Skip to main content
Genetics logoLink to Genetics
. 1996 Jul;143(3):1207–1218. doi: 10.1093/genetics/143.3.1207

A Genetic Pathway Conferring Life Extension and Resistance to Uv Stress in Caenorhabditis Elegans

S Murakami 1, T E Johnson 1
PMCID: PMC1207391  PMID: 8807294

Abstract

A variety of mechanisms have been proposed to explain the extension of adult life span (Age) seen in several mutants in Caenorhabditis elegans (age-1: an altered aging rate; daf-2 and daf-23: activation of a dauer-specific longevity program; spe-26: reduced fertility; clk-1: an altered biological clock). Using an assay for ultraviolet (UV) resistance in young adult hermaphrodites (survival after UV irradiation), we observed that all these Age mutants show increased resistance to UV. Moreover, mutations in daf-16 suppressed the UV resistance as well as the increased longevity of all the Age mutants. In contrast to the multiple mechanisms initially proposed, these results suggest that a single, daf-16-dependent pathway, specifies both extended life span and increased UV resistance. The mutations in daf-16 did not alter the reduced fertility of spe-26 and interestingly a daf-16 mutant is more fertile than wild type. We propose that life span and some aspects of stress resistance are jointly negatively regulated by a set of gerontogenes (genes whose alteration causes life extension) in C. elegans.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. S., Riddle D. L. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol. 1988 Apr;126(2):270–293. doi: 10.1016/0012-1606(88)90138-8. [DOI] [PubMed] [Google Scholar]
  2. Arking R., Buck S., Berrios A., Dwyer S., Baker G. T., 3rd Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet. 1991;12(5):362–370. doi: 10.1002/dvg.1020120505. [DOI] [PubMed] [Google Scholar]
  3. Barker D. G., White J. H., Johnston L. H. The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage. Nucleic Acids Res. 1985 Dec 9;13(23):8323–8337. doi: 10.1093/nar/13.23.8323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black H. S. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem Photobiol. 1987 Aug;46(2):213–221. doi: 10.1111/j.1751-1097.1987.tb04759.x. [DOI] [PubMed] [Google Scholar]
  5. Dorman J. B., Albinder B., Shroyer T., Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1399–1406. doi: 10.1093/genetics/141.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elledge S. J., Davis R. W. DNA damage induction of ribonucleotide reductase. Mol Cell Biol. 1989 Nov;9(11):4932–4940. doi: 10.1128/mcb.9.11.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fabian T. J., Johnson T. E. Production of age-synchronous mass cultures of Caenorhabditis elegans. J Gerontol. 1994 Jul;49(4):B145–B156. doi: 10.1093/geronj/49.4.b145. [DOI] [PubMed] [Google Scholar]
  8. Friedman D. B., Johnson T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988 Jan;118(1):75–86. doi: 10.1093/genetics/118.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gottlieb S., Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics. 1994 May;137(1):107–120. doi: 10.1093/genetics/137.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartman P. S. Effects of age and liquid holding on the UV-radiation sensitivities of wild-type and mutant Caenorhabditis elegans dauer larvae. Mutat Res. 1984 Sep-Oct;132(3-4):95–99. doi: 10.1016/0167-8817(84)90003-8. [DOI] [PubMed] [Google Scholar]
  11. Hartman P. S., Hevelone J., Dwarakanath V., Mitchell D. L. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans. Genetics. 1989 Jun;122(2):379–385. doi: 10.1093/genetics/122.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartman P. S., Simpson V. J., Johnson T., Mitchell D. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans. Mutat Res. 1988 Jun;208(2):77–82. doi: 10.1016/s0165-7992(98)90003-3. [DOI] [PubMed] [Google Scholar]
  13. Hartman P., Childress E., Beyer T. Nematode development is inhibited by methyl viologen and high oxygen concentrations at a rate inversely proportional to life span. J Gerontol A Biol Sci Med Sci. 1995 Nov;50(6):B322–B326. doi: 10.1093/gerona/50a.6.b322. [DOI] [PubMed] [Google Scholar]
  14. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  15. Heydari A. R., Wu B., Takahashi R., Strong R., Richardson A. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol. 1993 May;13(5):2909–2918. doi: 10.1128/mcb.13.5.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill C. S., Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. doi: 10.1016/0092-8674(95)90403-4. [DOI] [PubMed] [Google Scholar]
  17. Johnson T. E., Hartman P. S. Radiation effects on life span in Caenorhabditis elegans. J Gerontol. 1988 Sep;43(5):B137–B141. doi: 10.1093/geronj/43.5.b137. [DOI] [PubMed] [Google Scholar]
  18. Johnson T. E. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science. 1990 Aug 24;249(4971):908–912. doi: 10.1126/science.2392681. [DOI] [PubMed] [Google Scholar]
  19. Johnston L. H., White J. H., Johnson A. L., Lucchini G., Plevani P. The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res. 1987 Jul 10;15(13):5017–5030. doi: 10.1093/nar/15.13.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jung M., Zhang Y., Lee S., Dritschilo A. Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I kappa B-alpha. Science. 1995 Jun 16;268(5217):1619–1621. doi: 10.1126/science.7777860. [DOI] [PubMed] [Google Scholar]
  21. Kapeller R., Cantley L. C. Phosphatidylinositol 3-kinase. Bioessays. 1994 Aug;16(8):565–576. doi: 10.1002/bies.950160810. [DOI] [PubMed] [Google Scholar]
  22. Kennedy B. K., Austriaco N. R., Jr, Zhang J., Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995 Feb 10;80(3):485–496. doi: 10.1016/0092-8674(95)90499-9. [DOI] [PubMed] [Google Scholar]
  23. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  24. Kirkwood T. B. Evolution of ageing. Nature. 1977 Nov 24;270(5635):301–304. doi: 10.1038/270301a0. [DOI] [PubMed] [Google Scholar]
  25. Klass M. R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev. 1983 Jul-Aug;22(3-4):279–286. doi: 10.1016/0047-6374(83)90082-9. [DOI] [PubMed] [Google Scholar]
  26. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  27. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Larsen P. L., Albert P. S., Riddle D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 1995 Apr;139(4):1567–1583. doi: 10.1093/genetics/139.4.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lithgow G. J., White T. M., Hinerfeld D. A., Johnson T. E. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol. 1994 Nov;49(6):B270–B276. doi: 10.1093/geronj/49.6.b270. [DOI] [PubMed] [Google Scholar]
  30. Lithgow G. J., White T. M., Melov S., Johnson T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7540–7544. doi: 10.1073/pnas.92.16.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malone E. A., Thomas J. H. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):879–886. doi: 10.1093/genetics/136.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mullaart E., Lohman P. H., Berends F., Vijg J. DNA damage metabolism and aging. Mutat Res. 1990 Sep-Nov;237(5-6):189–210. doi: 10.1016/0921-8734(90)90001-8. [DOI] [PubMed] [Google Scholar]
  33. Ruby S. W., Szostak J. W. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol Cell Biol. 1985 Jan;5(1):75–84. doi: 10.1128/mcb.5.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  35. Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Varkey J. P., Muhlrad P. J., Minniti A. N., Do B., Ward S. The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev. 1995 May 1;9(9):1074–1086. doi: 10.1101/gad.9.9.1074. [DOI] [PubMed] [Google Scholar]
  37. Wong A., Boutis P., Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES