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ABSTRACT 
A composite interval gene mapping procedure for complex binary disease traits  is proposed in  this 

paper. The binary  trait of interest  is  assumed  to  be controlled by an  underlying  liability  that is normally 
distributed. The liability  is  treated  as  a  typical  quantitative  character and thus described by the usual 
quantitative genetics model. Translation  from  the  liability into a binary (disease) phenotype is through 
the physiological  threshold model. Logistic  regression  analysis  is employed to  estimate  the effects and 
locations of putative  quantitative  trait loci (our terminology  for  a single quantitative  trait  locus  is  QTL 
while multiple loci are  referred to as QTLs) . Simulation  studies show  that properties of this  mapping 
procedure mimic  those of the composite interval mapping for  normally  distributed  data.  Potential 
utilization of the QTL mapping procedure for  resolving  alternative genetic models (e.g., single- or two- 
trait-locus model) is discussed. 

C OMPLEX  disease refers to any  disease  with un- 
known mode of inheritance, especially  polygenic 

models. The genetic mechanisms underlying such com- 
plex diseases are usually  analyzed using quantitative ge- 
netics techniques whose  classical model partitions a 
complex trait into genetic and environmental compo- 
nents. The genetic component is thought  to be con- 
trolled by a  number of loci each with a small effect 
( BULMER 1971; FALCONER 1981 ) . 

Many disease-resistant traits in plants and animals are 
described as quantitative characters. For instance, resis- 
tance to Gibberella zeae infection in maize was measured 
as the ratio of the infected area to the total area in the 
inoculated  internode ( PE et al. 1993), while resistance 
to blast fungus infection in rice was measured by lesion 
number  and size ( WANG et al. 1994). Mapping genes 
for such quantitative disease traits can be accomplished 
by traditional interval mapping  procedures (LANDER 
and BOTSTEIN 1989; HALEYand KNOTT 1992) and meth- 
ods of composite interval mapping (JANSEN 1993,1994; 
ZENG 1993, 1994). 

Some disease-susceptible traits, however, are  not 
quantitative characters, but  rather  are qualitative traits 
and usually binary response variables. The vast  majority 
of qualitative disease traits have a polygenic  basis, such 
as the fusiform rust disease resistance in loblolly pine 
where the trait is described as presence or absence of 
the  formation of  galls ( WILCOX 1995) . The genetic 
mechanism underlying rustdisease resistance in l o b  
lolly pine is still unknown. It is heritable  but not inher- 
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ited in a simple Mendelian fashion. It is not a single 
gene trait and  environment also  plays a role. Binary 
disease traits with a polygenic  basis are also categorized 
as complex diseases. 

WRIGHT (1934) proposed  a “physiological thresh- 
old” theory to explain the link between a  continuous 
latent variable and  an observable binary phenotype. 
The threshold theory states that underlying the dichot- 
omy (phenotype) , there is a “scale of factor combina- 
tions” to which each factor (locus) makes a fairly con- 
stant  contribution. More recently, this  scale  of factor 
combination (plus a  random environmental deviation) 
was referred to as “liability” (e .g . ,  FALCONER 1981 ) . 
When liability is below the  threshold an individual has 
the  “normal” phenotypic expression, when it is above 
the threshold the individual has the “affected” pheno- 
typic expression. Therefore, quantitative genetic analy- 
sis  of a complex disease refers to  the genetic study  of 
the liability and  the  threshold. 

Mapping genes  for such binary traits is more compli- 
cated than  that for continuous traits. Current  methods 
are limited to analyses  of the association between a 
marker and a quantitative trait loci (QTL) using a sim- 
ple 2 X 2 chi-square test (e.g. ,  WILCOX 1995). The chi- 
square test  uses one marker at  a time that  does  not 
provide estimates of the effect and position of the QTL. 
In  addition, if multiple QTLs occur in the same linkage 
group,  the chi-square test tends  to  be biased. HALEY and 
KNOTT ( 1992) suggest using generalized linear model 
approach  to analyze such threshold traits. JANSEN 
( 1992 ) and JANSEN and STAM ( 1994) investigated a 
general mixture model and claimed that  the  general 
mixture model for  mapping QTLs can be used for  non- 
normally distributed  data, such as counts or percent- 
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ages.  However,  systematic  investigation of gene map- 
ping for binary traits under the physiological threshold 
model has been lacking. Herein, we modify the (com- 
posite) interval mapping procedures  applied to contin- 
uous traits (LANDER and BOTSTEIN 1989; JANSEN 1993, 
1994; ZENG 1994) to interval mapping for binary data. 

MODEL OF LIABILITY 

A complex disease trait is assumed to be controlled 
by a  latent variable, referred to as  liability,  which is 
considered to be  continuous  and normally distributed. 
It can be described by the usual linear model 

rn 

z, = 4 + b,xq + e i ,  (1) 
j =  1 

where z, is the liability for the ith individual, 4 is the 
grand mean (intercept), xii is the j th explanatory vari- 
able, b, is the regression coefficient and e, is the residual 
with a distribution of N (  0, 0:). Since the liability is 
unobservable, the mean and residual variance can be 
set at any arbitrary values.  For  simplicity, we choose &, 
= 0 and 0: = 1 throughout  the  presentation. 

Our purpose is to map QTLs controlling disease trait 
using molecular markers, thus, the explanatory vari- 
ables are now defined as indicator variables of marker 
genotypes. In fact, other fixed  effects, such as  sex, age 
and location of field, can be  incorporated  into  the 
model to control  the residual variance, but they are 
ignored  here for convenience. Let us consider, for sim- 
plicity, a backcross population derived from two inbred 
parental lines, P1 and R2, fixed for alternative alleles at 
several  QTLs and m markers. Let us assume that  the 
backcross population is derived from Fl X PI so that  a 
backcross individual can be  either homozygous  with Pl 
allelic  type or heterozygous with one Pl allele and  one 
P2 allele at  a particular locus. If the  ith individual is 
homozygous at  the j th marker, xil = 1, otherwise, xq = 
0. The expected values  of bj’s are given by ZENG ( 1993) . 

A disease susceptible trait ( y L ) ,  determined by the 
underlying liability, is a realized binary variable, defined 
as 

Yz = { 1 if affected 

0 otherwise. 

The device that translates liability into disease pheno- 
type is the physiological threshold model (WRIGHT 
1934). It assumes that  there is a threshold (8) in the 
scale of liability,  below  which the individual has the 
normal  phenotype, and above  which it is affected. The 
translation can be summarized by 

i 1 if zi 2 8 

0 if zi < 8 
yi = 

Estimation of regression coefficients requires the 

conditional probability of yi = 1 given xi,’s, the marker 
genotypes. This conditional probability can be obtained 
by integrating out the  random noise. Let us define z, I X 
as a conditional variable  of z, given the QTL and marker 
genotypes. From model 1 we know that  the conditional 
mean and variance are E (  zi I X )  = Cy=, b,x, and Var 
( z ,  I X )  = 1, respectively. We also  know that the condi- 
tional variable is normally distributed because the resid- 
ual term is assumed to be normal. Therefore, the den- 
sity function of the conditional variable is 

The conditional probability of yt = 1 given X is ob- 
tained by 

where (a( [ )  stands for the standardized cumulative nor- 
mal distribution function and [ is the  argument. Analy- 
sis involving (a( < )  is referred to as probit analysis. We 
chose the  probit model because the parameters are easy 
to interpret. However, the  probit model is difficult to 
manipulate because numerical integration is required. 
So, a logistic model is employed to approximate (a( E )  
for estimation purpose. Logistic regressions have been 
used by human geneticists in segregation analysis (e.g., 
BONNEY 1986).  The logistic model is expressed by 

The approximate relationship between a  probit model 
and  a logistic model is Q, ([) = $( c[ ) , where c = 
7r / 6. Therefore, 

This approximation is remarkably close  when  0.1 < 
a([) < 0.9 (LIAO  1994). Hereafter,  the  probit model 
is replaced by its  logistic approximation. 

METHODS OF ESTIMATION 

Marker-QTL association: The  method of maximum 
likelihood is used to estimate the regression coeffi- 
cients. A significant value of a regression coefficient 
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indicates linkage of the  marker with a QTL. Let p, de- 
note Pr ( y t  = l I X ) ,  then  the log likelihood is 

n n 

L = C yz log(pi) + C (1 - Y i )  lOg(1 - pz). (4 )  
i= 1 1=1 

The unknown parameters  are 8 and bj's, but 8 is a nui- 
sance parameter in linkage analysis and only 4 ' s  are of 
interest. The maximum likelihood estimators are  found 
by setting partial derivatives of L with respect to the 
parameters  equal to zero. The first and second partial 
derivatives can be  found in COX (1970). A statistical 
test for Ho:b, = 0 is carried out by the likelihood ratio 
(LR) approximation. The likelihood ratio test involves 
calculation of L under  the full model,  denoted by L1,  
and  under the restricted model ( bJ = 0 )  , denoted by 
I,, . The likelihood ratio is -2 ( 4, - L1 ) , which  asymp- 
totically  follows a chi-square distribution with one de- 
gree of freedom under the null hypothesis. 

Standard  computer programs for logistic regression 
analysis can be found in some commercial statistical 
packages such as  PROC  LOGISTIC in SAS (SAS Insti- 
tute 1988). 

Interval mapping: The multiple logistic regression 
analysis provides a test for marker QTL association, but 
it does not give estimates of the size and location of a 
tested QTL. Assuming one QTL on a  chromosome, 
LANDER and BOTSTEIN (1989) developed the interval 
mapping  procedure, which can separate the QTL effect 
and the linkage parameter. Let us set the effect of the 
heterozygous genotype to zero and that of the homozy- 
gous genotype to a for a particular QTL. Note that 
arbitrarily setting the effect of the heterozygous geno- 
type to zero does  not  change  the estimation and test of 
the QTL effect, but it will affect the estimation of the 
threshold ( 0 ) .  We describe the liability using the model 
of ZENG (1994) where an  indicator variable represent- 
ing  the QTL genotype is included in the model. His 
model is different from that of LANDER and BOTSTEIN 
(1989) in that  other  important markers are incorpo- 
rated as  covariates to control  the genetic background 
of other chromosomal regions. ZENG'S model is de- 
scribed by 

z, = b*x, + 4 xzl + e , ,  (5)  

where b* is the effect of a putative QTL ( 6 *  = a )  in 
the tested interval, x? is an  indicator variable represent- 
ing  the genotype of the putative QTL, f2 indexes the 
markers excluding  the two flanking ones. Note that 
x: is no longer known for sure and it takes a value  of 
1 or 0 with a probability depending  on  the genotypes 
of the two flanking markers and  the QTL position. The 
conditional probability of x? = 1 is expressed by J = 
Pr ( x ?  = 1 I xil x i n ) ,  where xtl  and . x z p  are  the indicators 
of the two flanking marker genotypes. Let rl and r2 be 
the  recombination fractions of the QTL with the left 
and  the  right markers, respectively, and  denote  the re- 

j € S l  

combination fraction between the two markers by r. 
Without interference,  the  conditional probability of 
x? = 1 is ( DOERCE et al. 1994) 

( 1 - r I ) ( 1 - - r 2 ) / ( l - ~ )  i f x z l = x i p = l  

(1 - 7-1)?2/7. if xil = 1 and x t 2  = 0 

rl(1 - % ) / r  if xjl = 0 and xt2 = 1 

~1r2/ (1 - r )  if xil = xt2 = 0. 

Since the putative QTL is assumed to be inside the 
interval, r2 is a function of rl and r ,  as  shown by 

$ =  1 
r 2 = - .  

?" - q 

1 - 2r1 

It is taken that r is known, so that  there is only one 
independent unknown recombination fraction. 

The conditional probability of y2 = 1 given the 
marker genotypes is partitioned  into two parts, pil and 
pio.  If x? = 1, this probability is p, where 

Logit(p,l) = LOg[p,l/(l - pi1)l 

= ~ [ b * +  b l ~ i i - d  . ( 6 )  
j E I 1  1 

= c[ c 4 XC! - 01 . ( 7 )  

If x? = 0, the  conditional probability becomes pz( , ,  
where 

Logit(pio) = LOg[p,o/ (1 - pia) 1 

jEC2 

The likelihood function becomes 
n 

L = n [Jp;?  (1 - p j l )  l P V t  + (1 - J ) P ? o  
i= 1 

x (1 - p * " ) L - J L  ( 8 )  

whose solutions can be solved via the expectation-max- 
imization (EM) algorithm. In this particular case, the 
EM algorithm requires  the first and second partial de- 
rivatives  of L with respect to the unknown parameters. 
These partial derivatives and  the EM steps are given  in 
the APPENDIX. 

The unknown parameters are b*, 4 ' s  and 8, but only 
b* = 0 is tested. The test can be accomplished by the 
likelihood ratio approximation. The permutation test 
of CHURCHILL and DOERGE ( 1994) offers a very robust 
alternative to  the likelihood ratio test. The recombina- 
tion fraction between the QTL and  a flanking marker 
is also an unknown parameter,  but it is  usually treated 
as a known constant and  then  the whole  interval is 
searched from one  end to another with an  increment 
of 1 or 2 cM. 
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FIGURE 1.-Likelihood ratio profiles of interval mapping 
from one replicate of simulation  in  a backcross population 
of  size 500. There  are two QTLs located at 25 and 68 cM 
positions of the chromosomal  segment. The solid curve repre- 
sents  QTL mapping for binary data using the logistic regres- 
sion presented in this paper.  The  dotted curve stands for QTL 
mapping for normally distributed data of the liability (as if it 
were the observed phenotype) using ZENG'S composite inter- 
val mapping. 

SIMULATION 

An example: To illustrate the  properties of the 
method,  a simulation study was performed. One chro- 
mosome with 11 markers separated in 10 10-cM inter- 
vals  was simulated for a backcross population. The un- 
derlying liability is affected by  two  QTLs located in the 
positions of  25 and 68 cM (depicted in Figure 1 ) with 
gene effects  of a, = 0.931 and a, = -0.931 units, respec- 
tively. Dominance and epistasis  were assumed to be  ab- 
sent. Using HALDANE'S mapping  function,  the recombi- 
nation frequency between the two QTLs  is r = 0.2884. 
The additive genetic variance is a i  = [ a :  + a; + 2 ( 1 
- 2r) a , c ~ ]  / 4  = 0.25. The liability of each individual 
was generated by adding  a  random normal deviate, e - N (  0, 1 ) , to the additive genetic value. The mean 
and variance of the liability are Z =  ( al + e) / 2  = 0.0 
and 0; = 0; + a: = 0.25 + 1.0 = 1.25. Each  QTL 
alone accounts for 17.34%  of the total variation and 
the two QTLs jointly account for 20% of the total varia- 
tion (due to a negative covariance between the two 
loci).  To convert the  continuous liability into  a binary 
responsible variable, we set the threshold at 0 = 0.0, 
which leads to 50% of the individuals being affected. 
Sample size  of this simulation was 500,  which is suffi- 
ciently large to demonstrate  the  general  properties of 
the  method. 

The data set generated under the genetic model de- 
scribed above was used for the composite interval m a p  
ping analysis.  For comparison, the liability was treated 
as if it were the observed phenotypic variable and  the 

continuous  data of the liability  were  analyzed using 
ZENG'S (1994) composite interval mapping procedure. 
Figure 1 shows the likelihood profiles from one repli- 
cate of the simulation. Both methods  had successfully 
detected  the two QTLs in the  right locations. However, 
analysis of the binary data shows a lower profile than 
that of the normal  data because some information has 
been lost  when converting normal  into binary data. A 
lower profile implies a lower  statistical  power.  Similar 
results have been observed from analyses  of more repli- 
cates (not  shown). 

Power studies: To compare  the statistical  powers and 
estimation errors of interval mapping for binary data 
with those for normal  data,  more simulations were con- 
ducted. One QTL located in the middle of a single 
interval of  20  cM  was simulated. We considered the 
following factors that may  have great influence on the 
performance of the mapping procedures: (1) sample 
size, ( 2)  size  of the QTL, and ( 3)  threshold. Two  levels 
were investigated for each factor and simulation was 
repeated 100 times  in each parameter  combination. 
The effect of the QTL was set at a = 0.459 and 0.667, 
corresponding to h' = 0.05 and 0.10,  respectively. The 
threshold determines  the  proportion of  disease  infec- 
tion (disease incidence)  and it was set at values such 
that  the disease incidences were at 25 and 50%. A criti- 
cal  value  of  3.84 (the critical value at a = 0.05  of the 
x' distribution with one degree of freedom) in the test 
statistic was chosen to determine  the statistical  powers. 
The actual critical value may be slightly higher  than 
3.84 ( HALEY and KNOTT 1992). Results are given  in 
Table 1  and Table 2  for situations where disease  inci- 
dences  are 50 and  25%, respectively. In general, the 
gene  mapping  procedure for binary data performs very 
well. Compared with the analyses  when the liability is 
treated as if it were  observed normal  phenotype, the 
binary method has  lower  power and larger estimation 
error, especially when the disease incidence deviated 
from 50%. Note that  the logistic regression approxima- 
tion requires that  the disease cannot be too rare, else 
the  approximation  does  not  hold. 

DISCUSSION 

A QTL mapping procedure for binary disease traits 
is proposed in this paper. A binary trait is assumed to 
be controlled by an underlying liability  with normal 
distribution. The liability is treated as a usual quantita- 
tive character and thus described by the usual linear 
model ( ZENC 1994) . Translation from the liability into 
the binary phenotype is through  the physiological 
threshold model. The conditional probability of  disease 
infection given QTL and marker genotypes is described 
by the  probit model but  approximated by a logistic 
regression for convenience. The genotype of a putative 
QTL  is uncertain,  but it is inferred from the genotypes 
of  two flanking markers. Therefore,  a mixture of likeli- 
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TABLE 1 

Statistical  powers  and  estimation  errors  when  the  disease  incidence 
(proportion of affected individuals) is about 50% 

Sample Data Test 
Heritability" size w e  cMAh ri" statistic  Power (%)" 

0.05 200 Binary 9.79 (7.616) 0.42 (0.19) 7.33 (5.74) 64 
Normal 9.34 (7.13) 0.46 (0.16) 10.36 (6.59) 87 

500 Binary 10.25 (6.29) 0.39 (0.11) 13.69 (7.05) 98 
Normal 9.95 (4.97) 0.46 (0.09) 22.02 (8.42) 100 

Normal 10.00 (4.64) 0.71 (0.15) 20.94 (8.27) 100 
500 Binary 9.92 (4.37) 0.60 (0.11) 28.17 (10.08) 100 

Normal 10.20 (3.53) 0.67 (0.10) 44.47 (12.29) 100 

0.10  200 Binary 9.86 (5.52) 0.63 (0.17) 13.11 (6.16) 96 

The table shows the average estimates and standard deviations (in parentheses) from 100 replicates of 
simulation. 

Proportion of the total variation in liability explained by the QTL. 
bEstimated position of the QTL. The parametric value  is 10 cM. 
'Estimated effect of the QTL. 
" Statistical  power at  an error rate of 0.05. 
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hood is used for the logistic regression analysis. Proper- 
ties  of this mapping  technique resembles those of the 
composite interval mapping of ZENG ( 1994) for normal 
data. 

The interval mapping  procedure for binary traits is 
usually  less  powerful than  the well developed mapping 
methods  for  continuous traits. This is because some 
information will be lost during  the translation from the 
underlying liability into  the observed binary phenotype. 
The threshold ( e )  is the leading parameter  that  deter- 
mines the  amount of information loss. The threshold 
determines  the disease incidence  (proportion of in- 
fected individuals) in the  population of interest. The 
efficiency  of the interval mapping largely depends  on 
the disease incidence. The maximum efficiency occurs 
when the disease incidence is 50%. Consider that statis- 
tical  power is a monotonically increasing function of 
the heritability of the putative. This heritability has a 
maximum value when the disease incidence is 50% (ED- 
WARDS 1969). As the disease incidence deviates from 
50%, more  information will be lost. As a  consequence, 

the  method  presented  here is not applicable to gene 
mapping for  rare diseases. Although f3 cannot  be con- 
trolled in natural populations, it can be manipulated in 
designed experiments. In QTL mapping experiments, 
plants are usually  artificially inoculated by spraying a 
certain amount of pathogen  spore suspension. Under 
some circumstances, one may adjust the  amount of 
spore suspension to make the disease incidence close 
to 50% as much as possible. 

Usually, the mechanisms underlying complex binary 
disease traits are not known. The physiological thresh- 
old model is only a hypothesis that is hardly tested. 
However, a plausible biological interpretation of the 
threshold model can be drawn from the threshold char- 
acteristic of  enzyme  activity. MOZHAEV et d .  (1989) 
found  that  the  dependence of the catalytic  activities 
of a-chymotrypsin and lactase on the  concentration of 
organic cosolvents in mixed aqueous media has a pro- 
nounced threshold character: the activity does not 
change up to a critical concentration of the  nonaque- 
ous cosolvents added, yet further increase of the latter 

TABLE 2 

Statistical  powers  and  estimation  errors  when  the  disease  incidence  (proportion of affected) is 25% 

Sample Data Test 
Heritability size w e  CMA d statistic Power (%) 

0.05 200 Binary 10.93 (7.97) 0.46 (0.21) 5.17 (3.67) 57 
Normal 11.24 (7.14) 0.44 (0.14) 9.43 (5.81) 83 

500 Binary 9.85 (6.83) 0.44 (0.15) 11.28 (6.62) 86 
Normal 9.88 (5.09) 0.46 (0.10) 22.90 (9.99) 100 

Normal 10.02 (5.58) 0.65 (0.16) 18.05 (8.41) 99 
500 Binary 9.24 (5.37) 0.72 (0.17) 22.05 (8.67) 99 

Normal 9.32 (3.68) 0.68 (0.11) 46.32 (13.43) 100 

0.10  200 Binary 9.76 (7.31) 0.65 (0.29) 8.42 (5.33) 78 

The table shows the average estimates and standard deviations (in parentheses) from 100 replicates of 
simulation. See Table 1 for the legends. 
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(by only a small amount) leads to an  abrupt decrease 
in  enzyme  activity. Consider that disease resistance is 
determined by the activity  of a particular enzyme. The 
locus coding for this enzyme may be called the major 
gene.  In  a  population where the major gene has been 
fixed, the disease phenotype may still  show  polymor- 
phism. This may occur when the enzyme  activity is de- 
termined by the level of gene  products of  several  QTL. 
The collective effect of the  gene  products of the QTLs 
is analogous to the liability. When the level  of the  gene 
products reaches a certain threshold,  the enzyme  be- 
comes inactive, leading to disease infection. 

A well-known alternative to the threshold model is 
that the expression of a disease trait is determined by 
the expression of one  or two loci ( SCHORK 1993) . If 
the disease  in question is controlled by one locus and 
environment does not play a role, the disease expres- 
sion  in a backcross population will show simple Mende- 
lian segregation. In this case, there is no  need to invoke 
the threshold model of gene mapping. However, the 
threshold model is appropriate in dealing with  situa- 
tions where the disease is controlled by a single locus 
but environmental effect also plays a role in the expres- 
sion  of the disease trait. In genetic mapping of  diseases 
under one- or two-locus model, the conditional proba- 
bility of trait expression of a given genotype is usually 
referred to as penetrance ( SCHORK 1993). For exam- 
ple, the  penetrances of  homozygotes (x* = 1 )  and 
heterozygotes (x* = 0 )  in a backcross population are 
denoted by 

p l = P r ( y = l I x * = l )  and p , = P r ( y = l I x * = O ) ,  

respectively. It is then  natural to use the difference be- 
tween pl and P, to detect  the effect of the putative locus 
on  the disease. Recall that x* is unobservable but its 
conditional distribution given marker genotypes is 
known (denoted by J ) . Therefore,  the log likelihood 
function can be constructed as 

n 

i= 1 

+ (1 -&)$I&( 1 - p o )  "yt]. 

The maximum likelihood extimates of pl and Po are 
solved  iteratively by 

n 

i= I i= 1 

where 

Under  the null hypothesis Ho: pl = = p ,  the log 
likelihood function becomes 

As usual, the likelihood ratio statistic is used to test the 
null hypothesis. 

We now  show that  the above  test is equivalent to that 
under the threshold model. When the expression of a 
disease trait is determined by a single locus, it is not 
necessary to include nonflanking markers in the model 
of  liability. Thus,  the  penetrance can be expressed as 

when x* = I, and 

when x* = 0. Instead of  maximizing the log likelihood 
function with respect to pl and Po, we  now maximize 
the likelihood with respect to b* and B ( cis a  constant) . 
According to the invariance property of the maximum 
likelihood method ( DEGROOT 1986), the maximum 
likelihood estimates of 9 and b* are 

e = - - 1 log[ jo / ( l  - i o ) ]  
c 

and 

respectively.  Clearly, the null hypothesis that b* = 0 is 
equivalent to that pl = Po. 

When the disease is controlled by  two loci and envi- 
ronment plays a role in the expression of  disease trait, 
the threshold model proposed in this paper is  still  valid 
as long as there is no epistatic interaction between the 
two loci. In  the presence of epistatic effect, the current 
threshold model must be modified so that two QTLs are 
mapped simultaneously using a two-dimensional search 
strategy (e.g., HALEY and KNOTT 1992), an area  that 
deserves further investigation. 

The interval mapping procedure  presented in  this 
paper is for binary disease data only. Many disease traits 
are measured as ordinary data, i.e., among  the individu- 
als  classified  as affected, the  degree of infection may 
be different. Individuals may be classified into several 
groups depending  on  the  degree of  disease infection. 
QTL mapping for ordinary data can be accomplished 
by ordinal logistic regression analysis ( LIAO 1994) . The 
underlying liability for an ordinary disease trait can be 
described by the same linear model given  in (1 ) , but 
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there  are several thresholds to translate the liability into 
observed ordinary disease phenotypes ( LANGE et al. 
1976).  The binary data analysis will be a special case  of 
the  general  procedure  for ordinary data analysis for 
which further investigation is required. 
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APPENDIX 

This appendix gives the partial derivatives  of the log 
likelihood function with respect to the unknown param- 
eters and describes the EM steps. 

Let x io  = - 1 for i = 1, . . . , n and j indexes the 
threshold (when j = 0, bj = 6 )  and all other markers 
excluding the two flanking ones,  then 

and 

The log likelihood function is 
n 

L = log [ $ p 3  ( 1  - pil) l - x  

i= 1 

+ ( 1   - ~ ) p j t , ( 1  - p i o ) " y ~ I *  

The first partial derivatives are 

and 

for j = 0, . . . , R, where 

$p;l ( 1  - pil) ( l - x )  w. = 
' &p?$ ( 1  - pi1) ('-'*) + ( 1  - $)p{t,( 1 - pEo) (I-';) 

is the posterior probability of x* = 1. 
The second partial derivatives are messy because wi 

is a function of the unknown parameters. However, if 
these w,'s are  treated as constants, then  the second 
partial derivatives  have simple forms as  shown: 

d 2 L  
db* 

n 
" - - c 2 C  WiPzl(1 - p i l ) ,  

i= 1 
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and 

+ (1 - ~ ) p i 0 ( 1  - pi~) lxyxtk  

forj ,  k = 0 , .  . . , R 
The EM steps are as  follows 

1. Set up initial values  of b* and bj for j = 0,  . . . , a; 
2. Calculate w, (E-step) ; 
3. Given w, ,  solve for b* and 4 using the NEWTON- 

RAPHSON iteration ( "step ) ; 

4. Update  the initial values and go to step 2 )  ; 
5. Repeat steps 2-4 until convergence. 

The maximization step is accomplished via the NEW- 
TON-RAPHSON iteration, which is described as  follows. 
Let d be a vector  of the first partial derivatives and J be 
a matrix of the second partial derivatives. If p( t )  is a 
vector  of solutions at the tth step, the solutions at  the 
t + 1 step is p( t + 1 )  = p( t )  - J"d, where J and d 
are evaluated at p( t )  . 

With the EM algorithm, convergence is guaranteed 
because the matrix of the second partial derivatives is 
always negative definite. 


