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ABSTRACT 
The probability  that  at  least p %  of an individual’s genome is passed on collectively to his children is 

calculated. With data  availability the consideration of the chromosome as a whole rather  than  discrete 
loci becomes of increasing practical importance. Assuming the genomic continuum model, which  allows 
for recombination, the crossover process in a chromosome pedigree is viewed as a continuous-time 
Markov random walk on the vertices of a hypercube  with  time  parameter  map distance along the 
chromosome.  The desired probability corresponds to the probability of sojourn  times of the  process in 
a small set of vertices,  which  are  well approximated via the Poisson clumping heuristic. Results  are  given 
for the human genome. It is  very likely  that an individual  with  at least four children passes on at  least 
90% of his genome. There exists no “equivalent” number of independently segregating loci for this 
distribution. 

T HIS article addresses a problem in pedigree analy- 
sis using a model for the locations of recombina- 

tion events throughout  the  genome.  Computing proba- 
bilities on pedigrees is important for many questions 
related to past, current  and  future generations. Most 
researchers consider discrete loci: one locus, a very 
small number of linked loci, or a finite number of un- 
linked loci. There are two reasons for this.  First, the 
computational complexity of  many problems increases 
rapidly  with each additional locus. Second, in the past, 
most practical biological questions related to only a few 
loci. 

Now data  are available at densely packed loci; DNA 
sequencing is possible. Therefore models that consider 
chromosomes as a whole become of increasing impor- 
tance. One might  be  interested in the ancestral path of 
a complete chromosome section. Relationships be- 
tween individuals could be inferred  more precisely if 
complete chromosomes rather  than  a few discrete loci 
could  be  compared. For the survival of rare species, 
genome  rather  than  gene survival  is ultimately  im- 
portant. A continuous model for chromosomes appears 
adequate for most purposes; the  number of nucleotide 
bases  is large and spaces between them  are small. 

Results yielded by analyses based on genomic contin- 
uum us. discrete loci can be expected to be quite differ- 
ent, as  shown by FISHER (1949), FRANKLIN (1977)  and 
DONNELLY ( 1983). FISHER ( 1949)  points out  the differ- 
ence between rates of approach  to homozygosity at sin- 
gle  loci and rates of approach to genomic homozygos- 
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ity. FRANKLIN (1977) shows that individuals with the 
same inbreeding coefficient, i e . ,  the same expected 
proportion of genome homozygous by descent ( HBD ) , 
can have a  different variance in  the  proportion of  ge- 
nome HBD. He discusses implications for the  interpre- 
tation of population mean fitness as a function of popu- 
lation mean inbreeding, finding it important to 
consider the  distribution, not only the  expectation, of 
proportion of genome HBD. 

DONNELLY ( 1983) considers the probability that two 
individuals in a given relationship share any ( i . e . ,  not 
“no”) genome identical by descent  (IBD) . This is a 
first result for determining  the relationship between 
individuals by considering chromosome segments. He 
finds there is no “equivalent number” of indepen- 
dently segregating genes giving the same results as the 
recombination model with a  genome of given length. 

These considerations are relevant to an  understand- 
ing of the role of  homozygosity, inbreeding and gene 
survival in the genetic structure and fitness of a small 
inbred  population,  not  just for single genes, but for 
chromosomes and  the  entire genome. Considering a 
genomic continuum will also be important in practical 
questions. Recent articles consider the identification of 
IBD chromosome segments in affected relatives (GOLD- 
GAR 1990; FEINCOLD 1993; GUO 1994) or of homozygos- 
ity in affected children from consanguineous marriages 
(THOMPSON 1994)  to localize a disease gene. 

Of considerable interest for the  maintenance of ge- 
nome in rare species is the probability distribution of 
how much of an individual’s genome is present in at 
least one descendant  at  a given generation. DONNELLY 
(1983) computed  the probability of conserving the 
whole genome in c children.  The objective  in  this article 
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is to  compute the probability that a n  individual passes on 
at least p %  of his genome collectively to his  offspring. The 
underlying genomic continuum model is described be- 
low. The desired probability distribution can be derived 
directly from the distribution of genome  shared IBD 
by c half-sibs,  which we calculated previously via an ap- 
proximation method ( BICKEBOLLER and THOMPSON 
1996). The results yielded by the  continuous model 
will be compared to those yielded by independently 
segregating discrete loci. 

THE  GENOMIC  CONTINUUM MODEL 

Chromosomes as a genomic  continuum: The sim- 
plest model considering chromosomes as a  continuum 
and allowing for recombination is due to HALDANE 
( 1919) and FISHER ( 1949) . If chromosomal distances 
are measured in Morgans ( J~ALDANE 1919), crossovers 
occur as a Poisson process with rate 1. This does  not 
allow for interference. However, the Poisson distribu- 
tion is  very precise if one considers large chromosome 
segments of the  order of  half a chromosome length. 
For  many purposes it provides a good approximation 
to reality  even for smaller distances and has been used 
in many contexts (FISHER 1949; DONNELLY 1983; 
LATHROP et al. 1985; GOLDGAR 1990; THOMPSON 1994). 

The two chromosomes of a  parent,  represented by 
line segments, yield the chromosome that is passed on 
to the offspring. A crossover can be  represented by 
breaking up  and resplicing the two line segments in- 
volved at  the crossover point ( FISHER 1949). It is  as- 
sumed  that complete information on crossover  loca- 
tions is available in all parts of the  genome considered. 
Only autosomal homologous chromosomes are consid- 
ered,  and  equal  map lengths for males and females are 
assumed. 

Chromosome  pedigrees  and  random walks This 
framework is due to DONNELLY ( 1983). In chromosome 
pedigrees a  nonfounder chromosome is obtained by a 
crossover process from the  paternal and maternal chro- 
mosome of the  parent, labeled 0 and 1, respectively. 
The crossover process may be considered as a continu- 
ous-time Markov  random walk on these states, with “time” 
being position along  the chromosome. 

Each child’s chromosome is an  independent realiza- 
tion of the  random walk. The process of all  crossovers 
for one  parent  and his c children can be translated 
into  a  random walk on  the vertices  of a c-dimensional 
hypercube. For example, for three  children suppose 
that, at position 0, the first two children have the pater- 
nal and the  third has the  maternal chromosome. The 
state is  001.  At position tl a crossover happens in the 
third child. The random walk  moves to state 000 and 
so on, until the end of the chromosome is reached. In 
the  random walk model only one coordinate of the 
state-vector can change  at position t .  The process is 
assumed to  start in the equilibrium distribution, which 

is uniform over  all  vertices. The processes for each of 
the segregations are  independent. 

The event that  not all of the  genome of an individu- 
al’s chromosome pair of length 1 has been passed on 
to the offspring corresponds to the  random walk hitting 
the  hitting  set X = (00 - * 0, 11 * - 1) at any position 
t before position 1. Regions  of the  genome  that  are 
conserved in the offspring generation are regions 
where the  random walk  is not in T ,  

The  discrete-time  random w a k  Crossovers occur as 
a Poisson  process.  First, consider the discrete-time random 
walk that is given by the jump chain with a jump  at each 
crossover. This chain is fully determined by the vector 
of initial probabilities and the transition matrix given 
in  BICKEBOLLER and THOMPSON ( 1996) , and  the proba- 
bilities for the  number of visits to I( by the  random 
walk can be computed for a chromosome. Then  the 
exponential distribution of intervals  between  crossover 
points provides the actual length of the  random walk 
spent in X. 

PROBABILITY OF CONSERVING F% GENOME 
IN C CHILDREN 

Use of the Poisson  clumping  heuristic: DONNELLY 
( 1983) calculated the exact probability that  an individ- 
ual  passes on 100% of  his genome collectively to his c 
offspring, p&%, by computing first hitting times  in X. 
This is considerably easier than  computing occupation 
times of the process in 31. These occupation times can 
be  approximated by the Poisson clumping heuristic 
(ALDOUS 1989), although exact theoretical results can- 
not be found. With this approximation we previously 
computed  the distribution of genome  shared IBD  by c 
half-sibs ( BICKEBOLLER and THOMPSON 1996) . Regions 
of the  genome in X correspond  not only to regions of 
the  genome not conserved but also to regions of the 
genome  shared IBD  by the c offspring. 

Visits to X happen in widely spaced clumps where the 
clump centers follow a Poisson  process. The heuristic is 
applied  to  the discrete-time random walk, approximat- 
ing visits to 31 by the union of independent  and identically 
distributed ( i i d )  random clusters with  random centers chosen 
according  to  a  Bernoulli process on Z (the set of all integers) 
with success rate A. Occupation times in 3 during length 
I are approximated by the  union of those clumps whose 
centers lie in awindow Wthat corresponds to the  length 
1. The parameters for the approximation are given  in 
the APPENDIX. The details are given by BICKEBOLLER 
and THOMPSON ( 1996), who  also demonstrate via simu- 
lations that  the approximation works  well. ALDOLJS and 
BROWN (1993) give some recent theoretical results on 
the approximation of occupation times. Below  we  give 
the results for  the distributions of interest here. 

100% genome  conserved in c children: Here results 
can be given in closed form. Let N, denote  the total 
number of autosomal chromosome pairs i ,  i = 1, . . . , 
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TABLE 1 

Probability of passing on 100% of an individual's  genome 
for different number of children c 

5 
6 
7 
8 
9 

10 
13 
20 

0.0000 
0.0017 
0.0280 
0.1347 
0.3268 
0.5381 
0.9038 
0.9988 

0.0001 
0.0026 
0.0306 
0.1356 
0.3241 
0.5390 
0.9035 
0.9988 

0.0000 
0.0021 
0.0271 
0.1271 
0.3134 
0.5249 
0.9006 
0.9987 

f i n o % ,  exact; pynn%,  approximation; p;"oo%, simplified approxi- 
mation. 

N,. Let L denote the total genome  length. The probabil- 
ity of  passing on 100% of an individual's genome is 
given by the  product over  all N, chromosomes of the 
probability of no hits of 7t inside of the window for 
chromosome i. The formula  for  the Poisson clumping 
approximation, p;oho%, is  given in the APPENDIX (Equa- 
tion A5) .  There it is further  approximated by 

P ? i i O %  = .XP( - F)  ' CL 

p% genome  conserved in c children: Let Y denote 
the  length (in M )  that  the  random walk spends inside 
N during  the total genome  length L .  Its distribution is 
given in  the APPENDIX (Equation A6) .  It does not de- 
pend  on  the lengths of individual chromosomes. For 
length Y one allele of a particular locus is conserved. 
For length ( L  - Y )  both alleles are conserved. Let 2 
denote  the  percentage  genome conserved in c children. 
Then 

l . Y +  2 . ( L -  Y) Y 
2 L  2L  

Z =  =I-". ( 2 )  

The expectation and variance of 2 are given by ( AF- 
PENDIx, above Equation A7) : 

1 1  
2 2  

E ( Z )  = 1 - 7 + 7. O( c - 1 )  

Var(2) = P 
2  (LCP,)2 ' 

where l / p l  denotes  the mean cluster size and p the 
Poisson parameter  for  the  number of clumps during L 
(APPENDIX, Equations A2, A4) . 

RESULTS: THE  DISTRIBUTION OF 
GENOME CONSERVED 

In this paper,  humans  are used as an example. Hu- 
mans have N, = 22 autosomal chromosome pairs, and 
the total map  length is taken to  be L = 33. The probabil- 
ities  of  passing on 100% of an individual's genome  are 
given  in Table 1 for different  number of children c .  

I 
I I I I 

20 40 60 80 100 

L = total genome length 

FIGURE 1.-Cumulative distribution  function, P ( Z s  z), of 
percentage genome conserved in c children  for 3 5 c s 10 
and z 2 90%. 

The exact results, p:oo%, are discussed by DONNELLY 
(1983). With  seven children,  the  chance of  passing on 
all of an individual's genome is only 3%. To be 90% 
sure of  passing on 100% genome  at least 13 children 
are  needed. These probabilities would decrease slightly 
if one also considers the sex chromosomes. The results 
for  the Poisson clumping approximation, p;oo%, and 
the simplified approximation, p;"oo%, agree well  with the 
exact results. 

The distribution of the  proportion 2 of an individu- 
al's genome conserved is computed with a FORTRAN 
program. Figure 1 shows the cumulative distribution 
function of the percentage genome conserved, P ( Z  5 
z )  , for 3 I c 5 10 and z 2 90%. It is  very likely for c 
2 4 that  an individual passes on at least 90% of  his 
genome. This is encouraging from a conservation biolo- 
gist's point of  view. Relaxing the  requirement of  passing 
on 100% to say 90-95% of an individual's genome gives 
a necessary number of children c that is at least feasable 
for most species. 

COMPARISON WITH  THE DISCRETE LOCI CASE 

100% genome  conserved in c children: The probabil- 
ity  of passing on all  of an individual's genome  for Nl 
independently segregating loci is given by 

Sensible choices for Nl seem to be 22 and 33, the num- 
ber of autosome pairs and  the  map  length of the total 
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5 10 15 20 

c = number of children 

FIGURE 2.-Probability of passing on 100% of an  individu- 
al’s genome  for different number of children. 

genome, respectively. Figure 2 shows the probability of 
passing on 100% of an individual’s genome as a func- 
tion of e. The curves for 22 and 33  loci are quite differ- 
ent from the exact computation  that allows for linkage. 
Linkage lowers considerably the probability of passing 
on 100% of an individual’s genome. 

A comparison of ( 1 ) and ( 4 )  shows that  there is no 
number N, of independent discrete loci that will  give 
the same functional form (as a function of e) as yielded 
by considering recombination. However, for a particu- 
lar c it is possible to find an equivalent number N,, Nl 
= cL. Thus, for c = 10, NL = 330. As shown  in Figure 
2, N, = 330  gives a reasonable approximation to p;oo% 
for all c. N, = 330  is surprisingly high. 

p% genome  conserved in c children: Let YNr denote 
the  proportion of loci shared IBD  by c half-sibs of a 
total of Nl independent loci. NIYNr follows a binomial 
distribution with parameters N, and p = 1 / (2‘” ) . Let 
Z,, denote  the percentage genome conserved for NL 
independent loci. In parallel to ( 2 )  and ( 3) , the mean 
and variance of ZNl are given by 

1 
2 

E(Z, , )  = 1 - 7 

The expectations of the percentage genome con- 
served considering NL independently segregating loci 
and  a  continuous  genome  are  the same. Comparing 
( 3) and ( 5)  shows the  magnitude of the error in the 
approximation. Table 2 shows expectations and stan- 
dard deviations. The columns “clumping  theory”, 
“clumping  computation”  and “discrete case” denote 
computations with the exact approximation formula 
(A7) , with the FORTRAN program for the probability 
distribution and for the discrete loci, respectively. The 
expected values for the clumping heuristic and the dis- 
crete case agree very  well, except for the cases c = 3 
and c = 4, where the results are reasonably good al- 
though  the clumping heuristic is not  expected to work 
well. 

Now consider the total distribution of Z. As above 
consider Nl = 22 and 33.  Both distributions Z,, and G3 
are  more  spread  than  the distribution for Z (not 
shown). Differences  between Zand $, are larger than 
between Z and $ 3 .  If one considers the probability of 
conserving at least p% of an individual’s genome for 
decreasing p and different c, the differences between 
the  genome  continuum and 22 or 33 loci become 
smaller as one moves from the far right tail of the distri- 
bution of Z (not  shown). Differences are noticeable 
for c = 3-5, values that  are of practical interest. (The 
approximation for c = 3, 4 is not expected to be as 
good as for c 2 5, see APPENDIX .) The effect of recombi- 
nation us. 22 or 33 loci is to reduce  the probability of 
conserving 100% of the  genome  (Figure 2 ) . This is not 
generally true for conserving at leastp% of the genome. 

Although Nl = 330  gives a good approximation of 
the probability of conserving 100% of an individual’s 
genome for all c, there is no equivalent number NI that 
will  give the same probability for all e .  N, = 330  was 
found by computing  the  number of loci that gives the 
same results for c = 10 as the  continuum using the 
(approximate) closed forms for the discrete and con- 
tinuous case. This is not possible for general p%, since 
no closed form is available. One can, however, deter- 
mine empirically the number of  loci that best approxi- 
mates the probability of conserving at least p%, as a 
function of e. This number Nl varies  with p. For  conserv- 
ing at least 97,95 and  90%, Nl e 80, NL e 80-100 and 
N, = 70-100,  respectively, give good approximations. 
For smaller p%, there is a wide range of N, that gives a 
reasonable approximation. However, this range does 
not include N, = 22 or 33. 

Another way  of comparing  the discrete and continu- 
ous case  is to compute  the  number of loci, which  yields 
the same variance as the continuous case for a specific 
number of children; ie., solve  Var (Z) = Var ( Z N r )  for 
Nl as a  function of c (Equations  3  and  5 ) . Since each 
variance is four times the  corresponding  one  for  the 
proportion of genome shared IBD among c half-sibs 
(computed in BICKEBOLLER and THOMPSON 1996), the 
same comparison holds. Thus for c 2 5  the  number of 
loci Nl( e) yielding the same variance is approximated 
by 

For each c it is possible to find an equivalent N,( c)  , but 
the functional form Nl( e) depends on which distribu- 
tional properties  are considered. For conserving 100% 
genome we have Nl = cL; for equal variances we have 
Nl e c L / 2 .  Thus,  there can be no general equivalence 
across e-values or across distributional properties. 

RESULTS: ROBUSTNESS 

The approximation for the distribution of percent- 
age genome conserved by the Poisson clumping heuris- 
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TABLE 2 

Expectations and  standard  deviations of Z (in percentages) 

E ( Z )  SD (2)  

Clumping  Clumping  Discrete  Clumping  Clumping 
C theory computation case theory computation 

3  81.94 87.26 87.50 5.23 5.64 
4  92.01 92.85 93.75 2.84  2.55 
5 96.25 96.53 96.88 1.69 1.57 
6 98.19 98.31 98.44 1.05 1 .oo 
7  99.12 99.18 99.22 0.67 0.64 
8 99.57 99.59 99.61 0.43 0.43 
9  99.79 99.80 99.80 0.28 0.28 

10 99.89 99.91 99.90 0.19 0.18 
13 99.99 99.99 99.99 0.06  0.06 
20 100.00 100.00 100.00 0.004 0.003 
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tic depends  on c, L and N,. Relative chromosome 
lengths enter only in  higher  order corrections. The 
results are  thus  robust toward changes in  the individual 
chromosome  lengths while keeping  the total length L 
constant. However, due to boundary effects in the  ap- 
proximation at chromosome  ends, results are  not ro- 
bust to large changes in the  number of chromosome 
pairs N,. The heuristic should be valid  as long as N, is 
much smaller than cL (Equation A4). 

The expectation of the  percentage  genome  con- 
served in c children is independent of L.  Any depen- 
dency is due to errors  in  the  approximation. However, 
the variance of 2 depends  on L (Equation 3 )  . Figure 
3 shows the  standard deviation of 2 as a  function of L 

1 .c 

0.e 

0.6 - 
N 
VI 

5 n 
0.4 

0.2 

0.0 
I I I I I i 

0.90 0.92 0.94 0.96 0.98 1.00 

z = Proportion of genome conserved 

FIGURE 3.-Standard deviation of percentage  genome con- 
served, S D ( Z )  , in cchildren for 3 s c s 10 and total genome 
length 20 I L 5 100. Number of chromosomes N, = 22 fixed. 

for 3 5 c 5 10 and N,. = 22. As cL increases SD(2) 
changes less  with L. However, for small c and typical L 
for mammals ( L = 20 - 3 5 )  the  dependency on L is 
considerable. 

The model assumes no interference, which changes 
the probability that in the vicinity of a crossover another 
crossover occurs. Thus, it changes the probability that 
a  change in a  coordinate of the state-vector of the ran- 
dom walk  is immediately reversed. Hits to .I(  still happen 
in widely spaced clusters with  only a few hits  of r( per 
cluster. Thus  the application of the Poisson clumping 
heuristic is valid. For positive interference  a  return to 
7( in two steps is less  likely. This leads to a decrease of 
the cluster sizes. The expected  proportion of genome 
conserved should be increased and its variance reduced 
(Equations A7, 3 ) .  The “maximal” influence of  posi- 
tive interference can be suggested by assuming an ex- 
pected cluster size  of one.  The effect is slight. 

For negative interference  a  return to N in two steps 
is more likely. Thus negative interference will have op- 
posite effects  to  positive interference. No simple bound 
can be given for negative interference, and as cluster 
sizes increase the Poisson clumping  approximation may 
become less appropriate. However, negative interfer- 
ence  should only be important in considering small 
chromosome sections. 

DISCUSSION 

We have considered  the probability that an individual 
passes on  at least p %  of his genome collectively to his 
offspring. Although DONNELLY ( 1983) provided the re- 
sult for p = 100, exact computation will seldom be  possi- 
ble. However, in conservation biology it is important to 
know  how  many offspring are required to  have a high 
probability of conserving at least p %  genome. The re- 
sults are  encouraging; it is  very  likely for c 2 4  children 
that an individual passes on  at least 90% of his genome. 

The results here confirm the conclusions of FISHER 
(1949), FRANKLIN (1977) and DONNELLY (1983) for 
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the problems they considered. Results yielded by the 
genomic continuum and by independently segregating 
loci are considerably different;  there is no "equivalent" 
number of independently segregating loci. The expec- 
tations of proportion of genome conserved are  equal in 
the  continuous and discrete case, but  the distributions, 
including variances, are different. Differences are 
largest in the tail of the  distribution, i.e., for conserving 
almost the whole genome. For genome survival, interest 
is in this tail of the  distribution,  and it is thus essential 
to consider the genomic continuum  model, which 
allows for recombination. While our results are  not uni- 
versal,  they are reasonably robust to the assumptions 
and parameters used. The paper provides an  approach 
that can be  applied  to  other  parameter choices. 

We are grateful to DAVID ALDOUS, who encouraged  the use of the 
Poisson clumping  heuristic for this problem. This work was com- 
pleted as part of the first author's Ph.D. thesis at  the University of 
Washington,  Seattle. The research has  been  funded by the National 
Science Foundation grants BSR-8921839 and BlR-9305835 and by a 
grant from the  Graduate School Research Fund, University of  Wash- 
ington. 
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APPENDIX 

The  parameters for the  approximation: Details may 
be found in BICKEBOLLER and THOMPSON (1996). Let 
S denote  the  union of iid distributed random clumps 
with random centers chosen according to  a Bernoulli 
process on Z with  success rate A. Let W denote  the 

window corresponding to a chromosome. S f l  Wis a p  
proximated by the  union of those clumps of S whose 
centers lie  in W .  I 5 fl WI follows a  compound Poisson 
distribution. A special case is the probability for the 
empty set: 

P(S n Wempty) = exp(-XIWI). ( A l )  

Two definitions of' the cluster length  are necessary. 
Let r* denote  the  number of hits in a cluster and r** 
the total number of steps in a cluster, including nonhits. 
A sensible cluster size distribution could be found for 
c 2 5, but  not for c = 2 ,  3, 4, due  to  the small number 
of orbits. A cluster is terminated if the  random walk 
spends at least two steps outside of 3 for 5 5 c 5 9 
and  at least four steps outside of .7f for c 2 10. 

For c children  the  expected cluster sizes E (  r*) and 
E (  r* * ) are given  as  follows: 

i f 5 r c s 9  

c3 
c3 - c2 - 2 c +  2 

i f c z  10 

The equilibrium probability p of the process to be in 
X, the rate A for the position of the cluster center, 
the window  size I W J  for chromosome length 1 and the 
Poisson parameter p for the  number of clumps during 
length L of the whole genome  are given by 

P =  2' 2r- '  ' 
No. ofvertices in 3 - 1 -- 

100% genome  conserved in c children: For the prob- 
ability of passing on 100% of an individual's genome, 
PTo0%, (A1 ) needs to be independently  applied to each 
chromosome pair of length I,, i = 1, - * - N,. 
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An even simpler approximation, pTGo%, can be derived 
with ( A 2 )  and ( A 3 ) .  For 5 5 c I 9 

= exp( - 
( c -  l ) L + N , +  O ( c - ’ )  

2<- 1 
= - CL + 2<-1 0 ‘ ” ) .  

The same result holds for c 2 10. Hence 

pGo9 = exp( - $) 
is an approximation to p & o ~ / ,  and thus to p;oo%, the 
exact probability of passing on 100% of an individual’s 
genome. A similar formula was found empirically by 
DONNELLY ( 1983). 

The simplified approximation can also be derived by 
the following heuristic argument, since Y consists  of 
only one  orbit  and has only one neighboring  orbit. 
Consider  a  continuous-time  random walk  with two 
states, states X and z. The transition probabilities are 

P,,+i, = c and P,,,, = (Y. 

With X given  as the same hitting set considered so 
far, and using the  properties of a two state random 
walk,  we  have 

Therefore, 

C 
ff“. 

2r-1 

Hence  the  hitting time until time L is up to first order 
approximation 

exp(-aL) = exp( - $) . 

#% genome  conserved in c children: The distribution 
of the  length Y that  the  random walk spends inside X 
during L is given by 

where p7. and Y are given by (A2),   (A4)  and q7. = 1 
- p,.. 

The expectation and variance of 2 follow from those 
of Y* = Y /  L given in BICKEBOLLER and THOMPSON 
(1996). We compute  the expectation of Z further, us- 
ing (A2) ,   (A3) ,  and (A4) .  

1 O ( c ” )  = l - - c + “  . (A71 2 2 


