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ABSTRACT 
Two commonly used measures of genetic diversity for intraspecies DNA sequence data are based, 

respectively, on the  number of segregating sites, and  on the average number of  pairwise nucleotide 
differences. Expressions are derived for  their variance in  the presence of intragenic recombination for 
a panmictic population of fixed  size that is at neutral equilibrium at the region sequenced. We  show 
that,  in contrast to the slow decrease in variance with increasing sample size, if the recombination rate 
is nonzero, the asymptotic rate of decrease of variance with increasing sequence length, for fixed sample 
size, is quite rapid. In particular, it is close to that which  would be  obtained by sequencing independent 
chromosome regions. The correlation between measures of  diversity from linked regions is  also exam- 
ined. For a given total number of  bases sequenced in  a particular region, optimal sequencing strategies 
are derived. These typically  involve sequencing relatively  few (three to 10) long copies of the region. 
Under optimal strategies, the variances of the two measures are very similar for most parameter values 
considered. Results concerning optimal sequencing strategies will be  sensitive to gross departures from 
the underlying assumptions, such as population bottlenecks, selective  sweeps, and substantial population 
substructure. 

R ECENT advances in molecular technology have 
made possible large scale  surveys  of within-popula- 

tion molecular variation at  the DNA sequence level. 
Such surveys  may  have  several  aims. One is descriptive: 
an  attempt to characterize the  extent of sequence diver- 
sity in a particular population. On a  more quantitative 
level, such surveys might be used to make inferences 
about  the underlying evolutionary mechanisms, per- 
haps through  the estimation of relevant parameters, or 
the testing of competing hypotheses about  the  nature 
of the evolutionary and demographic processes. 

This paper is motivated by the question of  how best 
to allocate resources in such a project. In examining a 
particular chromosomal region, there  are choices to be 
made between the  number of  copies  of the region that 
are sequenced and the number of nucleotides se- 
quenced in each copy. We consider this  trade-off  in the 
context of measuring the genetic diversity  in the popula- 
tion at the region in question. Specifically, we study the 
variability of two commonly used  measures  of  diversity, 
based  respectively on the  number of segregating sites 
in the sample and  on the average  painvise number of 
differences between sequences in the sample. 

Our analysis applies in the  context of a large, equilib- 
rium, panmictic population  that has been of constant 
size throughout its evolution, for which the evolution of 
the region in question is neutral. The main theoretical 
results are derived (in  the APPENDIX) using coalescent 
methods.  It is important  to  note  that  our conclusions 
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do  not necessarily  apply under  other  demographic sce- 
narios. Some discussion  of the likely  effects of, for exam- 
ple, population bottlenecks or geographical population 
subdivision is given in the final section of the  paper. 
For this reason,  the strategies that we find to be optimal 
in the  context of characterizing diversity may not be 
optimal for  the problem of testing between different 
evolutionary models. 

The  next section describes the underlying assump- 
tions and the two most commonly used measures of 
diversity. Their sampling variances for  the infinite sites 
model are well known. We extend these results to in- 
clude the possibility  of intragenic recombination within 
the region being sequenced and examine its effect on 
the precision of  the estimators for  a range of parameter 
values. We obtain analytic expressions for the sampling 
variances  of the two estimators that  are  then used to 
consider the problem of optimal choice of sample size 
and sequence  length within a particular region. [Ear- 
lier, FU (1994) has used simulation methods to estimate 
the sampling variances  in the  context of a study of  dif- 
ferent estimators of the  mutation  rate].  To facilitate 
decisions about how much sequencing effort to put 
into  a particular region, and how far apart  sequenced 
regions should be so that conclusions from them may 
be independent, we also  give details of the correlation 
of the estimators from different loci as a  function of 
the distance between the loci. Technical derivations are 
given in the APPENDIX, which  also includes a derivation 
of the covariance between sample heterozygosities at 
two linked loci for which there is no intragenic recombi- 
nation. 
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Properties of the estimator based on  the  number of 
segregating sites  follow from the work  of ULAN and 
HUDSON  (1985),  and HUDSON  (1983). 

BACKGROUND 

We consider measures of genetic diversity from  a sam- 
ple of intraspecies DNA sequences. We assume that  the 
data  are  obtained  from  a  population  that has been  pan- 
mictic and of constant size throughout its evolution, 
that  the evolution in the region from which the se- 
quences  are taken has been  neutral, and that  the  popu- 
lation is at  equilibrium in that region under  the forces 
of genetic  drift and mutation. We denote by Nthe effec- 
tive diploid  population size. Write n for  the number of 
sequences  in  the sample, and assume that each se- 
quence consists of the same number of nucleotide sites, 
which we denote by L. 

Let u denote  the mutation probability per site per 
generation, assumed to be constant across the sites un- 
der consideration. Define 0 = 4Nu, the scaled mutation 
rate  per site. The mutation  rate  for  the whole of the 
sequenced  region is then 0 = L8. In the applications 
we envisage, L will be large, and 8 small, so we  will 
adopt  the "infinite-sites'' assumption that each muta- 
tion since the  common  ancestor in the genealogical 
history of the sample will have occurred at a  different 
site. 

Two common estimators of diversity are based, re- 
spectively, on the  number of segregating sites in  the 
data  and  on  the average number of nucleotide differ- 
ences between each pair of sequences. 

If S, denotes  the  number of segregating sites in  the 
sample of n sequences, the first  of these measures 
(WATTERSON 1975) is 

for which 

E(Ow) = 0, 

and 

Suppose the  sequences  are labeled from (1, 2 ,  . . . , 
n) and write dv for the  number of nucleotide sites at 
which sequences i and j differ. A diversity measure 
based on pairwise differences (TAJIMA 1983) is then 

the average number of painvise differences. For this 
estimator 

E(@,) = 0, 

and 

Var(OT) = 0 + o2 n +  1 2(7? + n + 3) 
3(n - 1) 9n(n - 1) 

Our interest here is in the behavior of these measures 
as both n, the  number of sequences, and L, the  length 
of the sequences, vary. Changes in L change 0, the 
mean of each estimator. To facilitate comparison, we 
will scale the measures by the inverse of the  length of 
the region sequenced. Define 

0 . a,.,. 8 --w, and e , = - .  W -  L L 

These statistics can be thought of, formally, as estima- 
tors of 8, the  neutral  parameter  measuring  the scaled 
mutation  rate per site. Then 

E@,) = E@,) = e, 
and 

var(8,) = e + o2 n +  1 2(n2 + n + 3) 
3L(n - 1) 9n(n - 1) . (5) 

The sampling variances (4) and  (5) provide a  natural 
quantification of the precision of the measures. As is 
well known, for fixed sequence  length L, this precision 
does not improve greatly as the sample size n increases. 
The variance of 8, does decrease to 0 as n + m, but 
slowly, at  a  rate of l/log n. In  contrast,  the variance of 
8,. converges to the non-zero limit 0 / ( 3 L )  + 202/9, as 
n "* m, so that, formally, the estimator 8, is not even 
consistent. 

The reason for this behavior is that distinct sequences 
sampled from the  population are  not  independent.  The 
type  of an additional  sequence is positively correlated 
with the  sequences already observed, precisely because 
it is  likely to share  a considerable portion of its ancestral 
history  with the  other sequences. Relatively little addi- 
tional evolutionary information is thus  gained by exam- 
ining  the  additional  sequence. The nonconsistency of 
the painvise difference estimator is a  consequence of 
the fact that it does not even make good use  of this 
limited additional  information. For a fuller discussion, 
see for  example DONNELLY and TAVARI? (1995). 

In view  of this  relatively minor increase in precision 
with increasing sample size, it is natural to ask whether 
one would be better off instead by increasing the  length 
of the region sequenced. We  will do so, but first we 
extend  the  model to allow for  intragenic recombina- 
tion. 

THE  EFFECT  OF  RECOMBINATION 

Recombination will be  modeled by assuming that 
there is a  constant (small) probability, r, of a recombina- 
tion between any particular  pair of adjacent sites in 
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each generation. We write p = 4Nr for  the scaled  re- 
combination rate between adjacent sites. 

The sampling variances of the two estimators in the 
presence of intragenic recombination are derived in 
the APPENDIX using coalescent methods.  In particular, 

for large L and small 8, where the  function Fn(z) is 
defined  to  be  the covariance function F(0, 0 ,  n; z ) ,  
which  arises as the solution to the recursive  system  of 
equations (A7) in the APPENDIX. Except for n = 2, this 
function must be evaluated numerically. The result (6) 
is effectively due to KAFTAN and HUDSON (1985), see 
also HUDSON (1983). For the painvise difference estima- 
tor, 

O(n + 1)  482 
3L(n - 1) n(n - 1) 

var(8,) = + 
Lp - C + 13 (Lp)' + 13Lp + 18 

log( 18 

+ Lp(2C - 13) + 13C - 133 
19.7O(Lp)' 

x log( 6.30Lp + 7 2 )  - &] 45.70Lp + 72 
9 ( 7 )  

where C = 2( n' + n + 3),  and  here  and  throughout, 
log refers to  natural logarithms. 

The expressions (6) and (7) reduce to (4) and (5),  
respectively, when p + 0. In  the  latter case, this is imme- 
diate from the integral expression (A14) in the APPEN- 

DIX. In  the  former, it follows from the fact that F,(O) 
= 4(C:"=;' i-'), since Fn(0) is  simply the variance of the 
total length of the  branches in a n-coalescent tree. For 
particular nonzero p and 8, the sampling variances (6) 
and (7) of the estimators may be evaluated numerically. 
We illustrate their values  below. 

It is interesting  to  compare  the results of the analytic 
expressions (6) and (7) with those based on a simula- 
tion study. Table 2 of Fu (1994) presents such estimates 
of the sampling variances of Bwand 8,for several  values 
of the total recombination rate R = Lp and total muta- 
tion rate 0 = Lf3 per region. For the values of the 
parameters  considered by Fu,  a comparison of these 
estimates with our analytic results shows an extremely 
close agreement. 

To gain some insight into  the  "trade-off' between 
the increase in precision of the estimators gained 
through  sequencing additional individuals or sequenc- 

ing  additional bases from the same individuals, focus 
attention on the segregating sites estimator 8, Suppose 
n sequences of length L are available and contrast the 
following strategies for  obtaining additional informa- 
tion: 

(i) Sequence n additional copies of the region. 
(ii)  Sequence an adjoining region of length L from 

each of the original sequences. 

For the  moment,  ignore  recombination,  either within 
or between the sampled regions. 

Under  the infinite sites assumption, the  number  of 
segregating sites is just  the total number of mutations 
on the genealogical tree linking the sampled sequences 
with their most recent  common ancestor. Write T for 
the total length of  this tree for the original n sampled 
sequences. Coalescent theory (e.g., DONNELLY and TA- 
VARP 1995) gives 

n- 1 

E ( 7 )  = 2 x i-' = 2 log n, 
i= 1 

for n large. Conditional on T, the  number of mutations, 
and  hence  the  number of segregating sites, is Poisson 
with parameter @T/2. 

If strategy (i) above is adopted,  the effect of sequenc- 
ing n additional individuals is to increase the total 
length of the genealogical tree. If the tree is increased 
by a  length T', the additional information derives from 
the Poisson process (of rate @ / 2 )  of mutations, run 
independently of that on the original tree, for a "time" 
of length T'. Note that E( T' )  = 2 C:2'=.,' i-' 2 log 2. 

In contrast, under strategy (ii) , one gains an  indepen- 
dent Poisson process of mutations (again of rate 0 /2 ) ,  
this time superimposed on the original tree.  In this 
case, the  independent process runs over a time of 
length T. The gain in precision under each strategy 
results  exactly from this potential to view an  indepen- 
dent realization of the  mutation process. The  extent of 
the gain is related to the  amount of time over  which the 
independent process runs. On average, this additional 
time will  always be  greater under strategy (ii) than un- 
der strategy (i). (Note  that this heuristic argument does 
not establish that it is  always better  to  adopt strategy 
(ii). An exact answer to the question can be obtained 
by evaluating (4) under each scenario.) 

In  the absence of recombination in the region of 
interest,  the trees describing genealogical history at 
each site will be identical. In this sense, trees associated 
with different sites are maximally  positively correlated. 
The effect of recombination is to allow for different 
parts of the  sequenced region to have distinct genealog- 
ical trees. As a  consequence,  the genealogical trees asso- 
ciated with different sites, and  indeed  the whole  evolu- 
tionary process, become more  independent.  It follows 
that whatever sequencing strategy is adopted,  an in- 
crease in the recombination rate p will increase the 
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FIGURE 1.-Normalized_  sampling 
variance otthe estimators Ow (left col- 
umn)  and OT (right  column) as a func- 
tion of sequence  length L, for a fixed 
value of the scaled  mutation  rate  per 
site O = 0.0001,  and values of the 
scaled  recombination  rate  per  site p = 
0.0, 0.001,  and  0.1.  The  lines corre- 
spond to the sample size n = 2 (-), 
n = 10 ( e  * ) ,  and n = 40 ( -  - -). 0 '  0 
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precision of the estimator 8, Whatever the advantage 
enjoyed by strategy (ii) above over strategy (i), it will 
be increased in  the  presence of recombination. 

Figures 1 and 2 show plots of the relative precision 
of each estimator,  for various values  of 0, p,  and n, 
as a  function of L. We also produced plots for these 
parameter values for p = 0.0001 (data  not  shown). 
These  are very similar to the plots in Figures 1 and 2 
corresponding to p = 0. This relative precision is mea- 
sured by the squared coefficient of variation, defined 
as the variance of the estimator divided by the  square 
of 8, the value  it is estimating. 

The behavior corresponds well  with intuition. With 
other parameters  held fixed, the relative precision in- 
creases (squared coefficient of variation decreases) as 
each of n, p,  0, or L, is separately increased.  (Note  the 

difference in vertical  scale for plots corresponding to 
different values  of 0.) The effect on variances of recom- 
bination is more  marked  for larger values  of 0. For 
small 0, it appears  that  the first term in the variance 
expressions (6) and (7), which does not  depend  on p, 
dominates  the expression, at least for  the values of L 
in the plots. 

For any fixed values of the  parameters,  the estimator 
8, is to be preferred, in the sense of having smaller 
sampling variance, to  the estimator G1: (The estimators 
coincide for samples of  size n = 2.) For some parameter 
values, notably when 8 is small, the  difference in relative 
precision between the estimators is,  however,  small. 

We have seen  that  for fixed 0, p ,  and L, the increase 
in precision of each estimator as n is increased is  very 
slow. The consistency of awin contrast to the nonconsis- 
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FIGURE 2.-Normalizec!  sampling 
variance otthe estimators Ow (left  col- 
umn)  and OT (right  column) as a func- 
tion of sequence  length L, for a fixed 
value of the scaled  mutation  rate  per 
site 0 = 0.01, and  values of the  scaled 
recombination rate per  site p = 0.0, 
0.001, and 0.1. The  lines  correspond 
to the  sample  size n = 2 (-), n = 
10 ( e  * - ) ,  and n = 40 (- - -). I 
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tency of 8, is reflected in the fact that  for fixed values 
of the  other parameters, the increase in precision 
caused by a given increase in n is larger  for the  former 
than  for  the  latter estimator. 

In  problems such as this, there  are actually two differ- 
ent senses in which one might  examine  the asymptotic 
behavior of statistical procedures. The first is the tradi- 
tional one of fixing the sequence  length and increasing 
the  number of sequences  sampled. An alternative is to 
ask about behavior when the  number of sequences is 
held fixed, but  the  number of  bases sequenced is in- 
creased. 

The plots in Figures 1 and 2 show that for fixed 8, p ,  
and n, the sampling variance of the estimators decreases 
with L. We show in  the APPENDIX that provided p > 0, 
the expressions (6) and (7) for  the variance of the 

estimators converge to 0 as L -+ m. For (7) this conver- 
gence is at a  rate of (log L) /L .  The convergence of (6) 
is at least this fast. (In contrast, if p = 0, it follows 
easily from Equations 4 and 5 that the variance of both 
estimators converges to a nonzero limit as L -+ m. This 
effect is particularly clear in the first  row  of Figure 2.) 
Thus  (for p > 0) the asymptotic behavior of the estima- 
tors as a  function of L is more  encouraging  than  their 
asymptotic behavior as a  function of n. The intuition 
behind this is that  recombination acts to generate  inde- 
pendence of much of the evolution of different seg- 
ments of the region, so that as in classical  statistical 
problems, increasing the  sequence  length  generates in- 
dependent replications of the underlying evolutionary 
process. In  contrast, increasing the sample size gains 
very little independent replication. 
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OPTIMAL SEQUENCING STRATEGIES 

In practice, an  experimenter will typically  have  flexi- 
bility over the choice of both sample size and sequence 
length.  It is thus  natural to ask how these quantities 
should be chosen so as to make best use of limited 
resources. 

Any attempt to formalize this problem  requires  a 
specification of the costs incurred by particular experi- 
mental strategies, and of the goal of the  procedure. We 
consider  the  problem in the  context of minimizing the 
variances of the measures $,and 8,of genetic diversity. 

The cost of sequencing L bases from each of n homol- 
ogous chromosomes will be  a  function of L and n. This 
cost function will in  general vary between organisms 
(depending,  for  example,  on  the availability  of subjects) 
and between laboratories  (for  example, in light of  dif- 
ferent  experimental  procedures). We  will consider  a 
particular, simple, “cost” function,  defined to be the 
product of L and n. This assumes that  the cost of  se- 
quencing  an  additional base is the same, regardless of 
whether,  for  example, this involves sequencing  an addi- 
tional individual, or extending  the region already se- 
quenced. While this simple cost function is not exact 
in practice, it may not be completely unrealistic. In 
addition,  the analysis  of the problem  in this framework 
may still  yield valuable practical insights. It is a straight- 
forward matter to extend  the analysis to other, particu- 
lar, cost functions. 

We thus  consider  the  problem of maximizing the 
precision of the estimators 8, and 8 ,  when the total 
number of  bases to be sequenced, nL, is fixed. Figure 
3 gives plots of the  squared coefficient of variation for 
each estimator, as a  function of n, for various values of 
8 and p,  when the total number of sites sequenced, nL, 
is fixed at 10,000. Similar plots for other values of nL 
display the same broad  shape  (data not shown). Our 
plots concern  the  squared coefficient of variation of the 
estimators. Since their  mean is fixed at 8, exactly the 
same conclusion would apply for any other  monotone 
function of the sampling variance of the estimators. 

For small and moderate values of 8, the  minimum of 
the curves occurs for small  values  of n. For example, if 
8 = 0.001, the optimal sequencing strategy (for  the 
range of p considered) is to sequence  a large region 
from between three  and seven chromosomes, regard- 
less  of  which estimator is subsequently used. In each 
case, the measure 8,based on  the  number of segregat- 
ing sites outperforms e,, which is based on  the average 
painvise difference. 

As p increases, the  optimal sample size decreases and 
the  length of the region sequenced increases. The intu- 
ition  here is that  an increase in the recombination  rate 
increases the  degree of independence between the evo- 
lution  at  different sites, so that  the gain in precision in 
extending  the  region is increased. As 8 is increased,  the 

optimal size  of the  region decreases and the  number 
of chromosomes to  be  sequenced increases. 

For larger 8, and small p,  the optimal sample size is 
much  larger. For example,  for 8 = 0.01 and p = 0.001, 
the optimal strategy involves sequencing -25 copies of 
the region. Note, however, that  the  squared coefficient 
of variation of the estimators is effectively constant  for 
a large range of different values  of n. This means that 
many sequencing strategies are very nearly equally effi- 
cient  for such parameter values. In particular, if only 
10 copies of the region were sequenced,  the precision 
would be very close to that  for  the  optimal strategy. 

Tables 1 and 2 give details of the optimal strategy 
and of near-optimal strategies (defined to be those in 
which the  squared coefficient of variation is within 10% 
of its optimal value) for  different total amounts of  se- 
quencing effort, defined as the total number, nL, of 
bases sequenced. 

Recall that  our analysis requires  the assumptions that 
the underlying population has been panmictic and of 
constant size throughout  the relevant period of  its  evo- 
lution. This evolution is further assumed to be  neutral 
in  the region in  question, and  the population assumed 
to be in mutation-drift equilibrium.  In this setting,  for 
the simple cost function we are considering,  the optimal 
allocation of resources usually requires  the  sequencing 
of a small number (typically around five)  of large copies 
of the region in question. Even when this is not true of 
the  optimal strategy, strategies that  sequence no  more 
than 10 copies of the region are very  close to being 
optimal. 

The discussion  above concerns  the  question of  how 
best to allocate a fixed amount of sequencing effort. A 
separate issue relates to the  appropriate  amount of  ef- 
fort to allocate to a  particular region. The precision of 
estimation is an increasing function of the  number of 
bases sequenced,  for any fixed sequencing strategy and 
hence also when comparing  the optimal strategies for 
different total numbers of  bases sequenced. There is, 
however, a trade-off between gains at  the region of cur- 
rent interest, and  the possibility of examining another 
locus. 

The problem of when to move to a  different locus, 
or, in a study of variability in different regions, of  how 
many loci to examine,  does not seem to lend itself to 
a precise formulation. Different approaches may be  ap- 
propriate  for studies with different goals. In Figure 4 
we plot the relative  variability of the estimators, under 
the optimal sequencing strategy, for various different 
amounts of “total  effort”. Examination of the figure 
allows an assessment of the marginal gain from  extra 
sequencing  at  the  region of interest. This can then  be 
compared to the  potential  additional  information  that 
may be  obtained by studying a  different,  unlinked, re- 
gion of the  genome. 

We  will discuss the actual level  of correlation between 
estimates from distant, but  linked, regions of the ge- 
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nome in the  next section. For the  moment, however, 
suppose we have an option of studying two regions, A 
and B say,  with the  property  that  the estimates from 
them  are  independent. Consider a fixed amount of  se- 
quencing effort, say a total of K bases, and contrast the 
following alternatives. 

1. Having  initially sequenced K bases from region A, 

2. Having  initially sequenced K bases from region A, 
sequence K bases from region B. 

sequence  an additional K bases from region A. 

Suppose in addition  that  the underlying evolutionary 
parameters 8 and p are  the same in each region, so 
that  both strategies use the same amount of effort to 
measure the "same"  level of underlying diversity. Our 

10 20 30 40 
Sample size, n 

0 = 0.01; p = 0.001 

FIGURE 3.-Normalized 
samplingvariance of the esti- 
mators Ow (-) and 07. 
( * ) as a function of sam- 
ple size n, when the  total 
number of sites  to be se- 
quenced, nL, is fixed at 
10,000. 

10 20 30 40 
Sample size, n 

0 = 0.01; p = 0.1 

10 20 30 40 
Sample size, n 

results, and in particular Figure 4, facilitate a compari- 
son between the two strategies. 

Under  the first strategy, the variance of either diver- 
sity measure is halved. (This is simply the classical result 
that  the variance of the average  of two independent 
and identically distributed quantities is half  of the vari- 
ance of either of the original quantities.) The first strat- 
egy will always result in a  greater  reduction in variance 
than the second because in the second case, for the 
reasons we have already described, one is effectively 
averaging positively correlated quantities. It is thus in- 
teresting to see how much better off one would be by 
moving to another region than by improving precision 
in the  current region. 

It follows from (4) and ( 5 )  for example, that if the 
total mutation rate 0 = L8 of the region initially  se- 
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TABLE 1 

Optimal  sample  size nqt for  the  Watterson’s  estimator 8, of the scaled  mutation  rate  per  site 8 
(for different  total amounts of sequencing effort) 

Total number of sites (nL) to be sequenced 

2000  4000  6000 10000 20000 50000 

P 8 nopl Range n@,l Range n31 Range nopL Range nqt Range n,,,,l Range 

0.001 4 (3, 6) 5 (4, 8 )  6 (4,  10) 8 (5,  13) 11 (7, 19) 18 (11, 33) 
0.01 10 (7,  19) 16 (9, 29) 20 (12,  37) 28 (15,  52) 43 (23, 85) 80 (40, *) 

0.001 4 (3, 6) 4  (3, 7 )  5 (4, 8 )  6 (4, 10) 6 (4,  12) 7 (4,  15) 
0.01 10 (6,  18) 15 (8, 27) 18 (10, 34) 25 (12, 47) 34 (15, *) 55 (18, *) 

0.01  0.0001 3 (2, 4) 3 (2 ,  4) 3 (2,  4) 3 (2,  4) 3 (2,  4) 3 (2,  4) 
0.001 3 (3, 4) 3 (3, 5) 3 (3, 5) 3 (3, 5) 3 (3,  5) 3 (3, 5) 
0.01 6 (4,  12) 7 (4,  14) 7  (4, 15) 6 (4,  14) 5 (4,  11) 5 (4, 9) 

0.1 0.0001 3 (2,  4) 3 (2,  4) 3 (2, 4) 3 (2, 4) 3 (2,  4) 3 (2, 4) 
0.001 3 (2, 4) 3 (2,  4) 3 (2, 4) 3 (2,  4) 3 (2,  4) 3 (2,  4) 
0.01 3 (3,  5) 3  (3, 5) 3 (3, 5) 3 (3, 5) 4 (3, 5 )  4 (3, 5) 

0.0 0.0001 3 (2,  4) 3 (2, 4) 3 (3, 4) 3 (3, 5) 4 (3, 6 )  6 (4,  9) 

0.001  0.0001 3 (2, 4) 3 ( 2 ,  4) 3 (2, 4)  3 (2,  4) 3 (3, 4) 3 (3, 5) 

Entries  in  each cell correspond  to  the sample size nFL that minimizes the coefficient of variation of the estimator e,, and  the 
range of values of n for which the coefficient of variation is within 10% of the optimal value. * signifies that  the entry is >loo. 

quenced  (where  the  sequence  length L is chosen to be 
optimal  for  a total amount of effort K )  is,  say, <0.1, 
then  the effect of strategy 2 will  effectively be to halve 
the variance of the estimate, even in  the absence of 
intragenic  recombination. Regarding 0 as fixed, this 
means  that if the  length of the region initially  se- 
quenced is,  say, an  order of magnitude or  more smaller 
than 0-’, there is little additional gain in precision from 
moving to the new region. 

At the  other extreme, if the  length L of the  region 
initially sequenced  in  each sampled individual is  very 
large, we might  suppose  that  the asymptotic rate of 
decay of the variance of (log L ) / L  obtains. In this  case 

the variance will decrease under strategy 2 by a factor 
of 2(log L) / (log I ,  + log 2) = 2  for large L. Thus, 
again, both strategies will lead to approximately the 
same reduction in variance, and  there is little additional 
gain from moving to a new region. 

For particular values of K and  the parameters 0 and 
p ,  the strategies may be compared via Figure 4. For 
example,  consider 0 = 0.001 and p = 0.001 with K = 
5000. The variance of both measures is -8 X lop7. 
Under strategy 1, this  would  be reduced to 4 X 
On  the  other  hand, if 10,000 bases  were sequenced 
(optimally) from the  region, Figure 4 shows that  the 
variance would decrease to somewhat <5 X There 

TABLE 2 

Optimal  sample  size net for the  Tajima’s  estimator 8, of the  scaled  mutation  rate  per  site 8 
(for different total  amounts of sequencing effort) 

~p 

Total number of sites (nL) to be  sequenced 

2000  4000 6000 10000 20000 50000 

P 0 nql Range n,, Range nopl Range nup1 Range nqt Range net Range 

0.0 0.0001 3 (2,  4) 3 (2,  4) 3 (3, 4) 3 (3, 4) 4 (3, 5) 5 (4, 7) 

0.01 7 (5, 12) 10 (6, 18) 11 (6, 22) 14  (7, 30) 19 (9, 45) 28 (11,  84) 
0.001 0.0001 3 (2,  4) 3  (2, 4) 3 (2, 4) 3 (2,  4) 3 (3, 4) 3 (3, 4) 

0.01 7 (5,  11) 8 (5, 15) 8 (5,  17) 8 (5, 19) 7 (4,  17) 5 (4, 10) 
0.01  0.0001 3 (2, 3) 3 (2, 3) 3  (2, 3) 3 (2, 3) 3  (2,  4) 3 (2, 4) 

0.001 3 (3, 4) 3 (3, 4) 3 (3, 4) 3 (3, 4) 3 (3, 4) 3 (3, 4) 
0.01 4 (3, 7) 4 (3, 7) 4 (3, 7) 4 (3, 7) 4 (3, 6) 4 (3, 6) 

0.1  0.0001 3 (2, 3) 3 (2, 3) 3 (2, 3) 3 (2, 3) 3 (2, 3) 3 (2, 3) 
0.001 3 (2,  4) 3 (2, 4) 3 (2,  4) 3 (2 ,  4) 3 (2,  4) 3 (2, 4) 
0.01 3 (3, 4) 3 (3, 4) 3 (3, 5) 3 (3, 5) 3 (3, 5) 4 (3, 5) 

0.001 4  (3, 5) 4 (3, 6) 5 (4, 7) 6 (4,  9) 7 (5,  12) 10 (6, 20) 

0.001 3 (3, 5) 4 (3, 6) 4 (3, 6) 4 (3, 7) 4 (3, 7)  4  (3,  7) 

Entries in each cell correspond to the sample size nFl that minimizes the coefficient of variation of the estimator e,, and  the 
range of values of n for which the coefficient of variahon is within 10% of the optimal value. 
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e = 0.0001; = 0.001 

I 

e = 0.001: p = 0.001 
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0 = 0.01; p = 0.001 

FIGURE 4,”Normalized 
optimal sampling variance of 
the estimators Bw (-) and 
BT ( *  e )  as a function of 
the  total number of sites to 
be sequenced, nL (in  kb). 

2 4 6 10 20 50 
Total number of sites, nL (Kb) Total number of sites, nL (Kb) Total number of sites, ILL (Kb) 
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I .  
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Total number of sites, nL (Kb) Total number of sites, nL (Kb) Total number of sites, 1aL (Kb) 

2 4 6 10 20 

is thus some gain from moving to an  “independent” 
region,  but  rather less than  might have been expected. 
If, instead, 20,000 bases had already been  sequenced 
( K  = 20,000), the variance of the estimators would be 
-3 X lo”. Strategy 1 would reduce this to 1.5 X 
while strategy 2 would  only reduce it to -2 X The 
relative advantage of  strategy 1 is thus  greater  than 
when 5000 bases had originally been  sequenced. 

A consequence of our analysis then is that while one 
will  always do better, in terms of increasing the preci- 
sion of the measures of  diversity, by moving to  an inde- 
pendent region (with the same values  of the underlying 
parameters)  than by extending  the  current region, this 
difference is much less marked (for many parameter 
values) than might have been expected. The question 
of when to move to a  different region is thus likely to 

turn on  other issues. On the one  hand,  one wants 
enough information from the  current region to give 
reasonable precision to the estimates of  diversity. (Ex- 
actly  how much precision is appropriate could differ 
markedly from study to study, depending  on  the overall 
goals.) For a given such level  of precision, Figure 4 may 
be used to  determine  the necessary total amount of 
effort and Tables 1 and 2, to determine  the  appropriate 
sequencing strategy. On  the  other  hand,  one reason for 
examining different regions of the  genome is precisely 
because they may not reflect the same underlying levels 
of  diversity. In this sense, aside from any additional 
“costs” incurred,  there is a substantial benefit to mov- 
ing to a different region over and above considerations 
of the precision of estimation. 

Another  interesting  feature of Figure 4 is that under 
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the  appropriate optimal strategy, the precisions of the 
two measures 8,and 8,are very similar, unless 8 is large 
(8 > 0.01) and p is small ( p  5 0.001). For some parame- 
ter values, in fact, they are effectively identical. It is  well 
known that when the  intragenic  recombination  rate is 
zero, the measure 8, is to  be  preferred to 8, in terms 
of  its precision. An important conclusion of our analysis 
is that in the  presence of intragenic  recombination, 
under  the optimal  sequencing strategy, these two mea- 
sures are effectively equivalent from the perspective of 
their sampling variability for most of the parameter val- 
ues we considered. (Recall that  the optimal strategy 
involves sequencing  a few long copies of the region of 
interest. The equivalence of the precision of the mea- 
sures is a  consequence of this sequencing strategy. As 
we  saw in Figures 1 and 2, the difference in sampling 
variance between 8, and 8, is greater  for  shorter re- 
gions and/or large sample sizes.) 

CORRELATIONS BETWEEN ESTIMATORS 
FROM LINKED REGIONS 

In this section we  assess the  correlation between mea- 
sures of  diversity from linked regions of a  chromosome. 
Loosely speaking, the aim is to answer the question of 
how far  apart two regions must be  for  inferences  from 
them to be approximately independent. 

We thus  consider two regions of length L, each of 
which is evolving according to the  model described 
above (and in  particular, within each of which there 
may be  recombination). For definiteness we assume 
that  the  recombination  rate between sites  is the same 
within and between the two regions. If the distance 
between the regions is D bases, the scaled recombina- 
tion rate between the two regions is Dp. Figure 5 plots 
the correlation between the diversity measures from the 
two regions as a  function of the distance, D, between 
the regions, for  the specific case L = 1000 and n = 10, 
for various parameter values. 

Expressions for  the covariance of the diversity  mea- 
sures from different loci are given in  the APPENDIX, see 
(A15) and (A16). The correlation can be calculated 
from this and  the formulae (6)  and (7). The value of 
the  correlation  depends in a complicated way on each 
of the  parameters L, n, 0 and p .  Nonetheless, the behav- 
ior  in Figure 5 is  typical. In particular,  for p at least 
0.001, estimators from regions 10 kb apart  are effec- 
tively uncorrelated. For many parameter values rather 
smaller distances between the loci  still lead to effectively 
uncorrelated estimators. 

The correlation  depends on  the distance between the 
regions only  as a  function of the scaled recombination 
rate between the regions. That is, it is a  function only 
of Dp. Results for  a  setting  in which the  recombination 
rate between the regions, per  generation, is r1, while 
that within each region is r per  generation, can be ob- 
tained as the  correlation  at distance D = rl/rin Figure 

5. (Strictly, the  correlation is a  function of both p = 
4Nr and r , /r . )  

KAPLAN and HUDSON (1985, Figure 1) plotted the 
correlation in tree  lengths between two regions, as a 
function of the scaled recombination rate (4Nq in the 
notation of the previous paragraph) between the re- 
gions. They assumed no recombination within the re- 
gions, in which  case the covariance of tree  lengths 
would  (by a simple extension of the  argument  in  the 
APPENDIX) be proportional to the covariance of the 
measure Gwfrom the two regions. One novelty in Figure 
5 thus relates to the  correlation  for  the measure In 
addition, we have extended  the analysis to include intra- 
genic recombination. 

DISCUSSION 

We consider  the possible  effects on  our conclusions 
of changes to various of the underlying assumptions. 

Throughout, we have assumed that  the  option is ei- 
ther to sequence  a region from the existing sample, 
which is adjacent to that already sequenced, or to se- 
quence  additional copies of the current region from 
new individuals. In  principle, one could aim to get the 
best of both strategies by sequencing an adjacent region 
in new individuals. As expected, such an approach does 
lead to lower  variability than  either of the  separate strat- 
egies. On  the  other  hand,  the difference between the 
variability when the region is extended  in already se- 
quenced individuals, and that when the  adjacent region 
is sequenced in new individuals, is relatively  small (data 
not shown). Recall that  the gain in sequencing new 
individuals in  a  particular region is small because of 
strong positive correlations between the  sequences 
from different individuals. For exactly this reason,  the 
types  of the new individuals sequenced  in  the  adjacent 
region will be strongly positively correlated with the 
types in  that region of those already sequenced. The 
gain from sequencing new individuals in the new region 
is thus  not  much  greater  than from extending  the se- 
quences already obtained. 

The particular, simple, assumption about  sequencing 
costs,  which underlies  the analysis,  while not exact, may 
not  be entirely unrealistic. For any other, particular, 
“cost” function,  a similar analysis is in principle 
straightforward. Our expectation would be that unless 
the cost function changes markedly, the same broad 
conclusion, namely that  sequencing relatively  few, long, 
copies of the  region is appropriate,  should still obtain. 

Our results are unlikely to  remain valid if the  demo- 
graphic assumptions about  the  population  are  changed 
substantially. The effect on  the underlying genealogies 
of such changes, for  example variation in population 
size, and/or geographical structure  of  the  population, 
is reasonably well understood [see, for  example,  HUD- 
SON (1991, 1993) or DONNELLY and TAVARF? (1995)l. 
In  principle, it  would thus be possible, at least via simu- 
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0.1 1.0 10.0 100.0 
Distance  between loci, D  (Kb) 

0.1 1.0 10.0 100.0 
Distance between loci, D  (Kb) 

0.1 1.0 10.0 100.0 
Distance  between loci, D (Kb) 

0.1 1.0 10.0 100.0 
Distance between loci, D  (Kb) 

0.1 1.0 10.0 100.0 
Distance  between loci, D (Kb) 

lation,  to  extend our results to  incorporate specific  al- 
ternative demographic beliefs. We content ourselves 
here with a heuristic discussion  of the qualitative conse- 
quences of some specific assumptions. Note that in gen- 
eral, changes in the underlying assumptions will change 
the sampling mean of the estimators, so that 8, and 
8, will no longer be natural estimators for 8.  Exactly 
how  they should  be  corrected will depend sensitively 
on  the underlying assumptions. 

The effect of a population bottleneck, or a rapid 
expansion (forward in time) of the  population, is to 
change genealogical trees from those predicted by the 
coalescent to a rather  more “star-shaped” topology. In 
such a setting, sequences in the sample are  much  more 
independent  than  under  the coalescent. This reflects 
the fact that in a star-shaped genealogical tree, distinct 

FIGURE 5.-Sampling  cor- 
relation  between  the  estima- 
tors cg), (left column), 
and e?), @) (right  column) 
calculated  at  two  distinct  loci 
a and b of the  same length L 
= 1000 bp, as a  function of 
distance D between  the loci, 
for  a  fixed  value  of  the  sample 
size n = 10, and  values of the 
scaled  recombination  rate  per 
site p = 0.001, 0.01, and 0.1. 
The three  lines  correspond  to 
the  values of the  scaled  muta- 
tion  rate  per  site 0 = 0.0001 

and 0 = 0.01 (- - -). 
(-1, e = 0.001 ( -  - ) ,  

0.1 1.0 10.0 100.0 
Distance between loci, D  (Kb) 

sequences share very little of their ancestral history after 
the  common ancestor of the sample. In this case, the 
decrease in the variability  of estimators induced by in- 
creasing the sample size  is  relatively much greater  than 
under  the coalescent model. As a consequence,  the 
optimal trade-off between sample size and sequence 
length will lie much  more in the  direction of larger 
samples and smaller sequences than  for  the coalescent. 
The quantitative extent of this change will, naturally, 
depend on the severity  of the bottleneck or the  amount 
and rate of population growth. The effect of a selective 
sweep at a locus closely linked to the  region under study 
is  very similar to that of rapid population growth (for 
example, KAPLAN et al. 1989), so that  the same conclu- 
sion should apply in  this context. 

In  the presence of population subdivision, sequences 
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from different  subpopulations, or geographical areas, 
will tend to be more  independent than under the coa- 
lescent. Thus, again, there will be more of a gain in 
sequencing an additional individual than under  the co- 
alescent assumptions, provided the individual is taken 
from a new area. This reinforces the obvious advantages 
of the strategy of obtaining samples from at least several 
subpopulations  or areas. The intuition  behind  the anal- 
ysis above  suggests that  the sample size  within each area 
need  not  be  too large. The effect of balancing selection 
at  a linked locus is similar to that of some versions of 
population  structure (e.g., HUDSON 1993). 

SIMONSEN et al. (1995) recently addressed the ques- 
tion of sequencing strategies in the  context of testing 
a  neutral hypothesis against that of a selective  sweep. 
Their conclusion was that  for Tajima’s test, and that 
particular alternative, “it is better to sequence  more 
individuals than  more sites, so long as the  number of 
sites is not too  small”. The study by SIMONSEN et al. 
(1995) did  not  incorporate  recombination  (either 
within the  sequenced region or between the region and 
the selected locus). We have seen  that  the relative ad- 
vantage of extending  the  sequenced region over that 
of sequencing new copies of the region increases with 
the recombination  rate.  Their result that sample sizes 
should be large will thus depend, to some extent,  on 
the lack  of recombination. Nonetheless, their result is 
exactly contrary to our results on the  optimal strategy 
for assessing population diversity from a  neutral, pan- 
mictic population of constant size.  Assessing  diversity 
under neutrality and testing neutrality are two quite 
different things. There is no a priori reason why an 
experimental design that is good  for  one  purpose 
should be good for another.  Indeed, as  discussed above, 
if there has been  a selective sweep, the optimal sequenc- 
ing strategy for assessing  diversity will  involve more indi- 
viduals and fewer  sites than  in  the  neutral case, so it is 
perhaps not surprising that this latter strategy is also 
most appropriate  for testing neutrality against that alter- 
native. 

CONCLUSIONS 

We have considered  the precision of  two commonly 
used measures of genetic diversity at  the DNA sequence 
level,  as a  function of both  the sample size and  the 
length of the region sequenced. The first of these mea- 
sures, 8 ,  defined via (1) and (3), is based on  the num- 
ber of segregating sites in  the sample. The second, e , ,  defined via (2) and (3),  is the average number of 
painvise differences in the sample. Our analysis applies 
in the  context of a large panmictic population  that has 
been of constant size throughout its evolution. Evolu- 
tion in  the region of interest is assumed to be neutral. 
Recombination is allowed, at  constant  rate, between any 
pair of adjacent sites in  the  region. 

It is  well known that  for  sequences of fixed length, 

L, there is  relatively little gain in precision as the sample 
size, n, is increased. The sampling variance of 8, does 
converge to zero as n + m, but extremely slowly,  while 
that of 8,. converges to a  nonzero  constant as n ”+ 00. 
This results from the fact that sampled sequences are 
highly  positively correlated, because they share  much 
of their ancestral history. 

There is, however, another natural  “direction” in 
which to increase the available information:  the  length 
of the region sequenced may be increased while keep- 
ing  the sample size fixed. In this setting, provided the 
scaled recombination  rate p > 0, the asymptotic behav- 
ior is much  more  encouraging. The variance of both 
estimators converges to zero at least as  fast  as (log L ) /  
L. The intuition is that in the  presence of recombina- 
tion, parts of the evolution at  different sites are  inde- 
pendent.  Thus, increasing the  length of sequence cor- 
responds loosely to gaining independent replications 
of the underlying evolutionary process. 

We considered  the optimal allocation of sequencing 
resources when the  number of  bases to be sequenced 
is held fixed, and  the cost of sequencing an additional 
base is the same regardless of whether it arises from a 
new individual or from the extension of an existing 
sequence. In this context,  for  the evolutionary models 
we are  considering,  the optimal strategy depends some- 
what on  the underlying values  of the  mutation and re- 
combination  parameters H and p.  Nonetheless, unless 
6’ is large (say 0.01),  the  optimal sampling scheme in- 
volves sequencing very  few (typically around five) long 
copies of the region of interest. Even for large 8, strate- 
gies that involve sample sizes of, say, 10, are close to 
being optimal. 

Having decided how best to allocate a  predetermined 
amount of sequencing effort to a  particular  chromo- 
somal region,  there is a  separate question of the  appro- 
priate amount of effort to devote to that region. While 
more effort will increase the  amount of information 
available from the  region, this will be at  the cost of 
information  that could be obtained by sequencing  a 
different locus. The trade-off here is likely to depend 
on  the goals of the study. For a large range  of  parameter 
values, the  reduction  in  the variability of the estimators 
when a fixed additional amount of sequencing is done 
in the region under study is surprisingly close  to that 
which  would be  obtained were the  additional effort di- 
rected to a distinct region. 

One conclusion of our study is that unless 8 is large 
(0 > 0.01) and p is small ( p  5 0.001),  the precision of 
the estimators 8, and 8,. is  very similar under the opti- 
mal sequencing strategy. (The optimal strategy may not 
be the same for each estimator.) Thus,  for most of the 
parameter values considered  here,  there  are not strong 
reasons to prefer one measure to the  other  on  the 
grounds of  efficiency, provided an optimal (or close  to 
optimal)  sequencing strategy is adopted. This conclu- 
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sion is related to the fact that  optimal  sequencing strate- 
gies  typically  involve small samples of long sequences. 
The conclusion is false, and 8, preferable  in terms of 
precision, for many other sampling schemes. 

The  extent to which estimates from two regions, or 
loci, are uncorrelated is,  of course,  a  function of the 
genetic distance between the regions, and of the effec- 
tive population size. Under  the assumption of a  con- 
stant  recombination  rate between sites, which  may  be 
plausible over some physical distances but  not  on 
longer scales, the  correlation is a  function of the num- 
ber of  base pairs, D, between the regions and  the scaled 
recombination  rate between sites p. Loosely speaking, 
the  correlation is small, and  the estimates effectively 
uncorrelated, if the  product Dp is at least 10. 

Taken together, our results may be helpful in design- 
ing sequencing studies aimed at assessing molecular ge- 
netic diversity. If the desired level  of precision for esti- 
mating diversity  in a particular region is specified, then 
for particular parameter values, the  required total num- 
ber of  bases to be sequenced may be obtained from 
Figure 4. The appropriate sequencing strategy  can then 
be deduced from Tables 1 and 2. The  extent of indepen- 
dence between different regions is given in Figure 5. 

Exactly  which strategies are  optimal, and  the associ- 
ated variability, depends  on  the underlying evolutionary 
parameters 0 and p. In practice these may not be known 
in advance. One general conclusion, valid for a large 
range of parameter values, is that strategies that involve 
sequencing relatively few (five to 10) long copies of the 
region  are to be preferred to those with larger sample 
sizes and correspondingly smaller sequence  length. At 
a  finer level, the  dependence of optimal strategies and 
associated precision on  the underlying parameters is 
very smooth, so that “good” strategies can be chosen 
if the parameters are only  known up to, say, an order 
of magnitude. 

Our conclusions are likely to be sensitive to gross 
violations of the underlying assumptions of panmixia 
and neutrality. In the  presence of population bottle- 
necks, recent  population  expansions, or selective 
sweeps at linked loci, optimal strategies will tend  much 
more toward large sample sizes and relatively smaller 
sequence  length. SIMONSEN et al. (1995) note  that  the 
same conclusion is valid  if one wishes to use Tajima’s 
test to detect  departures  from neutrality in the  direction 
of a selective  sweep. If there is underlying population 
structure,  then  there  are obvious advantages to sam- 
pling  from as  many different  subpopulations as  is practi- 
cable. An important caveat is thus that  the best sequenc- 
ing strategy will in  general depend  on the primary goal 
of an  experiment,  and what is known, or believed, about 
the evolutionary or demographic processes that have 
generated  the  current diversity. Strategies that  are  good 
for one  purpose, or in one context, may not be good 
for another purpose or in another setting. 
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APPENDIX 

Variances of the estimators with intragenic recombi- 
nation: We derive the variances of the estimators 8, 
and 8,. using coalescent theory. For background on  the 
coalescent, including the results used below, see for 
example  HUDSON (1991, 1993), or DONNELLY and TA- 
V& (1995). Consider first 8, Recall that S, is the 
number of segregating sites in the n sequences of length 
L. By ( 1 )  and  (3), 

so we consider Var (S,) . 
Consider a  particular site, k say, in the  sequence. 

There will be  a genealogical tree  that describes the 
ancestral history, back to their  common  ancestor, of 
the n copies of that site in  the sample. Denote the total 
length of  this tree by c‘), and  the  number of mutation 
events on  the tree by Mi’. For any k, c‘) are identically 
distributed  (though not independent), with 
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and 

E ( 7 y )  = 2 i-' 
n- I 

i= 1 

Conditional on the respective tree lengths, Ek) and 
CJ), the  numbers of mutations M';) and "2) at different 
sites k and j are  independent. 

By the infinite sites assumption, S,, is equal to the 
total number of mutations on the genealogical trees for 
each site: 

L 

sn = My. 
k= 1 

Thus 

Var(Sn) = Var(M',k)) 
L 

k= 1 

L L 

+ 2 Cov(M',k', M'd)). (A4) 

Observe that, under the  infinite sites assumption, 
M';' takes  values  of 1 or 0 only, depending on whether 
or  not there was a mutation at the kth site in the ances- 
tral history of the sample. Then, 

k = l  j = k + l  

P(M(,) = 0 I c4)) = e-"?/2, 

and, hence, 

Var(M',k)) = PC","' = 0) (1 - P(M',k) = 0)) 
- - E( e-efiL)/2) (1 - E(e-e<k)/nk,/2 )). 

An approximation  for E( e-'7(:)/2) follows immediately 
from (9) and (10): 

E(e-eqk) /2)  = ~ ( 1  - e 7 3 2  + e2fik)*/s)= 1 
n- 1 n- 1 

i= 1 2 

Thus,  for small 8, 

Var(M',k') = e i-' 
n- 1 

i= 1 

in view  of the  conditional  independence of M' ,k )  and 
M'," given f i k )  and GJ), and 8 being small. 

The covariance of zkk' and Ej) is exactly the covariance 
of the lengths of the genealogical trees in a twdocus 
model in  which the recombination rate between the loci 
is ( j  - k)p .  (Here  and below, our discussion of two locus 
models applies to the case  in  which there is no recombi- 
nation within either locus.)  Define F(0, 0,  c; z) to be the 
covariance  between the lengths of the genealogical  trees 
at each locus in a two-locus model in  which the same c 
chromosomes are sampled at each locus, and  the scaled 
recombination rate between the loci is z More  generally, 
define F(a, b, c; z) to be the covariance  between the 
lengths of the genealogical  trees at each locus  in a two 
locus model in which a + c chromosomes are sampled 
at the first  locus and b + c chromosomes are sampled at 
the second locus  in such a way that exactly c chromo- 
somes are common to both samples, and the scaled  re- 
combination rate between the loci is z. The total  sample 
size  is thus n = a + b + c. 

It can be shown that  for 0 5 z < m, the  function F(a, 
6, c; z) satisfies the  linear system 

1 
F(a, 6, c; z) = - [r1F(a + 1, b + 1, c - 1; z) 

P n  
+ r,F(a - 1, b - 1, c + 1; z) + r f l a  - 1,  b, c; z) 

+ r a a ,  b - 1, c; z) + r5F(a, b, c - 1; z) + &I, 
L47) 

2, r2 = ab, rs = ac + a(a  - 1)/2, r 4  = bc + b(b - 1)/2, 
where n = a + b + c, P n  = (n(n - 1) + cz)/2, rl = cz/ 

r5 = c(c - 1)/2, and R, = 2c(c - l ) / ( ( a  + c - 1)(b + 
c - 1 ) ) .  The initial conditions are F( a, b, c; z) = 0 
whenever a < 0,  or b < 0, or c < 0, or a + c < 2, or b 
+ c < 2 .  

The recursion (A7) is derived by conditioning on the 
first event in the genealogical history  of the sample. 
Such an event is either a recombination or a coales- 
cence. In  the  latter case there  are  four possibilities: a 
coalescence of  two  of the chromosomes sampled only at 
the first locus, a coalescence of  two of the chromosomes 
sampled only at the second locus, a coalescence of  two 
of the chromosomes sampled at  both loci, or a coales- 
cence of one of the chromosomes sampled only at  the 
first locus with one of the chromosomes sampled only 
at  the second locus. KAPLAN and HUDSON (1985) used 
exactly this technique  to derive a recursion for the ex- 
pected value  of the  product of the tree lengths at two 
linked loci. We refer the  reader  to  that  paper for details 
of the  method. The recursion (A7) can be shown to be 
equivalent to the  one derived earlier by -LAN and 
HUDSON (1985) (except  for some misprints there). It 
appears somewhat easier to  implement in practice. The 
recursion is three-dimensional. We adopted  the 
method described in ETHIER and GRIFFITHS (1990) for 
its numerical solution. 
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Write F,(z) for F(0, 0, n; z). It follows from (A6) and 
the  definition of F,, that  the  second  term, E2 say, in 
(A4) is 

= 9 (1 - x)F,(Lpx)dx, (A8) 
2 

for large L. The result (6) then follows from (8), (A4), 
(A5), and (A8). 

The integral  approximation (A8) is identical (up to 
a  linear  change of variables) to the  one derived in HUD- 
SON (1983) (see also KAPLAN and HUDSON (1985) for 
further details)  for  a slightly different  model of an infi- 
nite sites locus with recombination  than  the one 
adopted in this paper. We have modeled  the locus as 
comprising  a large number of linked sites, with recom- 
bination taking place between any two adjacent sites, 
and (according to the infinite sites assumption) no 
more  than  one mutation  per site. In contrast,  Hudson’s 
model considers each site itself to be an infinite sites 
sublocus, i.e., an infinite sequence of completely linked 
sites. Then  the L consecutively arranged subloci to- 
gether  constitute  the locus under consideration, recom- 
bination taking place only between subloci. The lim- 
iting  properties of Hudson’s  model,  including  the 
approximation (A8), are  obtained by letting L ”f 
while holding  the total mutation  rate 0 and  the total 
recombination  rate R fixed. Up to the level  of approxi- 
mation we have used to derive the expression (6) (ig- 
noring terms of order B‘/L and  higher),  the two ap- 
proaches yield identical results. We note, however, that 
they differ in higher  order terms. 

Next consider Var(8,). Write 
L 

where 6;’ equals 1 if the ith and  jth sequences  in the 
sample differ at  the Zth site, and 0 otherwise. Under  the 
infinite sites assumption, Sill’ will equal 0 if and only if 
there has been  no mutation  at  the kh site in  the ancestry 
of sequences  i and j at  that site since their  common 
ancestor. Write for twice the  (coalescent) time since 
the  common  ancestor of these sequences  at this site, 
and  note that this is also the total length of the genea- 
logical tree for this sample of  two sites. Then, 

Thus 

X 2 2 Cov(Sf’, SLT’). (A10) 
l< m z < j  h< k 

On reflection, it is apparent  that  the first term in 
(A10) is (L-’ times) the variance of the sample hetero- 
zygosity in an infinite alleles model with mutation  rate 6. 
The first term is thus ( e . 6 ,  CHAKRABORTY and GRIFFITHS 
1982) 

’[ (’+ 8 ( n  - 2) 
L n(n - 1) 1 + 6 (1 + 6)(2 + 6 )  

since 6 is  small. The covariance in (A12) relates to  the 
tree  length  for samples of  size n = 2 individuals from 
two loci between which the recombination  rate is (m - 
Z)p. Thus, recalling the  definition of F(a, 6, G ;  z), 

Cov( E;’, T p )  

- 1  F(0, 0, 2; (m - l ) p )  i f { i , j  = {h, kt, 

F(1, 1, I ;  ( m  - Z)p)  if {i,j)  and {h, k] have one 
- element  in  common, 

F(2, 2, 0; (rn - Z)p) if ( Z , J ~  and {h, k] are distinct. 

For samples of  size  two at each locus, the recursion 
(A7) reduces to a  linear system  of three equations. The 
solution is 

F(0, 0, 2; z) = 
4(z + 18) 

2 + 13z + 18 ’ 

F(1, 1, 1; z) = 
24 

2 + 13% + 18 ’ 

F(2, 2, 0; z) = 
16 

2 + 13% + 18 ’ (A13) 

The formula (A13) for  the covariance for  a sample of 
size two from a two locus model is originally due to 
GFUFFITHS ( 198 1 ) . 

Substituting these exact expressions for  the covari- 
ances for samples of size two into (A12), and  then  into 
(AlO), collecting terms and approximating  the re- 
sulting sum by an integral as in the derivation of 
Var(g,), and also substituting (Al l )  into (AlO), gives 
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6 ( n  + 1) 46' 
3L(n - 1) n(n - 1) 

var(GT) = + 

Lpx  + c 
X 

10' (' - (Lpx)' + l3Lpx + 18 
dx, (A14) 

where C = 2( n" + n + 3).  The approximation applies 
to large L and small 6 .  The formula ('7) follows on 
evaluating the integral. 

Similar arguments can be used to approximate the 
covariance between estimates from linked loci. Write 

W and for the diversity measures based on segre- 
gating sites at two loci a and b, and analogously for 
69) and a$?. For convenience we assume that  the  length 
L of the region sequenced,  and  the sample size n, is 
the same at each locus, but  the generalization is 
straightforward. Then 

X 1; (1 - 11 - xl)F,(Dp + Lpx)dx,  (A15) 

and 

X 
Dp + Lpx + C 

(Dp + Lpx)' + 13(Dp + Lpx) + 18 
dx 

a2 

(x + 1.58) (y + 11.42) 
(x + 11.42)(y + 1.58) 

and 

We note in passing that  the  preceeding  method may 
be used to approximate the covariance in the sample 
heterozygosities at two linked loci.  Write H"' and H'"' 
for the sample heterozygosities at two loci, labeled I 
and m, between which the recombination rate is y per 
generation. We assume there is no intragenic recombi- 
nation within either locus.  Define 6:) to be 1 if the ith 
and  jth sequences differ at locus 1, and analogously for 
6AT'. An analysis analogous to the  one above gives 

in which r = 4Ny, and 6 is  now the scaled totalmutation 
rate at each locus, assumed to be the same for both 
loci. 

Asymptotics as sequence  length  increases: We  now 
suppose 8 and p are fixed, with p > 0, and examine 
the behavior of  Var(8,) and Var(8,)  as the  sequence 
length L increases with the sample size n held fixed. 
We assume that  the infinite sites assumption remains 
valid  as L increases. 

Consider first the pairwise difference estimator 8,. It 
is evident that  the first term in (7), as  well  as the second 
and  third terms in the square brackets in (7), are of 
order L-I. Inspection also  shows that  the first term in 
the  square brackets in (7) is  of order (log L)  /L. 

Now consider Var(84, and suppose initially that n = 
2. In this  case, 8, and 07. coincide, so by the argument 
in the preceeding paragraph, Var(8,)  decays to zero at 
a rate of (log L) /L .  It is intuitively clear that for given 
8, p, and L, Var(Bw) is greatest for samples of  size n = 
2. (This is also evident from the plots in Figures 1 and 
2.) In this  case, the rate of decrease of Var(8,) must be 
at least (log L)/L for any  value of the sample size n. 


