficient for this purpose, be- 
cause they offer a  greater  number of segregating alleles. 
As a  consequence,  the  extent of genetic diversity  within 
and between populations (in absolute scale) is larger 
for these loci than  for  the traditional loci. 

In order that  a measure of genetic distance be useful 
for such studies, it is necessary for it to  be  a known 
monotonic increasing function of time of divergence 
(i.e., the absence of gene flow) between populations. 
This criterion raises concerns  regarding  the utility of 
hypervariable tandem  repeat markers in evolutionary 
studies, since alleles at such loci  evolve by molecular 
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processes that involve both  contraction and expansion 
of repeat sizes (WEBER and WONG  1993; JEFF- et al. 
1994). As a  consequence, alleles of similar sizes are 
not necessarily evolutionarily related ( KIDD et al. 1991 ) . 
Furthermore,  the mathematical relationship of the ex- 
pectations of traditional measures of genetic distances 
with the time of divergence have  specific underlying 
assumptions regarding  mutation processes that may not 
hold for tandem  repeat loci ( SHRIVER et al. 1993; 
VALDES et al. 1993;  DI RIENZO et al. 1994) . 

While the mechanism of mutational changes at tan- 
dem  repeat loci is not precisely  known at a molecular 
level, empirical observations indicate that  the allele size 
changes can be  approximated by a forward-backward 
random walk model. The population dynamics of spe- 
cific forms of such mutation models has been  studied in 
the  context of within- and between-population genetic 
variation at  proteinenzyme loci (WEHRHAHN 1975; LI 
1976; CHAKRABORTY and NEI 1982) . In these models, 
mutations were frequently assumed to introduce sym- 
metric changes of one  and / or two steps in either direc- 
tion. CHAKRABORTY  and NEI ( 1982) considered a gen- 
eral multi-step random walk model using a bidirectional 
binomial as a specific example. Mathematically, the 
same model applies to tandem  repeat loci, with  allelic 
states defined by  size (number of repeat  units) instead 
of the  charge of the  protein molecule. 

In an application of the model of CHAKRABORTY  and 
NEI ( 1982) , the  index of  between- vs. within-population 
variance of  allelic states was introduced and proven to 
be proportional to the time  of divergence of popula- 
tions in the absence of migration, selection and popula- 
tion size fluctuations. 
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More recently, SLATKIN ( 1995) considered a similar 
index  for studying gene differentiation at tandem re- 
peat loci in a substructured  population. SLATKIN further 
showed that  the variance components in his index re- 
late to the within- and between-population diversity 
measures proposed by GOLDSTEIN et al. ( 1995a,b ) . Also, 
SHRIVER et al. ( 1995) suggested a revised measure of 
genetic distance that they argue is appropriate  for mi- 
crosatellite tandem  repeat markers and that is propor- 
tional to the time  of divergence between populations 
under some specific conditions of  forward-backward 
mutation of  alleles. 

In this paper our goal is to demonstrate  that SLAT- 
KIN'S ( 1995) index, which is identical with an  index 
introduced by CHAKRABORTY  and NEI ( 1982), has prop- 
erties more general than those indicated in the litera- 
ture; namely, that  the time linearity of the  index holds 
for stepwise mutations with arbitrary distributions of 
changes of allele size. Therefore,  the  index is applicable 
for studying genetic differentiation in the presence of 
allele-size expansion or contraction bias in mutations, 
such as those postulated by RUBINSZTEIN et al. ( 1995). 
We show this by using both a direct  population dynam- 
ics approach and the theory of coalescence for a gener- 
alized  stepwise mutation model. 

We also illustrate that  the CHAKRABORTY-NEI-SLATKIN 
index,  applied to a new set of microsatellite loci  typed 
in  several  of human populations of African, Oriental 
and  Indoeuropean origin, leads to interpopulation dis- 
tances consistent with the accepted ancestry of human 
populations. The  importance of the model assump 
tions, including constancy of population size and muta- 
tion rate, are discussed in light of the above theoretical 
and empirical observations. 

THEORY 

We  show that  under any general forward-backward 
mutation model, the within-population allelic  variation 
in a finite population reaches a state of equilibrium 
when  variation is measured in terms of the distribution 
of allele  size differences in genotypes of diploid individ- 
uals. In  addition, when the population sizes  of  two di- 
verging populations remain constant over time, we show 
that the ratio of between- us. within-population variance 
of allele  size differences is linearly related to the time 
of divergence and is independent of mutation rate. 
Within-population variability: Consider a population 

of diploid individuals and a locus  with a denumerable 
set of alleles indexed by integer  numbers. The within- 
population  component of genetic variance 

E ( x  - X)*/(2N-  1)  , [ i= 2 N  1 1 
where E (  * ) denotes  the expectation of a random vari- 
able, and x is the size  of the allele in the  ith  chromo- 
some present, is equal to V,/2, where 

K = E [  (Xi - q * 1  9 (1)  

and x, 4 are  the sizes  of two alleles randomly selected 
from the  population. x and X, are timedependent ran- 
dom variables, ie., Xi = x ( t )  and Xj = 3( t ) ,  but for 
notational simplicity the  argument  tis suppressed, since 
the time dependence is  always clear from the context. 
In V,, subscript t denotes chronological time (in units 
of generations)  counted from a convenient reference 
point. We consider the time evolution of V, in a stepwise 
mutation model with sampling from the finite allele 
pool. We assume the following: 

In each generation,  the genotypes of  all individuals 
are sampled with replacement from the 2N chromo- 
somes present in the previous generation  (FISHER- 
WRIGHT model, EWENS 1979). 
Each chromosome independently is subject, with 
probability u per  generation, to a mutation  that re- 
places an allele of  size Xwith an allele of  size X + U ,  
where U is an integer-valued random variable  with 
probability generating  function 

ffi  

y ( s )  = s " P r [ U =  u ]  = ~ ( s ~ ) ,  ( 2 )  
1(="m 

defined  for s in the  neighborhood of 1. 

The version  of the model in CHAKRABORTY  and NEI 
( 1982) considers the binomial special  case of y ( s) . 
The generalization below is straightforward. 

Based on WEHRHAHN ( 1975) and  CHAKRABORTY  and 
NEI ( 1982), the probability generating function 

P( s, t )  = E (  sx~-xl) 

of X ,  - X, is given by 

P(s, t )  = P(s, 0 )  exp[-a(s) t ]  

where 

1 
2N 

a ( s )  = - - 2v[$(s) - 13, (4)  

and $(s) = [cp(s) + cp(l/s)]/2 is the symmetrized 
form of cp( s) . In  the vicinity of s = 1 for which a ( s) 
is positive, the solution of  this equation converges, as 
t + m ,  toward 

which can be represented as 

where 

4Nu 
' = l  +4Nu '  

- 11})-l, (5)  
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Under equilibrium conditions, the same result can 
be derived using the coalescent approach (APPENDIX ) . 
Before passing to variances, let us note  that $( s) , the 
symmetrized form of the probability generating func- 
tion cp( s) , does  not embody any assumptions imposed 
on  our formulation. On the contrary, its presence in 
the expressions ( 4 )  - (6)  is a  direct consequence of 
considering  the difference of  sizes  of two randomly se- 
lected alleles (Xi - 4) , which is a  random variable  with 
a symmetric distribution. The most important conse- 
quence of this fact is that all the results we obtain  are 
valid for general asymmetric (directionally biased) mu- 
tation mechanisms and  not only for the symmetric  sin- 
gle-step special case. 

The variance of Xi - X,, 

d‘ 
dS2 

v, = - P( s, t )  I s=l  

= V ,  + (V, - V , )  exp[-t/(2r\r)l, (8) 

where V, = ( 4 N v )  qff (1 ) , is equivalent to (8) in CHAK- 
RABORTY and NEI ( 1982).  The within-population vari- 
ance of  allelic  size X,  is V,/2 in generation t. 

Between-population variability: We begin by calculat- 
ing  the probability generating  function of the  random 
variables Zl, - Z,, the difference of  sizes  of two alleles 
randomly selected from two subpopulations (say, 1 and 
2 ) , which resulted from a split at time 0 in an ancestral 
population. 

The probability generating  function D( s, t )  of Zlj - 
ZZj  at time t is equal to 

D ( s ,  t )  = Wo(s)R(s, t ) ,  (9)  

where Wo ( s )  is the probability generating  function of 
the size difference between randomly selected alleles 
in the ancestral population  at t = 0,  while R( s, t )  repre- 
sents the  change in that difference during  the time 
interval [ 0,  t] . Based on the model assumptions, we 
obtain 

R(s,  t )  = e x p ( ( 2 4  [ $ ( s )  - 111, (10) 

which can be interpreted as the Poisson distribution of 
the  number of mutation events compounded with the 
random size  of the  mutation events. If  we denote D, = 
Var ( Zli - Z,,) , then  the above  yields 

Of = v, + R”(1, t )  = v, + ( 2 v t ) $ ” ( l ) .  (11) 

In  the  formulation of variance components analysis, Zli 
and Zri can be represented as 

2 1 ,  = YI + X l i ,  

2, = Y2 + x z j .  

Y1 and Y2 are exchangeable random variables represent- 
ing  the between-population variability.  Likewise, X,,,n are 
exchangeable random variables, independent  of Yl and 
Ki, representing  the within-population variability in 
populations 1 and 2 [for an  extended discussion of 

components of the genetic variance, see e.g., COCK- 
ERHAM and WEIR (1987)  and references therein]. 
Therefore, 

Var ( Zli - 2,) 

= Var( Y] - Y;r) + Var( Xli - X Z j ) .  (12) 

We  know that Var ( Zlj - Z Z j )  = Dt, (see Equation 
11 ) and Var ( Xli - X Z j )  = V, (see Equation 1 ) . The 
between-population variance at time t is equal  to BJ 2 
where B, = Var ( Yl - Y 2 ) .  Using Equation 12 we obtain 

B, = ( 4  - V,) = ( v ,  - v , )  

(1 - exp[- t / (2N)l)  + 2vt$”( l ) ,  (13) 

which is asymptotically equivalent to 2vt$“ (1). If the 
ancestral population was at equilibrium at time t = 0 
( i e . ,  if V, = E ) ,  then 

B, = 2vt$”(l ) .   (14)  

Under  the same condition, V, = V , ,  and (8) and  (14) 
yield the expression 

2 Bt/ V, = t /  N .  (15) 

This is the  index  introduced by CHAKRABORTY and NEI 
( 1982), which is linear as a function of time of  diver- 
gence of populations 1 and 2. 

Relationship to the TR index: SLATKIN ( 1995 ) , based 
on a coalescence argument,  introduced  an  index 

T H =  4Rw/(1 - Rsr),  (16) 

where RST = ( 3 - Sw) / 3, $is twice the estimated total 
variance of allele size in two populations pooled to- 
gether,  and S, is  twice the average  of the estimated 
total variance of allele size  within each population. 

Let us suppose that nl and n, chromosomes have 
been sampled from each of the two populations, respec- 
tively. In  the  standard  notation of  analysis  of variance 
( SOKAL and ROHLF 1981 ) , 

S= 2.  SSOt/ (721 + n, - 1) = 2.  MSOt, (17) 

S w =  2*S&,t,/(nl + - 2 )  = 2.M&,,,. (18) 

It is known that E (  M&*) = K / 2  and E (  M k m )  = V,/ 
2 + %Bf/ 2, where is the  harmonic  mean of n1 and 
n, in  our notation  for  the  components of population 
variance. This leads first to 

E(Sw) = V,, (19) 

and  then to 

E ( S )  = [2/(n1 + % - 1)1 [E(S&m) + E(S&,)l 

= K +  noB,/(n1 + n, - I ) ,  (20) 

which leads to 

E ( S -  S,) = ?k)Bt/(n1 + n, - 1) 

= 2n1aBt/[(a  + n, - 1)  (nl + % ) I ,  (21) 

which is approximately equal to B,/ 2 when both sample 
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TABLE 1 

Number of chromosomes sampled  at loci for  the  populations  analyzed 

Population“ 

Locus CP GR BW UP CN JP  so BE  BB 

D13S71 138 196 50 72 98 48 220 100 50 
D13S193 152 188 50 70 54  50 212 52 50 
D13S124 156 196 50 72 98 44 278 100 48 
FLTl 154 190 50 72 54  52 234 54  50 
D13S121 156 192 50  64 50  50 222 52 50 
D13S118 154 192 46 72 54 50 228 54 38 
D13S197 154 188 50 70 52 52 216 54 46 
D13S122 154 182 50 66 54  50 226 54 50 
PLA2A 98 102 124 70 102 96 104  98 70 
THO1 98 102 118 70 102 96 102 98 64 
CSFl R 98 102 118 66 102 96 102 98  68 
F13A1 70 98 100  72 102 94 78 100 84 
cYP19 72 90 98 72 102 96 116 100 84 
LPL 72 84 100 72 102 78 100  92 84 
DM-CTG 160 104 100 72 102 100 106  100 84 
SCA 94 92 96  52 50 72 86  98  80 
DRPLA 92 100 100  68 100 90 98 100 84 
HD-CAG 158  96 100 72 100  112 120  100 84 

The  population  names  are abbreviated as follows: GR, German; CP, unrelated Caucasian from CEPH pedigree  panel; BW, 
Brazilian White;  UP, Uttar  Pradesh; CN, Chinese; JP, Japanese; SO, Sokoto Nigerian; BE, Benin; BB, Brazilian Black. 

sizes are large and  are of comparable magnitude. 
Therefore, based on the definition of  Slatkin’s index 
in (16) ,  and  (20)  and (21)  above, we have 

E (  T R )  = 4E(S-  S , ) / E ( S , )  = 2B,/V,. (22) 

This shows that Slatkin’s result can be derived from 
CHAKRABORn and NEI ( 1982) formulation. 

If a  population  at equilibrium under mutation-drift 
balance splits into  more  than two subpopulations of 
identical size equal  to  that of the ancestral population, 
( 16) - (22) hold with appropriate changes of nl, %, 
. . . , and ( SOKAL and ROHLF 1981 ) , so that (22) is 
still applicable. As before, V, and B, are  the within- and 
between-populations components of variance of differ- 
ences in allele sizes. 

APPLICATION TO DATA ON REPEAT LOCI  IN NINE 
HUMAN POPULATIONS 

Recently, DEKA et al. (1995a,b) surveyed for world- 
wide genetic variation at eight dinucleotide (FLT1, 
D13S118,  D13S121,  D13S71,  D13S122,  D13S197, 
D13S193 and D13S124), five trinucleotide (PLA2A, 
DM, SCA, DRPLA and  HD)  and five tetranucleotide 
(THO1, CSFIR, F13A1, CW19 and LPL) repeat loci. 
From these surveys we selected allele size distributions 
from nine populations (unrelated Caucasians from the 
CEPH panel; German; Brazilian  Whites; Brahmins from 
Uttar Pradesh, India; Sokoto from Nigeria; Benin; Bra- 
zilian  Blacks; Japanese and  Chinese)  for  the  present 
application. The anthropological description of the 
sampled populations are given in the original surveys 
( DEKA et al. 1995a,b). In Table 1 we present  the sample 

sizes (number of chromosomes sampled) from each of 
their populations for 18 loci. 

For each locus, the locus-specific distances for  a pair 
of populations were estimated by 4 ( s  - S,) / Sw, in 
which s and S, were computed from ( 17) and ( 18) . 
The average distance matrix was computed by taking 
the simple arithmetic mean of the locus-specific  dis- 
tance matrices over the 18 loci. Table 2 shows the aver- 
age distance matrix for all pairs of populations. The 
neighbor-joining dendrogram ( SAITOU and NEI 1987) 
of this distance matrix is  shown in Figure 1. As can be 
seen from this dendrogram,  the average distances over 
all 18 loci group  the populations by their major racial 
characteristics. The four Caucasian populations 
(CEPH, German, Brazilian  Whites and Uttar Pradesh 
Brahmins) cluster together;  other disjoint clusters are 
formed by the two Mongoloid populations (Chinese 
and  Japanese)  and  the  three populations of  African 
ancestry (Sokoto Nigerians, Benin and Brazilian 
Blacks). The Caucasoid and Mongoloid populations 
cluster together first; the Africans are  furthest  apart. 

DISCUSSION AND CONCLUSIONS 

The theory developed above  shows that SLATKIN’S 
( 1995)  index of genetic distance for tandem  repeat loci 
is identical to  the  one  proposed by CHAKRABORTY  and 
NEI (1982). While  Slatkin’s index has been derived 
under  the assumption of the expected allele size change 
equal to 0 ,  we demonstrate  that  the distribution of al- 
lelic changes by stepwise mutations can be arbitrary. 
This is caused by the fact that  both variance compo- 
nents ( B ,  and V,) in this derivation can be expressed 
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TABLE 2 

The distance matrix 

GR 

0.187 0.159 0.138 0.116 0.029 JP 
0.238 0.217 0.160 0.150 CN 
0.034  0.040  0.033 UP 
0.000 0.000 BW 
0.000 

SO 0.317 0.342 0.231 0.228  0.194 0.183 
BE 0.349 0.363 0.327 0.313  0.269 0.255 0.039 
BB 0.152 0.144 0.144 0.125 0.118 0.087 0.042  0.044 

CP GR BW UP CN J P  so BE 

The  distance  index  has  been  computed  for  all  pairs of the  nine  populations.  Submatrices of distances among  members of 
major  racial  groups are set in boldface  type.  Abbreviations  as in Table 1 .  

as expectations of squared differences of allele sizes 
(Eqs. 1 and 1 2 ) .  Thus,  a  directional bias  of  size changes 
by mutations  does not affect the linearity of the relation- 
ship of the expected distance with the time of  diver- 
gence of populations. 

Our derivations are carried out  at a  more  general 
level than those of SLATKIN ( 1995).  He derived the 
mutationdrift equilibrium  expectations of the first two 
moments, while we obtain  the  transient  (Eqs.  3 and 
9 )  as well  as asymptotic (equilibrium)  (Equation 6 )  
expressions for the  distribution of allele size differ- 
ences,  characterized by their probability generating 
functions. As a  consequence, our theory, see for exam- 
ple ( 8) and ( 11 ) , can also be used to study within- and 
between-population dynamics of allele size variation in 
the  absence of mutation  drift balance. 

For example, if the ancestral population was com- 
pletely homozygous for  the locus in  question, i e . ,  if V, 
= 0, then based on (8) and ( 13) we obtain  that our 
index i sequa l to2B, /V ,=x / [ l - eexp( -x /2 ) ] -2 ,  
where x = t /  N. Hence, 2BJ V, is less than x by a  factor 
that  depends  on time of divergence expressed in units 
of the effective population size. If t = 5N,  then 2B,/V, 
is less than x by a  factor of  0.69; if t = 20N, then 2BJ 
V, is less than x by a  factor of 0.90. This effect will lead 
to underestimation of t if equilibrium  in the ancestral 

so 

.049 .047 BE 

I .039 I IUP 

I .040 
I JP 

FIGURE 1.-The  neighbor-joining  dendrogram of the nine 
populations based on the distance  indices in Table 1. 

population is assumed, but  in fact it did  not exist. Care- 
ful analysis  of the consequences is beyond the scope of 
this paper. 

In  the case of within-population variability the as- 
ymptotic but  not  transient result can also be  obtained 
using  a  coalescence  approach (APPENDIX ) . w e  should 
note  that  our  approach can also be used to prove the 
time-linearity of indices of GOLDSTEIN et al. ( 1995), 
without  their  assumptions of single-step symmetric mu- 
tations. 

The estimators Sw and S, (and consequently 31, as 
given by Eqs. 9a, 9b  and 10 in SLATKIN (1995), are 
unbiased estimators of the respective parameters only 
when an equal number of alleles are sampled from 
each population.  In  contrast,  the variance components 
estimators (Equations 17 and 18) used in this work are 
unbiased in  the  general case  as  well. 

Since our  index is a ratio of components of variance, 
its sample value can be negative if s < Sw. This may 
occur when two populations  are genetically close and 
within each of them  the  genetic variation is consider- 
able. Since distances between populations  cannot  be 
negative, we suggest using zero in situations when nega- 
tive values are  obtained. This does not mean  that  the 
populations  are  identical,  but  that  their differences are 
dominated by statistical noise. 

The application of the  genetic distance measure 
shown  above indicates that  the  index satisfactorily 
groups  populations  according to their known ethnohis- 
toric clusters. However, caution has to be exercised in 
applications when populations analyzed include some 
that have been historically small, or known to have gone 
through  recent bottlenecks during  their history. The 
genetic distance indices among  them as  well as those 
between any of these and  the  larger  populations may 
not conform to linearity. This is  as expected, since the 
constancy of the  population size ( N )  is a critical as- 
sumption of our derivation as  well as that of SLATKIN 
(1995). 

In principle at least, the  population dynamics ap- 
proach [ CHAKRAI~ORTY and NEI ( 1982) ; also see Equa- 
tion 31 can be  extended to any population  for which 
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the size fluctuations over generations can be analytically 
specified. Technically, one way to accomplish this is to 
set N = N (  t )  in the differential or difference equation 
leading to relationship ( 3 )  . This was done for  a special 
case  of symmetric binomial cp( s) by CHAKRABORTY  and 
NEI ( 1977) . Time linearity of 2 B,/ V, cannot be guaran- 
teed any more,  but  for  an assumed or estimated model 
of time change of N (  t )  [ e.g., logistic growth of N (  t )  ] , 
the time of divergence can still be analytically related 
to 2 B,/ V,. 

We should also note  that  pooling  tandem  repeat  data 
over  loci may create some problems  depending  on how 
the pooling is carried  out.  In this presentation, we com- 
puted  the distance indices separately for each locus, 
and  then took the  arithmetic  mean over  all  loci. In 
contrast, one could also consider estimates for Sw and 
s - Sw based on data  pooled over all loci, and then 
construct  the  index of the  genetic distance. For 18 loci, 
considered  in aggregate, this alternative approach 
yields a  dendrogram almost identical to the  one shown 
in Figure 1. However, this may not be true in general. 
For example, when the  eight  dinucleotide,  eight tri- 
nucleotide or five tetranucleotide loci were considered 
separately, these two approaches yielded considerable 
differences in  the distance matrices as  well  as in  the 
resulting dendrograms. At this stage the actual causes 
of such discrepancies cannot  be  identified,  but  the sam- 
pling variances of the estimates of Sw and s - Sw are 
likely to contribute to this. Under  the  model assump- 
tions the  ratio of ( s - S,) / Sw estimates a  parameter 
that is independent of the  mutation  rate  at  a locus as 
well  as the  distribution of  allelic  size changes caused by 
mutation. This fact can be used as a  rationale of taking 
a simple average of the distance indices over loci. A 
more  detailed theoretical treatment of this problem 
requires evaluation of both  the stochastic and  the con- 
temporary sampling variance of the  ratio estimates pro- 
posed. 
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APPENDIX: COALESCENT DERIVATION OF THE 
PROBABILITY GENERATING FUNCTION P( s) 

Background mathematics and relevant references for 
this appendix can be  found in either of the two reviews, 
TAVARE (1984)  or TAVARE (1995). 

For any two alleles Xi and 4 drawn from the popula- 
tion at  equilibrium,  the time T to coalescence is expo- 
nentially distributed with parameter 1 / (2N) .  Condi- 
tional on T ,  the  number of mutation events in [ - T ,  

01 , in  both alleles taken jointly, is Poisson  with parame- 
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ter 2 v ~ .  Therefore,  the probability generating  function 
of the  number of mutation events is equal  to 

with pas in Equation 7. This corresponds to the geomet- 
ric distribution. The mutation process in each allele 

separately can be viewed  as a  random walk  with step size 
being  a  random variable with probability generating 
function ‘p( s). The contribution of each mutation 
event to - 3 is a  random variable  with probability 
generating  function I,4 ( s) = [ cp ( s) + ‘p ( 1 / s) ] / 2, since 
mutations occur alternately on randomly chosen alleles. 
Therefore,  the probability generating  function of X,  - 
4 is equal to 

consistent with ( 6 )  


