View full-text article in PMC Sensors (Basel). 2025 Apr 25;25(9):2730. doi: 10.3390/s25092730 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 1: The MSCSO Input: Population size N, Max iterations Tmax, Search space [lb, ub]Output: Global optimal solution Xglobal Initialize the chaotic Cat Map individual Xcat; The opposition-based learning individual Xobl, the merged population X; The Selected Top Xglobal while t<Tmaxdo if t<0.75Tmaxthen Xnew←X+0.1⋅Levyβ⋅ub−lb Update X via Metropolis criterion with T=T0⋅0.95t end else if t≥0.75Tmaxthen Compute diversity metric div=1N∑∥Xi−μ ∥ for each individual do if rand<0.5+0.2(div/max(div))then Xnew←X+δ,δ=0.05ub−lb1−t/Tmax⋅N0,1 end else if rand≥0.5+0.2(div/max(div))then Update velocity V←wV+c1r1Xglobal−X+c2r2μ−X Xnew←X+0.1V end end end Perform mutation: Xmut←Xelite+σmut⋅N0,1,σmut=0.05(ub−lb(1−t/Tmax Replace worst Nelite individuals with Xmut Xglobal←arg minfX t←t+1 end