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ABSTRACT 
Information on multiple linked genetic markers was used in a Bayesian method for the statistical 

mapping of quantitative trait loci (QTL). Bayesian parameter estimation and hypothesis testing were 
implemented via  Markov chain Monte  Carlo algorithms. Variables sampled were the augmented data 
(marker-QTL genotypes, polygenic effects), an indicator variable for linkage or nonlinkage, and the 
parameters. The parameter vector included allele frequencies at  the markers and the QTL, map distances 
of the markers and the QTL,  QTL substitution effect, and polygenic and residual variances. The criterion 
for QTL detection was the marginal posterior probability of a QTL being located on the chromosome 
carrying the markers, The method was evaluated empirically by analyzing simulated granddaughter 
designs consisting of  2000 sons, 20 related sires, and their ancestors. 

I N earlier  contributions (THALLER and HOESCHELE 
1996a,b), Markov chain Monte Carlo (MCMC)  algo- 

rithms were developed to  implement  the Bayesian anal- 
ysis of linkage between a single marker  and  a quantita- 
tive trait locus (QTL) of HOESCHELE and V A N M E N  
(1993a,b). Because  many markers are available on the 
maps of  livestock species today,  all markers in a linkage 
group could be utilized simultaneously to test for the 
presence of a QTL on the chromosome carrying the 
linkage group  and  to estimate the position of the QTL 
relative to the origin of the linkage group. The use of 
multiple linked markers might increase the power of 
QTL detection and the accuracy of parameter estima- 
tion, and may remove biases in QTL position (KNOTT 
and HALEY 1992) when compared to QTL mapping 
with a single marker. 

The Bayesian  analysis  of THALLER and HOESCHELE 
(1996a,b) fits a biallelic  QTL and polygenic variation 
and is suitable for the analysis  of granddaughter,  daugh- 
ter and  other designs. Further advantages of the Bayes- 
ian analysis are  the  incorporation of  full pedigree infor- 
mation, of additional nuisance parameters (fixed 
effects, variance components) and of uncertainty associ- 
ated with the marker information (allele frequencies, 
genetic distances). Inferences are derived from the mar- 
ginal posterior distributions of the parameters of inter- 
est, while in maximum likelihood interval mapping, 
QTL parameters  are estimated conditionally on the 
most  likely location of the QTL and  on  the estimated 
marker map. 
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In this paper, we extend Bayesian  statistical  QTL 
mapping to utilize information from multiple linked 
markers and to perform one analysis per chromosome 
rather  than analyzing each marker separately. The anal- 
ysis  is implemented via  MCMC algorithms. The method 
is applied to some of the simulated granddaughter de- 
signs used in the single marker study  of THALLER and 
HOESCHELE (1996a,b) to evaluate power of QTL detec- 
tion and accuracy of parameter estimation. As a side 
objective, the efficiency  of two  MCMC algorithms that 
differ in the definition of the  augmented  data  (TANNER 
and WONC 1987) and in the parameterization of the 
genotype probabilities is compared. 

MATERIALS AND METHODS 

The marker information is assumed to include the geno- 
types at  a  number of marker loci  known to be situated on the 
same chromosome. The presence of a single  QTL on this 
chromosome is postulated. The analysis  may then proceed by 
assuming that (1) order of and genetic distances among 
marker loci are known ( i e . ,  very accurately estimated), (2) 
order is  known but genetic distances are unknown, and (3) 
order of and genetic distances among marker loci are un- 
known. Current linkage analyses  all  employ assumption (1) ,  
i.e., treat the estimated marker map as the true map, even if 
they employ MCMC methods (SATAGOPAN et al. 1996). The 
analysis presented here is based on assumption (2), while the 
case  of (3) is not considered. A Bayesian treatment of the 
multi-locus ordering problem (3) using recombinant data can 
be found in STEPHENS and SMITH (1993). 

Parameter estimation: Bayesian inferences about  the pa- 
rameters are  computed using a Gibbs sampler based on the 
joint posterior distribution of the missing data and the param- 
eters given the observed phenotypic (y) and marker ( M )  data. 
The missing data are the joint marker-QTL genotypes MG 
and polygenic  effects u. The multi-locus genotypes (MG) are 
defined such that in each Gibbs  cycle the linkage phase of 
the markers and the QTL is known, and inheritance is  known 
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for all offspring at all loci for which a parent is heterozygous. 
The parameter vector 0 contains QTL substitution effect a, 
gene frequency p at  the biallelic QTL, an overall mean  and 
additional fixed effects b, polygenic (a:) and residual (a:) 
variances, a vector of allele frequencies at the m marker loci 
( g ) ,  and a vector of map distances of the m markers and the 
QTL (d) relative to  the origin of the linkage group, which is 
the location of the first marker ( d l  = 0). In addition to these 
parameters,  an  indicator variable V representing either non- 
linkage ( L '  = 0) or linkage (L' = 1) of the QTL to the marker 
synteny group is included in the joint posterior  distribution. 
Below, P( .) will denote the joint probability of a set of discrete 
variables and fc.), the joint probability density of a set of 
continuous variables or  both continuous and discrete vari- 
ables. 

The definition of MG allows sampling of the allele frequen- 
cies ( g  and p )  from  standard distributions. The genotype 
probabilities are written as functions of the distances d rather 
than  recombination rates r by expressing each r, in terms of 
the di given a  map  function g ( . ) .  The position of the first 
marker is taken as the origin of the linkage group (dl = 0). 
Using Haldane's no interference  map  function,  recombina- 
tion rate among loci i and i + 1 is 

except  that in case  of no linkage (2  = 0) the  recombination 
rate between the QTL and  the first marker is set to rQl = 0.5. 

The  joint posterior of the  parameters and the missing data 
is 

fce,MG, u I Y, M) 
t = l  

= P(L  = i l y ,  M)fcB,MG, uIy, M, L' = i), (2) 
2=V 

where the marginal posterior probability of linkage event i 
( i  = 0,l) equals 

Computing the marginal likelihoods in (3) requires  integrat- 
ing and summing the conditional likelihoods with respect to 
the  prior distributions of the parameters and missing data, 
which is generally not feasible. 

Therefore, a Gibbs sampler was derived from the joint pos- 
terior density of the  parameters, the linkage indicator vari- 
able, and  the missing data, which is 

Ae,U, MG, fly, M) 

P(L')fceIL~))f(uIe)P(IMG18)P(MIM~)fcyle,u, MG),  (4a) 

where 

fc@lL') = fcP)f(~)f(P)fcdf(dI  L " ) f ( d ) f c d  (4b) 

P(Ml MG)fcy I MG) 
I =  n 

= n P(NIMGt)fcy;IP,~,~, ,  MG,, a:), ( 4 ~ )  
1= 1 

where n is the number of individuals in the  data set. In (4a), 
P(J )  is the prior probability of linkage (2  = 1) or nonlinkage 
(L' = 0). Parameters are assumed to be  independent a @ori. 
Further, f ( P )  = constant, f (a)  could be taken as a  uniform 
on [O,c , ]  with c, + M, normal  and  truncated to  the left at zero 
(GODDARD 1992),  or exponential (HOESCHELE andVmRADEN 
1993a) prior density, prior density for p is uniform on [pl ,  

p u ] ,  where p ,  2 0 and p ,  5 1 are lower and  upper limits, 
respectively, marker allele frequencies are  independent  and 

uniform on [0,1] a pn'ori, AD:) and fca:) are  uniform on 
[O,c,] with c, + co, f l u / @ )  = flula:) is the density of N(0 ,  A CT:) with A representing  the additive genetic  relationship ma- 
trix, and P(MGI0) is the  joint probability of the marker-QTL 
genotypes of all individuals in the pedigree. The prior f(dl L') 
can be expressed as the  prior density of the marker distances 
(with dl = 0) 84,. . . , dm), which is independent of L', times 
the  prior density of the QTL position fc4 11). 

With the  marker order known, distances of the markers 
from  to  the origin of the linkage group are a pn'on' order 
statistics from  a  uniform distribution on [O,T,] where T, is a 
prior limit for the length of the linkage group  (chromosome), 
or 

fc4,. . . ,dm) = (m - I ) !  [:]'"I if (4, . . . ,dm) E nd 

where Cld contains all sets of distances that are in accordance 
with the known order of the markers. For marker i, (5a) is 
equivalent to 

Conditional  on L' = 1, the  prior distribution of the QTL 
distance (dQ) is uniform on [ T,, Tu], where the limits are 
prior guesses of the distances of the chromosome  ends  from 
the origin of the linkage group. Conditional on F = 0, dQ is 
uniform on [Tu - T,, T], where T denotes  the total length 
of the genome, if the QTL location is assumed to be equally 
probable anywhere in the genome except on the  chromo- 
some carrying the  marker linkage group, with other choices 
of T being possible. 

Samples from (4a) were obtained by sampling in turn from 
the  conditional joint posterior distribution of the linkage indi- 
cator L' and of QTL distance dQ, and from  the joint posterior 
distribution of  all other parameters and  the missing 
data, or 

f(l, d~Iy, e-,, MG,  u) , f (@-dp  MG, uIy, M, L; de). (6) 

Variable F was sampled  according  to  the  conditional proba- 
bility 

where 

73 

where the probabilities of the form P(MG1 d,J) represent the 
part of the probability of MG dependent only upon d (see 
also THALLER and HOESCHELE 1996a) and P(L' = 1 I d-dQ,MG) 

Initial tests of the sampling scheme revealed that the  choice 
of Tl and Tu was critical. When  it is known that markers 1 and 
m are close to  the  chromosome  ends, one may decide to 
ignore  the flanks, by setting TL = 0 and Tu equal  to the distance 
between markers 1 and m, i .e. ,  by sampling the QTL position 
only between markers rather than also on the flanks. How- 
ever, the sampler was able to move from L = 0 to L' = l and 
vice versa only when the flanks were included by setting Tl = 

= 1 - (7). 
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-g( r = 0.49) and Tu = dm + g(r  = 0.49) in (7) ,  where g is 
the  map  function  defined in (1). 

Samples from  the  second distribution  in (6) were obtained 
by deriving univariate conditional  sampling  distributions for 
all other  parameters  and missing data  (except  for u and MG 
variables of parents  and  their final progeny which were sam- 
pled jointly; see JANSS et al. 1995; THALLER and HOESCHELE 
1996a). 

The sampling  distribution  for p was Beta(?, + 1,6, + 1) 
with 7, and 6, representing  counts of the two QTL alleles. 
Allelic frequencies at each marker locus were sampled  from 
a  Dirichlet  distribution with parameters yq, + 1  (algorithms 
for sampling from a  Dirichlet  distribution are in DEVROYE 
1986). Sampling  distributions for  the fixed effects in p and 
polygenic effects in u were normal, given a  set of MG realiza- 
tions and  normal phenotypes y (e.g., WANG et al. 1993).  Param- 
eter a has a univariate normal sampling  distribution, trun- 
cated to the left at zero, when a  uniform or  normal  prior is 
used. If an  exponential  or  other  nonconjugate prior is chosen 
for a ,  it must  be  sampled from a nonstandard distribution 
using techniques  described below for  the sampling of dis- 
tances. Variance components a: and a: were sampled from 
inverse chi-squared distributions with d.f. equal  to  dim( u) - 
2 and  dim(e) - 2, respectively, resulting from  the use of 
uniform  priors.  Uniform  priors on [O,m] have been shown to 
produce  proper posteriors (CARLIN 1992; GELMAN and RUBIN 
1992; HOBERT and CASELLA 1994). 

The fully conditional  sampling density for marker and QTL 
distances (with dl = 0) was 

f c d z l L ,  MG, LJ a n n [ l  - g"(d,+, - d,)lY~.~+l 
k € H ,  ,€ ,Yh 

X [g"(dl+, - d,)16j,j+tf(dtIL), (8) 

where k represents  an individual with offspring, H, is the set 
of all parents  that  are heterozygous at locus i ( i  = 2, . . ., m, 
Q), S, is the set of loci for which parent k is heterozygous, 
the  exponents y and 6 are  nonrecombinant  and  recombinant 
counts, respectively. Equation (8) holds  in all  cases, except 
for d ,  when the QTL is not linked with the markers ( L  = 0). 
Then,  the fully conditional sampling density of d ,  equals the 
prior, because the phenotypic and marker data  do  not contain 
any information about d ,  in this case. 

The conditional  distribution of d,  in (8) is nonstandard 
and,  hence, special techniques  are  required  to sample from 
this distribution.  Such  techniques include rejection  sampling 
(DEVROYE 1986), adaptive rejection  sampling (GILKS and 
WILD 1992), rejection  sampling combined with a Metropolis- 
Hastings step (CHIB  and GREENBERG 1995), adaptive rejection 
Metropolis sampling within Gibbs sampling (GILKS et al. 
1995), Metropolis-Hastings sampling within Gibbs sampling 
(CHIB  and GREENBERG 1995),  and  the ratio-of-uniforms 
method (WAKEFIELD et al. 1991). 

A univariate Metropolis-Hastings (MH) within Gibbs scheme 
was chosen here, with a  generating distribution equal to a 
uniform centered  at  the previous sample value ( dt ) . A candi- 
date value for  marker distance d: ( i  = 2, . . ., m,) was sampled 
from 

d? - U(max(d,-l, d,  - 4 ,  min(d,+l, d,  + t ) ) ,  (9) 

where 2t was the width of an interval. Values for t may be 
determined  according to the staying rate with recommended 
values in  the  range of 20 to 50% (TIERNEY 1994; CHIB and 
GREENBERG 1995).  Under linkage (L = I ) ,  a candidate value 
for QTL  distance was sampled from 

d a  - U(max(Tl, d ,  - t ) ,  min(T,, d ,  + t ) ) ,  (10) 

where d ,  was the previous sample value. 

For marker distances, the MH scheme was iterated 10 times 
in each Gibbs cycle, and  for QTL distance, it was iterated 100 
times. CHIB and GREENBERG (1995) showed that  there is no 
need  for iterating the MH scheme and  that  one MH step  in 
each Gibbs cycle produces samples from  the desired equilib 
rium  distribution  after  burn-in of the Gibbs chain. However, 
iteration  has been  recommended (M. A. TANNER, personal 
communication),  and  for d,, the sample value in the previous 
Gibbs cycle cannot be utilized as the  center of the  generating 
distribution when L = 0 in the previous and L = 1 in the 
current cycle (the sample value in the last  cycle  with L = 1 
was used instead).  To provide a test for and  an alternative to 
the MH sampling scheme, distances were sampled from a 
discretized conditional  distribution obtained by computing 
the conditional probabilities of d ,  falling into small intervals 
covering its sampling space (grid sampling). 

Joint marker-QTL genotypes (MG) were sampled using uni- 
variate distributions  (GUO and THOMPSON 1992) for individu- 
als without final progeny and by blocking a parent  and its 
final offspring (JANSS et al. 1995)  for others.  The  prior proba- 
bility  of the MG of a base animal, P(MG),  was set equal to 
the reciprocal of the  number of marker linkage phases times 
the probability of its QTL  genotype (QQ Qq, qQ or qq) under 
Hardy-Weinberg equilibrium. For a base animal, all possible 
combinations of marker linkage phases and  the  four QTL 
genotypes were sampled  conditional on offspring MG geno- 
types and its marker genotypes. MG genotype of a  nonbase 
individual was sampled  conditional on  parental  and nonfinal 
offspring MG genotypes, on final offspring phenotypes, and 
on its marker genotypes. 

Parameter estimators were marginal  posterior  means evalu- 
ated as MC averages of  all Gibbs samples, except for genetic 
distance dQ. Sample values for d ,  were averaged across those 
Gibbs cycles where L = 1,  and were also averaged within 
marker intervals. We note  here  that sampling L conditional 
on all parameters (including d,) would result  in  a  reducible 
sampler  because, e.g., for any d, in [ T,, Tu], nonlinkage  could 
never be  sampled. 

The above sampling  scheme  requires  sampling several pa- 
rameters  (marker  and QTL map distances) from  nonstandard 
distributions. Because sampling from  nonstandard distribu- 
tions requires  more CPU time than sampling from  standard 
distributions, an alternative sampling  scheme was considered 
wherein all conditional parameter distributions were stan- 
dard.  In  the alternative sampling  scheme,  recombination rates 
among  ordered loci were sampled,  instead of map distances, 
with  all other parameters being equal. Furthermore, variable 
L was redefined  to take values 0, 1, 2, . . . , m + 1  where 0 
represents nonlinkage as before, and where 1, 2, . . . , m + 1 
represent  the marker intervals including the flanks. Finally, 
the MG genotypes were redefined such that  for any parent- 
offspring  pair, inheritance was known at  each locus even if 
the  parent was homozygous at  that locus, by artificially distin- 
guishing between the two alleles identical  in state. One of 
the alleles was assigned to  the offspring in  each Gibbs cycle 
according to the probability of its MG genotype given the 
parental genotype. Then,  the  part of the genotype probabili- 
ties depending  on  the recombination rates equals 

P(MGIM, 8, L = i )  

where the y and 6 terms are  recombinant  and nonrecombi- 
nant counts, respectively. The sampling  distribution for each 

Linkage indicator variable L and vector of recombination 
is Beta(y,,,+l + 1,6,+, + 1)  truncated  at 0.5. 
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rates (r)  were sampled jointly by sampling L' from a distribu- 
tion marginalized with respect to r with  probability 

~ ( 1 '  = ile-" MG, u, y) 

where 

P( MG I 1' = 0) 
.5 .5 

n o  
.5 .5 
c c  

In (12c) recombination rates were  assumed independent u 
piori. The (m - 1)-  and mdimensional integrations in (12b) 
and (12c), respectively, factor into  a  product of onedimen- 
sional integrations due to the assumption of no interference 
and were computed using algorithm AS 63 (Appl.  Statist. 22: 
409) for integrating a Beta distribution from 0 to z ( z  < 1). 
We note again that sampling L'conditionally on all parameters 
would lead to a reducible sampler since the probability of 1' 
= i ( i  = 1, 2, . . . , m + 1) given rQ1 7 0.5  would  be zero. 

Hypothesis testing Evidence provlded by the data and the 
prior information in  favor  of nonlinkage is summarized in 
the marginal posterior probability of nonlinkage as defined 
in (3). This probability was estimated from MCMC output 
parametrically by averaging the conditional sampling proba- 
bilities  in (7), or 

P(1' = Oly, M) = - 
1 
K 

k= K 

x c  
P(L' = O)P(MGkl dk,, rQl = 0.5) 

numerator+ P(1'= 1) P ( M G k l d k , ,  dQ)Jd,)dQ 
> (13) 

l; 
where K is the number of  Gibbs samples. 

Alternatively, the marginal posterior probabilities of non- 
linkage and the marginal posterior probabilities of QTL  loca- 
tion in each interval  given linkage can be estimated nonpara- 
metrically by the observed frequency of L' = 0 across  all  Gibbs 
cycles and by the frequencies of the cycles where dQwas inside 
of an interval (dt  < d, < d,,] for i = 1, m - 1) or where dQ 
was on either of the flanks ( Tl <d, < dl ,   dm < d9 < T u ) .  

For the sampler with recombination rates ( r )  included in 
the parameter vector rather than distances ( d )  , the marginal 
posterior probability of nonlinkage was estimated parametri- 
cally  as Monte Carlo average  of the conditional probabilities 
in (12a),  or 

P(1,  = Oly, M) 

X P(MGklpk, qk, r, 1' = i)Jr)dr 

The approach presented here is an application of  Bayesian 
hypothesis  testing  based on the marginal posterior probabili- 
ties (the probabilities given the data and the prior informa- 
tion) of the competing hypotheses. Our Monte  Carlo imple- 
mentation is similar  in concept to MCMC sampling with 
model indicators (ALBERT and CHIB 1994; CARLIN and CHIB 
1995). Other applications can  be found, e.g., in CARLIN and 
POLSON (1991) for comparing error distributions or in 
GEORGE and MCCULLOCH (1993) and in KUO and MALLICK 
(1995) for variable selection in regression models. 

THALLER and HOESCHELE (1996a,b) investigated two other 
MCMC algorithms (MENG and WONC 1993; NEWON and RAP 
TERY 1994) for evaluating marginal likelihoods under linkage 
and nonlinkage or their ratio, from which the posterior proba- 
bility  of linkage can  be calculated. In agreement with other 
authors (CARLIN and CHIB  1995), these estimators were found 
to  be  somewhat unstable and unreliable when compared with 
the MC averages of the conditional sampling probabilities of 
the linkage and nonlinkage events or their frequency counts 
from the Gibbs sample. 

MCMC sampling with model or hypothesis indicators is 
not  a problem-free strategy  (CARLIN and CHIB  1995), as an 
absorbing state in the sampler can  be created if for a given 
hypothesis a parameter is forced out of the model or fixed 
at  a value not permissible under  other hypotheses. Here, this 
problem was avoided by sampling the hypothesis (linkage) 
indicator variable 1 jointly with those parameters whose  pa- 
rameter space depends  on  the hypotheses ( d 9  and r) .  

SIMULATION 

The  designs  for QTL mapping  considered  here  were 
granddaughter  designs (WELLER et al. 1990). The  simu- 
lated  pedigree  structure was identical  to  that  of 
THALLER and HOESCHELE (1996b) with 2000 sons, 20 
sires and  nine  additional  paternal  ancestors  of  the sires. 
Phenotypic  information (y) consisted  daughter yield 
deviations (DYDs) (VANWEN and WIGCANS 1991)  and 
was available for  all 2000 sons. Reliability of  the DYDs 
(VANWEN  and  WIGCANS 1991) was set  to 0.70, and 
heritability  of  individual  records was set  to 0.30 as  in 
THALLER and HOESCHELE (1996b).  Marker  information 
( M )  from five markers with five alleles  in  each with 
equal  frequencies was available for  all  sons, sires, and 
paternal  ancestors.  Markers  were  spaced 20 cM apart. 
The five markers  formed six marker  intervals  (including 
the flanks). A biallelic QTL was assumed.  The  true loca- 
tion  of  the  QTL was in  interval 3 or the  QTL was un- 
linked.  The  data  sets  differed  in  the QTL allele  fre- 
quency p,  the QTL substitution  effect a, and  in  the 
location  of  the QTL; they  are  listed  in  Table 1. In  the 
analyses, two different error variances  were  included  in 
the  parameter  vector,  one  for  homozygous  sons  and 
the  other  for  sons  that  were  heterozygous  at  the  QTL. 
Each  design was replicated 10 times. 

RESULTS 

Starting values: Starting  values for the  parameters 
were  the  true  values  (except  for  the QTL position), 
because  test  runs with different  starting  values  pro- 
duced very similar  marginal  posterior  mean  estimates 
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TABLE 1 

Granddaughter  designs 

Gene  QTL 
Design  frequency  QTL  location  effect" 

I 0.5 Interval 3, 25 cM 1 .o 
I1 0.2 Interval 3,25  cM 1 .o 
111 0.5 Interval 3, 25 cM 0.5 
Iv 0.5 Interval 3, 25 cM 0.25 
V 0.5 Unlinked 1 .o 
a In  genetic  standard  deviations. 

relative to Monte Carlo standard  errors.  The starting 
position for the QTL was  always nonlinkage (L = 0) .  
Starting values for MG genotypes and polygenic effects 
were obtained by first sampling sires and final offspring 
(sons) jointly by ignoring pedigree information on sires 
and  then sampling the  paternal ancestors conditional 
on offspring genotypes but ignoring  parental geno- 
types, such that offspring preceded  parents in a sam- 
pling scheme. 

Diagnostics from Gibbs output: The Gibbs sampler 
was run with a burn-in period of 2000 cycles and a 
length of 100,000 cycles. Autocorrelations for lags from 
1 to 5000 were estimated according to GEYER (1992). 
An effective sample size (ESS) was computed  for each 
parameter, which estimates the  number of independent 
samples with information  content  equal to that of the 
dependent sample of 100,000 (SORENSEN et al. 1995). 
The analysis  of one chromosome with the  method as 
described above (100,000 cycles) took -15 hr CPU on 
an IBM-SP2 with two Rs/6000 590 processors and eight 
RS/6000  390 processors. This length of the sampler 
yielded ESS of 100 or more for all parameters  for  de- 
signs I and 11. For design 111, 200,000 cycles  were re- 
quired  to  meet  the same minimum ESS. 

Marginal posterior  probabilities of linkage: Table 2 
contains the marginal posterior probabilities of QTL 
location in each of the intervals and  on  the flanks based 
on 100,000 (or 200,000 for design 111) cycles. These 
probabilities were estimated from Gibbs output by fre- 
quency counts of the d ,  sample values. Summing across 
intervals yields the probability of the QTL being inside 
of the linkage group, summing across flanks yields the 
probability of the QTL being on the flanks, and sum- 
ming all these probabilities yields the marginal poste- 
rior probability of linkage. The prior probability of  link- 
age was set to 20% as in THALLER and HOESCHELE 
(1996b). 

For designs I and 11, where QTL substitution effect 
equals one additive genetic SD, the marginal posterior 
probability of linkage was 100 and 99.9%, respectively. 
Nonzero probabilities for the flanks resulted only from 
early  cycles  following the first 2000 discarded cycles in 
few replicates. In most replicates, the samples of  QTL 
location were inside the linkage group. In some repli- 

TABLE 2 

Marginal posterior  probabilities of QTL location  computed 
as Monte Carlo averages of conditional  probabilities 

(10 replicates) 

Design" 

Interval I I1 I11 Iv v 
0 0.0 0.1 23.9 70.0 84.0 
1 5.5 3.2 4.1 11.6 7.1 
2 9.0 13.8 30.1 8.6 1.4 
3  84.5 80.9 30.7 3.9 2.2 
4 0.0 1.8 8.5 2.2 0.8 
5 0.0 0.1 1.8 1.8 1.5 
6 0.0 0.1 0.9 1.9 3.0 

QTL inside  linkage  group 94.5 96.6 71.1 16.5 5.9 
QTL  in flanks 5.5 3.3 5.0 13.5 10.1 
No linkage 0.0 0.1 23.9 70.0 84.0 

Designs  are  defined  in  Table 1. Values  in %*loo. 

cates, the sampler required several 1000 cycles to move 
inside the linkage group, which can be considered as 
additional burn-in. Restarting the sampler once or twice 
with a different  random  number seed but with the same 
starting values lead to a smaller burn-in period. For 
designs I and I1 the sampler never returned to the flanks 
or to nonlinkage once  it was inside the linkage group. 

For design 111, where QTL substitution effect was half 
of the additive genetic SD, the marginal posterior prob- 
ability  of linkage was 76.1%. This value  still  favors  link- 
age given the  prior probability of linkage of 20%. For 
design IV with substitution effect only equal to one- 
quarter of the additive genetic SD, the marginal poste- 
rior probability of linkage (30%) did not support link- 
age. For design V representing  the null hypothesis of 
nonlinkage, the marginal posterior probability of  link- 
age was only 16% (less than  the  prior of 20%). Thus, 
the linkage hypothesis was clearly rejected. 

Parameter  estimates: Average parameter estimates 
(marginal posterior means), their empirical SE due to 
replications ("empirical SE"), and average SD of the 
marginal posterior distribution for design I are given 
in Table 3. Multiplication of the empirical SE by ( 
yields an estimate of the empirical SE of the individual 
estimate, which  would be identical to the posterior SD 
under normality. The QTL parameters were quite well 
estimated and had sufficiently large ESS. QTL distance 
was slightly underestimated because in some cycles the 
QTL was located on the flank (prolonged burn-in for 
some replicates) or in interval 2 rather  than in the 
correct interval 3, with the  true QTL location close to 
marker 2 separating intervals 2 and 3. If QTL distance 
was estimated conditional on the QTL being in interval 
3, the estimate of d~ was 0.26. The residual and poly- 
genic variances are not well separable with these designs 
as was also noted by THALLER and HOESCHELE (1996b), 
with the smallest ESS being found for these parameters. 
The ESS for the QTL map distance were quite variable 
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TABLE 3 

Average  parameter  estimates,  standard  errors of the  average  estimates (SE), average  posterior 
standard  deviations  and effective sample  sizes  across 10 replicates  for  design I 

True Average  Average  Effective 
Parameter value estimate SE posterior SD sample size 

P 0.50 0.54 0.02 0.08 
CY 57.50 55.23 1.34  4.49 
d e  0.25 0.22  0.03  0.03 

0.00 -0.22 1.37 4.13 
Od 793.36 704.43 92.84 277.38 
U i  860.41 710.56 98.91 271.39 
U t  413.44 511.11 60.20 143.18 

5 

208 
505 

1039 
NC" 
156 
140 
109 

Design is defined  in  Table 1. 
" Not computed. 

across replicates. For replicates, where QTL distance 
was sampled almost exclusively in the  correct interval, 
high ESS numbers were found as compared to repli- 
cates where QTL distance was sampled in several inter- 
vals. 

Parameter estimates and related statistics for design 
I1 are given in  Table 4. Design I1 differed from I only 
in the frequency of the favorable QTL allele, which was 
reduced from 0.5 to 0.2. Again, QTL parameters were 
quite well estimated,  but ESS values  were reduced by 
-50% for p and d, and somewhat less for a. Empirical 
SE and average posterior SD were higher  than those 
for design I for most parameters. 

Table 5 contains  the  parameter estimates and related 
statistics for design 111. Design I11 differed from I in  the 
QTL substitution effect, which was halved. Parameter 
estimates were  less accurate  than those for design I 
and, particularly, gene  frequency and  gene effect were 
overestimated. QTL position was significantly underesti- 
mated when averaged across all  cycles  with L = 1, be- 
cause in 40% of the cases QTL was located in interval 
2. However, the estimate was near  the  true value at 0.27 
when conditioned on  the QTL being located in interval 
3. Empirical SE and average posterior SD were larger 
than for designs I and 11. ESS  of the QTL parameters 
were <50% of those for design I and slightly  less than 

those for design I1 with the  exception of the  much lower 
ESS number  for a,  even though Gibbs sample size was 
increased to 200,000. ESS values of the variance compo- 
nents were almost identical across designs. 

For design I the  marker distances were  very  well  esti- 
mated: 0.20, 0.39, 0.60, and 0.80 for markers 2 to 5,  
respectively. The empirical SE varied from 0.003 to 
0.009 and was higher  for those markers being further 
away from  the origin of the linkage group. Average 
posterior SD ranged  from 0,016 to 0.030.  Effective  sam- 
ple sizes  were -5000. Average estimates of the  marker 
allelic frequencies were  virtually identical to the  true 
values. Empirical SE were -0.003 and average posterior 
SD -0.009. Effective sample sizes  were  close to 90,000. 
These parameters were  very  well estimated for all de- 
signs. 

The ranges of the posterior correlations among pa- 
rameters  are  presented in Table 6 for designs I and 111. 
The highest correlations were those among  the variance 
components. The same result was found by THALLER 
and HOESCHELE (199613). Correlations of the variance 
components with the QTL parameters were intermedi- 
ate to small and variable in sign. Correlations tended 
to be  higher in absolute value for design 111 with the 
smaller QTL substitution effect. Correlations among 
the  three QTL parameters were  very small for design I 

TABLE 4 

Average  parameter  estimates,  standard  errors of the  average  estimates (SE), average  posterior 
standard  deviations  and effective sample  sizes  across 10 replicates  for  design 11 

True Average  Average  Effective 
Parameter value estimate SE posterior SD sample size 

P 0.80  0.82  0.03 0.06 106 
CY 57.50 61.34 1.84 6.16 249 
d e  0.25 0.24 0.02  0.09 625 
1 -17.25  -18.81 2.09 5.46 NC" 
d l  805.41  609.90  119.09  296.41 153 
dz 872.47 620.93 124.06  306.02 156 
Ot  562.28 725.74 85.45  160.16 149 

Design is defined in Table 1. 
a Not computed. 
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TABLE 5 

Average  parameter  estimates,  standard  errors of the  average  estimates (SE), average  posterior  standard 
deviations  and effective sample sizes across 10 replicates  for  design III 

1837 

True Average  Average  Effective 
Parameter value estimate SE posterior SD sample size 

P 0.50 0.66 0.03 0.15 
ff 28.76 31.08 1.39 10.96 
d, 0.25 0.19 0.01 0.41 
I.1 0.00 -1.45 7.84 6.13 
d l  818.51 702.01 71.86 452.01 
0: 835.25 706.46 73.30 459.29 
0: 723.52 799.33 43.16 246.34 

83 
189 
225 
NC" 
157 
148 
143 

Design  is defined in Table 1. 
Not computed. 

and somewhat more  pronounced  but very variable in 
sign for design 111. 

Posterior correlations among marker distances de- 
creased with increasing distance among loci; the high- 
est correlation was 0.86 between markers 4 and 5, and 
the lowest correlation was 0.44 between markers 2 and 
5. The correlation between adjacent marker loci was 
higher  the  further  the loci  were from the origin of 
the linkage group. Posterior correlations between the 
position of the QTL and its adjacent markers were  lower 
(0.41-0.65) than between positions of adjacent mark- 
ers due to the  conditioning on marker order. Posterior 
correlations between QTL and marker positions de- 
creased with increasing distance between  QTL and 
marker. For design I11 (smaller a)  correlations between 
QTL and marker distances were  lower than for design 
I. Posterior correlations among marker allelic frequen- 
cies, correlations  among frequencies and the  other pa- 
rameters, and correlations among  marker distances and 
the  other  parameters were  all near zero. 

Plots  of sample value us. Gibbs  cycle can be found in 
Figure 1 for gene frequency, QTL substitution effect, 
and QTL position. All plots were obtained from a single 
replicate for design I. Plots for p and a show little or 
no burn-in. For these parameters, the  true  parameter 
values  were used as starting values. The plots for the 
QTL map distance were obtained from the same data 
set, but  the  random  number  sequence was different. 
The first one is  typical for  the majority  of replicates and 

shows a burn-in period  ending after a few 1000  cycles, 
while the  other plot depicts the case of a  prolonged 
burn-in. Starting value for QTL position was  always non- 
linkage. QTL position was subsequently sampled on the 
flank for some time and  then it jumped into intervals 
2 and 3 near  the  true position. 

Figure 2 shows marginal posterior density plots for 
gene frequency, substitution effect, QTL position, and 
polygenic variance. The marginal density estimates for 
parameters a ,  p,  and 02, were obtained as  averages  of 
the densities of the conditional sampling distributions 
that were standard. Parameter d, could not be sampled 
from a  standard distribution, and its marginal density 
was estimated using the  technique of  average shifted 
histograms (SCOTT 1992). Posteriors for a,  p,  and d, are 
nearly symmetric and indicate that  there was sufficient 
information in the  data to estimate these parameters 
quite well. The marginal posterior distribution for poly- 
genic variance was skewed,  which  is consistent with the 
fact that variance components  are  not well estimated 
in these designs. 

Alternative sampling schemes: All results reported 
above  were computed with the Gibbs sampler including 
distances of rather  than recombination rates among 
loci and sampling distances via Metropolis-Hastings. 
With grid sampling in place of MH,  very  similar parame- 
ter estimates were obtained,  and  computing time was 
reduced by 20-30%. 

The sampler including recombination rates was 

TABLE 6 

b g e S  of the  posterior  correlations  among  parameters  evaluated  from Gibbs output  (across 10 replicates) 

P a d, d l  a: d 
P -0.15,  0.14  -0.10, 0.00 -0.30,  0.06 -0.32, -0.03 0.06,  0.37 
a -0.12,  0.59 -0.02, 0.16 -0.37,  0.02 -0.37, -0.02 -0.29, 0.13 

d l  -0.48,  0.22  -0.37,  0.50 -0.37, 0.24 0.59, 0.81 -0.89, -0.74 
d2 -0.47, 0.23  -0.38,  0.50 -0.37, 0.25 0.95,  0.99  -0.89, -0.76 
02, -0.27,  0.48  -0.36,  0.35 -0.41, 0.22  -0.97,  -0.86 -0.97, -0.86 

d, -0.41,  0.29  -0.70,  0.30  -0.18,  0.04 -0.19, 0.05 -0.08,  0.19 

Values  above the diagonal are for design I, below for design 111. Designs are defined in Table 1. 
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FIGURE 1.-Sample  value us. Gibbs  cycle for QTL gene frequency (A), substitution effect (B), and QTL map  distance (C and 
D; two different Gibbs runs)  for  design I. 

found  not to be competitive in terms of CPU time. butions, eliminating the  need  for Metropolis-Hastings 
There was no change in the  autocorrelation  structure within  Gibbs, CPU time per Gibbs cycle  was increased 
that would considerably reduce Gibbs sample size, in due to the  augmentation of the MG space, i.e., an in- 
particular because the variance components exhibited crease in the  number of  possible genotypes to sample 
the least favorable autocorrelations. Although the re- from. 
combination rates were sampled from standard distri- Conclusions: The goal of this research was to  map 
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1OOOOO 

QTL using multiple linked markers allowing to investi- accounts for uncertainty about all other parameters. In 
gate one chromosome  at a time for  the  presence of a ML interval mapping,  parameters  are estimated condi- 
single QTL. For each chromosome,  the posterior proba- tional on the most  likely  QTL position, while in the 
bility  of linkage is computed and used to decide present  method, uncertainty about QTL presence and 
whether a QTL is present. The marginal posterior mean location is taken into consideration. 
of the QTL position dQ (conditional on linkage) pro- This work  lays the  foundation  for  further improve- 
vides an estimator for the location of the QTL that ments of the methodology, including  the fitting of  mul- 
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FIGURE 2.-Marginal  posterior  density of QTL gene  frequency (A), substitution  effect (B), QTL map  distance (C),  and 
polygenic  variance (D) from  design I. 

tiple QTL, the utilization of phenotypes on multiple versible jump MCMC” algorithm of GREEN (1995). Fur- 
traits, and the fitting of polymorphic rather  than bial- thermore,  the  method is being modified to accommo- 
lelic QTL. While in this study information from multi- date a polymorphic QTL by letting the  number of QTL 
ple linked markers covering one chromosome was uti- alleles equal twice the  number of founders in a pedi- 
lized, still  only one QTL was fitted. Fitting and choosing gree, and by replacing parameters p and cy with the 
between different numbers of QTL in the Bayesian variance among QTL allelic  effects,  which are assumed 
method is currently being investigated using the  “re- to be normally distributed a p i m i .  
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FIGURE 2. - Continued 

Compared with the single marker method of particular for the QTL parameters, and when the larger 
THALLER and HOESCHELE (1996b),  there was no im- sample size  of the Gibbs sampler in the single marker 
provement in the precision of the  parameter estimates, study was considered (750,000 us. 100,000-200,000 
possibly  with the  exception of a in design I1 (design IV samples). Expectedly, the posterior correlation between 
in THALLER and HOESCHELE 1996b), which was esti- a and dQ was near zero while there was a much stronger 
mated more accurately. ESS values tended  to be more correlation between a and r (designs I in both studies) 
favorable than those in  the single marker method, in for  the single marker  approach. Finally, as in the single 
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marker study, a QTL substitution effect of  half  of the 
additive genetic SD appears to be near  the lower limit 
for  a  detectable QTL effect. 

The  method  presented  here  should be employed to 
reanalyze interesting regions of the  genome identified 
with an ad hoc method. An initial analysis  with a  compu- 
tationally simple method such as linear regression can- 
not provide estimates of the QTL parameters nor utilize 
full pedigree information,  but allows the investigator to 
compute exact threshold values for testing a linkage 
hypothesis via data  permutation (CHURCHILL and 
DOERGE 1994). Bayesian linkage analysis  is  also applied 
in  plant genetics (SATAGOPAN et al. 1996) and  human 
genetics (THOMAS and CORTESSIS 1992). The work  of 
these authors has been  extended  here to continuous 
phenotypes, more complex models of phenotypic varia- 
tion, and outcross populations. 
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