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ABSTRACT 
I reexamine  the use of isolation by distance  models as a basis  for  the  estimation of demographic 

parameters  from  measures of population  subdivision.  To  that aim, I first  provide  results  for  values of F 
statistics  in  one-dimensional  models  and  coalescence  times  in  two-dimensional  models,  and  make  more 
precise  earlier  results  for  Fstatistics  in  two-dimensional  models  and  coalescence  times  in onedimensional 
models.  Based  on  these  results, I propose a method of data  analysis  involving  the  regression  of Fyr/ (1 
- FST) estimates  for  pairs of subpopulations on geographic  distance for populations  along  linear  habitats 
or  logarithm of distance  for  populations in two-dimensional  habitats.  This  regression  provides  in  princi- 
ple an  estimate  of  the  product of population  density  and  second  moment of parental  axial  distance. In 
two cases where  comparison  to  direct estimates is possible, the method  proposed  here is more  satisfactory 
than  previous  indirect  methods. 

A NALYSES of the  structure of natural  populations 
are  often based on  the island or stepping  stone 

models. Functions of probabilities of identity of genes 
within and between units, such as Fsr, are estimated 
and compared to expectations under  the island model. 
The relationship between Fs7. and  the  number of  mi- 
grants  according to this model is often used to quantify 
gene flow. This  relationship has been shown to approxi- 
mate  the  relationship between Fsr and  the  number of 
migrants in  stepping  stone models on a two-dimen- 
sional space ( KIMURA and MARWAMA 1971; CROW and 
AOKI 1984; SLATKIN and BARTON 1989), and is used 
to obtain  indirect estimates of number of migrants or 
“neighborhood size” from  genetic  data.  These models 
can also be used to study the  distribution of coalescence 
times ( SLATKIN 1991, 1993) , and therefore to obtain 
the value  of measures of population subdivision that 
have been  proposed  for analyzing differences in allele 
size distributions at microsatellite loci, number of nucle- 
otide differences, and maybe quantitative traits (HLJD- 
SON 1990; h N D E  1992; SLATKIN 1995). Analytical ap- 
proximations have been  obtained  for coalescence times 
in the one-dimensional stepping  stone  model ( SLATKIN 
1991 ) . 

Here, I present a new method of  analysis that may 
be deduced  from isolation by distance models. The esti- 
mation  method uses estimates of &for pairs of subpop- 
ulations rather  than  a single Fstatistic for  the  entire set 
of subpopulations.  To  that  aim, I first provide results 
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concerning  expected values  of measures of population 
subdivision under isolation by distance. Then, I propose 
an  indirect estimator of the  product of population  den- 
sity and second  moment of parental axial distance. The- 
ory suggests that this method is more reliable than cur- 
rently used methods of  analysis, particularly for types  of 
dispersal distributions that may be common in natural 
populations. 

There may be some correlation between direct and 
indirect estimates of demographic  parameters, ( e .g . ,  
HASTINGS and HARRISON 1994; SLATKIN 1994; WARD et 
al. 1994), but  detailed case studies generally argue  for 
discrepancies between the two approaches ( e .g . ,  CAMP- 
BELL and DOOLEY 1992; SCHILTHUIZEN and LOMBAERTS 
1994;JOHNSON and BLACK 1995) . Cases where it is pos- 
sible to compare  “indirect” estimates to “direct” esti- 
mates obtained from observation of population densi- 
ties and individual dispersal remain scarce. For the two 
most detailed  data sets I have found, where such a com- 
parison is possible, I find a  better  agreement between 
direct estimates and indirect estimates obtained by the 
present  method  than with other indirect  methods. 

ANALJlTIC THEORY 

Identity by descent in one and two dimensions: I will 
consider discrete generation models for  populations on 
finite and infinite lattices in one  or two dimensions, 
Le., for  subpopulations on a circle or twodimensional 
torus of finite or infinite size.  Because exact results are 
available for these models, it is possible to discuss their 
interpretation without concern  for  problems of mathe- 
matical formulation. Some models of potentially contin- 
uously distributed  populations may  yield similar results 
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but  their  formulation  remains difficult (SAWYER  and 
FELSENSTEIN 1981). 

MARWAMA (1970)  and SAWYER (1976) provide de- 
tailed and complementary mathematical expositions of 
the lattice models. They are lengthy and will not be 
repeated  here. The APPENDIX summarizes some results 
for  the finite and infinite population models ( ie., with 
a finite or infinite number of subpopulations). Below 
are the main assumptions, meaning of parameters, and 
some approximations  for  the infinite lattice models 
based on results of  SAWYER (1977). 

In their basic formulation  the models assume that 
two gametes produced in the same subpopulation have 
probability 1/ (2N)  of being copies of the same gene. 
Under  the multinomial sampling scheme of the Wright- 
Fisher model this amounts to assume that  there  are 
either  2N  “breeding”  haploid individuals per  subpopu- 
lation, or Ndiploid individuals and that dispersal occurs 
through gametes only. The results are accurate for zy- 
gotic dispersal (NAGYIAKI 1983)  and some other mat- 
ing systems are  accounted  for by  use  of “effective popu- 
lation size” arguments  (SAWYER 1976; TACHIDA  and 
YOSHIMARU 1996). Within these models, the “effective 
population size” is a measure of the  rate at which genes 
coalesce per  generation. 

These models also assume that  there is a finite second 
moment of the distance between a  gene and its parent 
in the previous generation. For symmetric dispersal in 
one dimension, this is also the variance u‘ of parental 
position X relative to offspring position. u* is not  the 
variance Var ( I XI  ) of unsigned distance I XI as a‘ = 
Var ( X )  = Var (1x1) + E ( I X 1 ) ‘ .  For isotropic dis- 
persal in two dimensions u2  is defined as the variance 
of parental “axial distance” X ,  that would  be measured 
along one dimension. The noncentral  second  moment 
of parent-offspring euclidian distance is 20‘ and should 
not be confused with the variance Var ( R)  of the Euclid- 
ian distance as 2a‘ = Var ( R )  + E (  R)  * ( e.g., CRAWORD 
1984). 

If u is the mutation  rate  per  generation, and Q, the 
probability of identity by descent of a pair of genes at 
jsteps from each other,  then using the results of  SAWYER 
(1977) as explained in the APPENDIX, one obtains in 
one dimension (all starred symbols will refer to the 
infinite lattice models) : 

0: 
- 

e-62 u 1/v 

=- ( 1 )  
1 - e,* 4 N u L ’  

This is an approximation  for large geographic dis- 
tances. On  the  other  hand, 

Qf 1 A, =-+-, ( 2 )  
1 - e,* 4 N u a  4Nu 

where A, is a  constant dependent  on  the dispersal distri- 
bution,  but  not  on  N  or u. Its definition is given by 

SAWYER (1977), Equation (2.4) and its  biological  sig- 
nificance is similar to that of A2 discussed  below. 

In two dimensions, for  the probability of identity 
of genes at j steps from each other in one dimension 
and k in the  other,  one has 

O T  = & ( & r / u )  
4N7ru2 ’ ( 3 )  

1 - e: 

where 8,. stands for O,,,,, r = + k 1s the distance 
between genes and & is the modified Bessel function 
of second kind and zero order. 

A  different formula must be considered when r = 0: 

J - 2 1 .  

Q,T x -In (a) + 27rA‘ 
4N7ra ‘ ( 4 )  

1 - Qf 

A2 is of the same nature as AI above and  an explicit 
definition is given in the APPENDIX (Equation A1 1 ) . Its 
biological significance is discussed later. 

FST and related quantities: The previous theory pro- 
vides  values of the probabilities of identity by descent. 
Hence it can be used to provide values of the correla- 
tion P, = (Bo  - Q,) / ( 1 - Oj) of genes within popula- 
tions with respect to genes at some distance j .  This 
quantity is different from F,,;, which is better  defined 
as ( Qo - Q) / ( 1 - Q )  , where the Qs are probabilities 
of identity in state rather  than identity by descent, and 
from the ratio of average coalescence times, CS,; = ( 7; 
- T , )  / T, where the 7”s are average coalescence times 
of pairs of genes at distance j .  These distinctions are 
necessary to understand how Fstatistics are affected by 
the  mutation rate and mutation process (ROUSSET 
1996). However, properties of  &,can be deduced from 
those of Cs-,- and ,B, and in finite populations in the 
limit of  low mutation rate,  the values  of  all three param- 
eters  are identical ( SLATKIN 1991; ROUSSET 1996). 

When 0, = 0, P reaches its maximum possible value, 
which is O o .  This is the limit value of ,B at long distances. 
Under  the assumption that F,,. = P = B o ,  Equation 4 
implies 1 /&,  - 1 = 4N7ra2/ (-In (&) + 2 ~ A 2 )  
where the  denominator is a  function of the  mutation 
rate and distribution of dispersal, but not of distance. 
For the  stepping  stone  model 1 /FYI, - 1 = 2Nm7r / 
(-In (a) + %A2)  where m is the fraction of  mi- 
grants. Similar formulas have been  obtained by K” 
and WEISS ( 1964)  and SLATKIN and BARTON ( 1989), 
and proposed as a basis for estimating either 4N7ra‘ or 
Nm  by the  latter  authors. 

It  appears useful to reconsider  the underlying mod- 
els. For a one-dimensional infinite population one ob- 
tains 

P” I=- (5)  
1 - 0: 41% 4Na& ’ 

- 
AI + 1 - 
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which is the difference between ( 1 ) and ( 2 )  (see AP- 

PENDIX ) . For a two-dimensional infinite population, 

which is the difference between ( 3 )  and ( 4 ) .  The ex- 
pression in SLATKIN and BARTON ( 1989)  for &at short 
distances is equivalent except that they do  not give a 
definition for  the equivalent of A2 in their formulas. 

The low mutation limits of the above expressions 
yield 

If AI is neglected, this is in agreement with a result of 
SLATKIN ( 1993)  for  the  stepping  stone model. The two- 
dimensional result is 

CfT In ( r / a )  - 0.116 + 27rA2 
M 

4Nxu2 > ( 8 )  
1 - Ch. 

because ik;o (x) - (In (x/2) + y e )  for  a small x 
(ABRAMOVITZ and STEGUN 1972, eq. 9.6.13), where y I  
= 0.5772 . . . is Euler’s constant. Note that Csr/ (1 - 

is the coalescent approximation for 1 / ( 2 M  
where M is the quantity discussed by SLATKIN ( 1993) . 
For the log-log plots of fi us. distance discussed there, 

log hi M log ( 2 N a 2 )  - log ( A l a  + j )  ( 9 )  

in one  dimension, and 

log M log (2N7ra2) - log (In ( r / a )  

- 0.116 + 2 ~ A p )  (10) 

in two dimensions. 
Numerical evaluation of f l j  and Plk for finite popula- 

tion structures with different distributions of dispersal 
(detailed in the APPENDIX ) are  compared to the infinite 
population coalescent approximation with and without 
the AI or A2 term in Figures 1 and 2. The theory is 
remarkably accurate if the A’s are taken into account. 

Schematically, the variables considered have a  linear 
relationship the slope of  which is determined by No2 
only and the  intercept  determined by both Nand more 
complex features of the dispersal distribution embod- 
ied  in the definition of the A’s. It is not easy to relate 
the A values to particular features of the distribution of 
dispersal. However, a given  value  of a 2  may be due to 
a relatively large number of migrants at  short distances 
or to  a few long distance migrants. Differentiation be- 
tween neighboring subpopulations should  be  more ef- 
ficiently prevented in the  former case than in the  latter, 
resulting in negative A 2 / a 2  values if all migrants are 
from  neighboring populations (e.g., the  stepping  stone 
model with a‘ = 1 / 200) , and in  positive A 2 /  a’ values 

geometric, d = 1/2, q = 2/3, a2 = 15/4 

binomial, n = 16, o2 = 4 

stepping, d = 1 / 1 O O ,  a2 = 1/2OO 

I 20 40 60 80 100 120 

distance  (lattice  steps) 

FIGURE 1.-Coalescence and identity measures in onedi- 
mensional models. Exact  values  of p /  ( 1 - p )  ( * . ) , com- 
puted from (A3) and ( A 7 ) ,  are compared to the asymptotic 
approximation  for &/ (1 - Crr) in finite onedimensional 
lattices for  different distributions of migration (Equation 7, 
dark gray line)  and  the same approximation without the A, 
term (-----). u = and N = 20 in all  cases ( a  different 
value  of Nwould only change  the y-axis scale). Lattice size  is 
1000 steps and differentiation shown for distances up to 125 
steps. Note the differences between identity by descent mea- 
sures in  the finite population ( * * * ) and infinite  population 
(light gray line) models. 
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FIGURE 2.-Coalescence and identity  measures  in two-dimensional models. Note the logarithmic scale for distance. Exact 

values of ,B/ ( 1 - p )  ( . * ) , computed from (A5)  and  (A7) , are  compared to the asymptotic approximation for C~yr/ ( 1 - 
Cy,) in finite two-dimensional lattices for different  distributions of migration (Equation 8, dark gray line)  and  the same 
approximation without the A2 term (-----) . The value of 1 / ( 4 N ~ u ' )  is indicated by <, and  the inverse OfWRIGHT's neighborhood 
size (Equation A12) by >. u = and N = 20 in all  cases ( a  different value of Nwould only change  the y-axis scale) . Lattice 
size is 500 X 500 and differentiation shown for distances up to 125 steps in all  cases except for  the m = 1 / 100 stepping  stone 
example where 50 X 50 and 700 X 700 lattices are considered and differentiation is shown up to half their  length. The infinite 
population result for ,B / ( 1 - ,B) is also shown (light gray line) in the  latter case. This example shows the relationship between 
finite and infinite  torus models. 

(e.g., the geometric model) if most migrants are from 
distant  populations. Larger values are  obtained when 
the  fraction of migrants decreases for  a given distribu- 
tion of dispersal distance among migrants (the geomet- 
ric cases  with q = 2 / 3  and d = 4/3 us. d = ' / 2 ) .  The 
infinite island model may be considered  an  extreme 
illustration of this case, where Fv./ ( 1  - FYr) = 1/ 
( 4 N m )  and  the slope is 1/ ( 4N+ra2) = 0. It shows that 

differentiation can be arbitrarily much  larger  than 1 /  
( 4N7ra2) . The binomial model is an  intermediate case 
where I A2/ g2  I is small, in agreement with the fact that 
A2 is null for Gaussian distributions (SAWYER 1977). 

Leptokurtic dispersal distributions are commonly ob- 
served in natural  populations ( ENDLER 1977), for ex- 
ample, in the two data sets discussed  below (note that, 
as for a2, kurtosis is not defined  here from the  central 
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X 

FIGURE 3.-The difference between coalescence and  iden- 
tity measures. These differences are measured by R,,, = 
-xK; ( x )  (plain  line)  or =e? (gray  line), in two or  one 
dimension, respectively. See text for usage. 

moments of unsigned distance, but from the 
noncentral moments). They would tend  to have high 
A 2 /  a‘ values, so differentiation among populations at 
low distances ( r < a) could be common. However, 
kurtosis is not  a perfect descriptor of the  extent of  mi- 
gration between neighboring populations in the pres- 
ent models nor of A*/ a‘. For some extreme lattice 
models strong kurtosis is compatible with migration 
only between neighboring subpopulations (the step- 
ping  stone example with a’ = 1 / 200 has the highest 
kurtosis of  all examples in Figure 2 ) .  

P and Cw are practically identical at  short distances 
but progressively depart from each other.  In two dimen- 
sions, the slope of the relationship between P /  ( 1 - 
P )  and logarithm of distance, which is independent of 
A P ,  will be RI/,  times that for Cs,/ ( 1 - Cyr) at distance 
r where d& ( & r / a )  / d In ( r )  = R I / C .  This ratio of 
slopes can be deduced from the value  of the  function 
-xKA( x) (Figure 3):  at distance r = xu/&, RI/, = 
-&A( x). For example, RlIc = 0.8 for r = 
0.56a/&,  and R I / < ;  = 0.2 for r = 2.4a/&.  It is 
necessary to know both u and a to  determine  the dis- 
tance at which some discrepancy between coalescence 
and identity measures is reached. For example, if u = 

and a2 = 0.1 km‘, the distance where RI/,  = 0.2 
is only  53.7 km, and 1697  km, if u = lop6  and a‘ = 1 
km‘. In  the  onedimensional model, the slope of the 
relationship between p /  ( 1 - 0) and distance (not its 
logarithm) is given by values  of epx rather  than - 

xK& ( x) (see Equation 5 ) .  The deviation from the coa- 
lescent approximation occurs at  a  shorter distance in 
one than in two dimensions. 

These values are valid  only for identity b  descent 
measures. The distance will be shorter, + ( k  - 1) / k  
times those given above, for  a symmetric k-allele model, 
and  longer for stepwise mutation models (ROUSSET 
1996). In two dimensions the differences on FS,.values 
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FIGURE 4.-Differentiation in an elongated  habitat.  This 
figure shows differentiation as a  function of distance and loga- 
rithm of distance  along the  long axis of an habitat of 1000 X 
n, subpopulations,  for values of ny from 2 to 100. Dispersal 
follows the geometric  model with d = 2q = 4/3. Exact values 
of /?/ (1  - /?) ( -  * )  were computed from (A5)  and ( A 7 ) .  
--- show expected slopes for  onedimensional habitats with the 
same linear density Nn,. The  dark gray line is the asymptotic 
approximation  for &/ (1 - cy, ) (Equation 8 ) .  u = lo-” 
and N = 20. 

due to differences in mutation rates may not be consid- 
erable. For example, for N = 6.23, a* = 2.72, and A2 
= 0.745 (values chosen to fit the  indirect estimates in 
the example from human populations below),  the max- 
imum P* value is 0.05 for u = lop6 and 0.04 for u = 
lop4.  Differences due  to different mutational processes 
are smaller and may be difficult to detect  (details  not 
shown ) . 

When should  a narrow elongated habitat be consid- 
ered  one- or two-dimensional is not obvious. Numerical 
examples (Figure 4 )  suggest that in such habitats, dif- 
ferentiation between populations at distance smaller 
than half the width  of the habitat follows the two-dimen- 
sional model in that  there is a  linear relationship be- 
tween &,/ (1 - &) and logarithm of distance, and 
differentiation between populations at distances larger 
than  the width  of the habitat follows the one-dimen- 
sional model, with a  linear relationship between &,./ 
(1 - F s 7 . )  and distance and slope determined by the 
density  of individuals per  unit  length.  Thus, differentia- 
tion in elongated habitats can be  analyzed using the 
two-dimensional model when habitat is “locally” two- 
dimensional at  the scale  of  study defined by the distance 
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between samples, and using the one-dimensional model 
at larger distances. 

IMPLICATIONS FOR DATA ANALYSIS 

The previous results show that an  appropriate  repre- 
sentation of data is a  plot of estimates of F y , /  (1 - FS,.) 
against the distance in one dimension or logarithm of 
distance in two dimensions. In the  latter case, the ex- 
pected relationship is approximately linear, y = a + bx 
with slope b = 1 / ( 4 % ~ ' )  and  intercept a = -In (a) 
+ - In ( 2 ) + 27rA2. The slope of the regression may 
be used to estimate 1 / (4N7ra'). The quantity 

e-a/b = 2oe"""2- Y, = 1.123~e""~2 (11) 

would be independent of subpopulation size. If  we 
could somehow discard A2,  it would be possible to esti- 
mate both a and N ,  for  example, by 8 = e-'/ ' /  1.123 
a n d N =  1 / (47 r&2) , i fA2=0 .Th i swou ldbeave ry  
poor  method  for most examples in Figure 2, and  there 
is no reason to consider A2 negligible in real situations, 
hence o and N cannot be estimated separately. 

The linear  relationship never perfectly holds, and if 
possible it is preferable to take into  account only the 
differentiation observed at distances r > a and r lower 
than  the value determined by some acceptable R,/c 
value, for  example, r < 0.56a/& for R,,, = 0.8 in 
two dimensions. If only a minimal estimate of a is  avail- 
able, it provides an  upper  bound  to  the bias measured 

Interpretation of parameters: In many recent studies 
attempting to estimate a  demographic  parameter from 
genetic data, it is considered  appropriate to estimate a 
number of migrants between subpopulations and this 
creates a  need to define  subpopulations. This raises two 
difficulties, that of estimating number of migrants when 
models of isolation by distance do  not suggest any  sim- 
ple way to do so and that of defining subpopulations. 
The surface occupied by such subpopulations is often 
estimated by the surface within  which no differentiation 
is detected,  or  equated to the  neighborhood  area as 
given by WRIGHT'S formulas. These  procedures have 
little theoretical support,  and it is not  the  purpose of 
the  present  paper to provide such support. Nor does it 
provide any ground to define  subpopulations  that can 
be considered panmictic in some sense, another prob- 
lematic interpretation of WRIGHT'S neighborhood. 

In fact, the  present  method of  analysis does not re- 
quire  the  definition of subpopulations  on  a lattice, but 
only the knowledge of the distances between samples. 
In their basic formulation  the lattice models assume 
that  the distance between neighboring  subpopulations 
E is 1. In data analyses the distance between neighboring 
subpopulations is often unknown or even difficult to 
define, so it is necessary to identify quantities  that  inter- 

by & / C .  

pretation does not  depend  on the assumption that E = 
1, or equivalently is not affected by a  change of scale. 

The slope is such a quantity: whatever the scale it 
is inversely proportional to the  product of population 
density D, by the second moment of dispersal distance 
09. In two dimensions, the slope does not  depend  on 
the spatial scale because of the logarithmic effect of 
distance, and D,a: is  always No': when the distance 
between steps E is 1, this is density, D, = N, times second 
moment, of = a:, and if scale is changed this is still 
density, D, = N /  E ~ ,  times second  moment, of = 
a' 2 . In  one dimension,  the slope is No:E: i t  depends 
on  the spatial scale but is  always density, D, = N/E, 
times second  moment, o: = a y E' .  

Then, in  the special case of the two-dimensional step- 
ping  stone  model, a: = aye' = m 2 / 2  and 2D,oT = 
( N/E') m2 = Nm is the  number of migrants per sub- 
population.  Thus Nm can be estimated even if E is un- 
known, but obviously this quantity provides no informa- 
tion about movements of individuals unless E is known. 
In  the one-dimensional stepping  stone  model, D,a: = 
N m  is not  the  number of migrants per  subpopulation 
when E f 1, so the  number of migrants cannot be  esti- 
mated if E is unknown. 

Examples: In this section, I give  two applications of 
the  approach described above.  First, I have applied it 
to Gainj- and Kalam-speaking people of New Guinea for 
which both  genetic differentiation and demographic 
properties have been extensively studied (e.g., WOOD 
1987; LONG et al. 1987), which permits a comparison 
of different estimates of parameters. 

The natal dispersal data of  WOOD et al. ( 1985 ) provide 
the position of parents of individuals that reproduced 
in some place. They can be used to estimate a'. Women 
have 6: = 2.21 km' and men have e:, = 3.23 km'. 
Hence 8' = (6; + 8;) / 2  = 2.72 km'. The population 
density is -24  individuals * km" , and age structure and 
distribution of number of offspring may reduce the "ef- 
fective population size" by a factor of 2 (WOOD 1987), 
hence  a "direct" estimate of 4Drra' is 410. 

I reanalyzed the five loci studied by LONG et al. 
( 1987)  (Figure 5)  . The slope of the regression is 
0.0047, hence  the "slope" estimate of 4 k a '  is 213 
individuals, about half the  direct estimate (the slope 
estimate is 265 individuals if differentiation at distances 
larger  than 8 only is taken into  account).  The estimate 
of  &&computed from all subpopulations is 0.025, hence 
by the "l /& - 1" method  one would obtain 40, a 
poorer estimate of 4Drra'. The high differentiation at 
short distances may be at least in part  explained by the 
nature of the migration distribution, which is strongly 
leptokurtic (the kurtosis for  the axial migration distri- 
bution,  inferred under  the assumption of isotropic mi- 
gration, is 14.6),  but may also be due to other factors 
not included  in  the  model. 
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FIGURE 5.-Differentiation among Gainj- and Kalam-speak- 
ing peoples. Multilocus estimates of pairwise differentiation 
are plotted against logarithm of map distances (in K m )  . The 
regression is y = 0.0047~ + 0.0191 and  the maximum  distance 
between two subpopulations is 14 km. Genotypic data  appear 
in LONG et al. ( 1986). FV. was estimated according to WEIR 
and COCKERHAM ( 1984). 

The  other example allowing comparison of direct 
and indirect estimates that I have found is that of the 
intertidal snail Bembicium vittatum (JOHNSON and BLACK 
1995) . The habitat is linear ( -3  m  wide)  and  the re- 
sults will be analyzed according to the  one dimensional 
model. 

I used the estimate of density at Noddy Shore,  D = 
11 1 adults * m" , which is typical  of populations  along 
the "1600  m" transect (JOHNSON and BLACK 1995). 
Dispersal was studied by mark-recapture  experiments 
within this transect, and I computed an estimate of 
the  second  moment a' of dispersal distance over one 
generation (about 12 months) as  2.4 times the estimate 
of the  second  moment over 5  months (see JOHNSON 
and BLACK 1995). From their Table 1, 8' = 2.4 (6.4' 
+ 181.5) = 533.9  m'. Then a  direct estimate of 4Da' 
is 2.4 lo5  individuals-m (the latter  unit may surprise, 
but in one dimension  the  product of linear density 
times second  moment of dispersal distance necessarily 
scales  as a number of individuals times a  distance) . I 
reanalyzed the genotypic data  for  the 1600 m transect 
(13 loci, provided by M. S. JOHNSON) and  found  that 
the slope of the regression of p/ ( 1 - f i  to distance is 
2.76 1O"j (individuals * m)  (Figure 6 ) .  According to 
the  one-dimensional  model  the inverse  value  3.6  10' 
individuals * m is an estimate of 4Da2, 1.5 times the 
direct estimate. 

JOHNSON and BLACK'S (1995) estimate of Nm, based 
on  the approximation  log M M log ( N m )  at  one inter- 
deme distance ( SLATKIN 1993), is  22 at 150 m. Consid- 
ering  more  general migration distributions, and ne- 
glecting the AI term in Equation  9, this could be 
interpreted as an estimate of ( D a ' )  /distance so an 
estimate of 4Da' is 88 X 150 = 13200 individuals - m, 
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FIGURE 6.-Differentiation among Bembicium snails. 
Multilocus estimates of painvise differentiation are plotted 
against  distance. The regression is y = 2.76 lO-'x + 0.0015. 
Fyrwas estimated  according to WEIR and COCKERHAM ( 1984). 

far from the "direct" estimate. This discrepancy may 
be  due to neglecting AI as  well  as estimation problems 
since log - log representations prevent the use of unbi- 
ased estimators of FYI . .  

The analytical theory can be used to assess to which 
extent  the difference between the slope expected from 
coalescence measures and  the slope expected from F 
statistics may  bias the analysis. In the  human  example 
the ratio R,,,: as  given by Figure 3 is only  0.9996 at 14 
km, and in the one-dimensional example this is 0.907 
at 1600 m  (assuming u = lop6  and using estimated 
values of a' in both  cases). Thus  in  the one-dimen- 
sional case a slight bias in estimation is expected. It 
should result in an overestimation of Na' by some fac- 
tor <1/0.907,  the exact value depending  on  the loca- 
tion of  all samples. 

DISCUSSION 

The  method  defined  here is based on Fyrvalues for 
pairs of populations. Fsl-based  analyses appear  appro- 
priate in a  number of  ways ( CROW and AOKI 1984; SLAT- 
KIN 1991, 1993, 1994). &values are relatively indepen- 
dent of mutation  rate and mutation process, and of 
total population size, in contrast to probabilities of iden- 
tity. The formulas for FYI., obtained from earlier asymp- 
totic results for large distances and infinite populations, 
turn  out to be remarkably accurate  for  the finite popula- 
tion models and at short distances, particularly in two 
dimensions. They can be  related to average coalescence 
times, though  the maximum value at  long distance is 
not given by coalescence theory and  depends  on  both 
mutation  rate and mutation process. The representa- 
tion introduced  here  should clarify the  relationship be- 
tween identity and coalescence measures in isolation 
by distance models. It also emphasizes the role of the 
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kurtosis  of the distribution of dispersal on expected 
levels  of differentiation. 

In his formulation of isolation by distance models 
WRIGHT (1946) took into  account  the  nature of the 
dispersal distribution by  way of the  neighborhood size, 
a  number of individuals, and  the  neighborhood  area, 
the surface occupied by this number of  individuals.  His 
most precise definition of neighborhood size  is the re- 
verse of “the chance that two uniting gametes came 
from the same individual” (see Equation A12). It is 
apparent from Figure 2 that this quantity does not de- 
scribe any simple feature of the model, neither  does 
the  neighborhood  area  that is a  proportional to the 
neighborhood size for all examples in  Figure 2. The 
quantity 4N7ra2 that  determines  the value of the slope 
in the two-dimensional model should  not be confused 
with the  neighborhood size. WRIGHT found  that  the 
value  of the  neighborhood size  is  4N.ira2 for Gaussian 
dispersal, but is different for other distributions. Here 
the result that  the slope is 1 / ( 4N7ra2) arises without 
reference to a Gaussian distribution of parental dis- 
tances, and holds more generally. 

The theoretical results agree with earlier numerical 
studies of Fyr and related quantities that showed that 
differentiation in the two-dimensional stepping  stone 
( i . e . ,  nearest neighbor  dispersal) model is roughly as 
expected under the island model,  and increases more 
rapidly  with distance in one-dimensional models (Kr- 
MURA and MARUYAMA 1971; CROW and Aom  1984; SLAT- 
KIN and BARTON 1989; SLATKIN 1991 ) . An important 
but frequently neglected message from the two-dimen- 
sional stepping  stone model is that subpopulations that 
never exchange migrants may not exhibit much  higher 
Fy,. values than those that  do. 

Another  important implication of these models is 
that  an  apparent absence of a  pattern of isolation by 
distance may be due  not only to range expansions 
( SLATKIN 1993), but also to sampling at large distances 
(so that  that R,,c 4 1 ) , or to large values of Da‘ . The 
capacity  to detect isolation by distance depends also on 
the range of (logarithm of) distance values  investi- 
gated, and  on the variance of estimators that is probably 
lower at  short distances. 

However, the models show that  the variation of pair- 
wise F s T  values  with distance may be  more easily inter- 
pretable  that  the Fs,.values  themselves.  Using F~values  
themselves to estimate demographic parameters is not 
straightforward, and  the examples confirm these expec- 
tations. In both of them,  the  “slope”  and direct esti- 
mates differ by less than twofold. This agreement may 
be  due in part to the fact that  the estimates are based on 
differentiation at  a relatively  small geographical scale, 
where stochastic equilibrium is approached  more rap- 
idly ( SLATKIN 1993) , and where differentiation should 
be independent of the details of the mutation process. 
Some other complicating factors such as spatial varia- 

tion of demographic parameters or selection variable 
in space are also more easily  avoided at  short distances. 

The relatively  small discrepancies between direct and 
indirect estimates may be due to minor inadequacies 
of the models as  well  as imprecision of the estimators. 
Good mark-recapture estimates of a‘ may also be diffi- 
cult to obtain because of long distance migration out- 
side the study area. More studies of this kind would  be 
necessary before systematic differences between differ- 
ent kind of estimates can be detected  and  interpreted. 
Nevertheless, the variation of FU./ (1 - I+,.) with  dis- 
tance contains the most  easily interpretable informa- 
tion, and the available examples show that  there is a 
better match between direct and indirect estimates of Da‘ obtained in  this way than with indirect estimates 
of this quantity obtained by other methods. 
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APPENDIX 

Identity by descent: Consider migration in one di- 
mension. Let y = (1 - u) and ml be the probability 
that  the  parent of some gene in population j was in 

population j + I, then  at stochastic equilibrium the 
probabilities e, of identity by descent of pairs of genes 
in subpopulations i and i + j obey the relationship 
( MALECOT 1951 ) 

An explicit solution is expressed as  follows.  For n sub- 
populations on a circle, let f i  be  the  integer  part of n/ 
2, $( z) = X?: mlzl be  the  generating function of the 
m’s, and define 

Then 

where A, = AnI2 = 1 and Ak = 2 otherwise [see m u -  
YAMA ( 1970) with notations changed and slightly differ- 
ent value  of f i ]  . The limit when n goes to infinity is 
(h4ALECOT 1950; NAG- 1976; SAWYER 1977) 

In the same way, for  a two-dimensional torus of n, X ny 
subpopulations, 

x cos (F) cos ( T )  2 ~ k m  7 (A5) 

where the f i ’ s ,  E ’ s  and $’s are  defined as above, one  for 
each dimension. When both n, and nr goes to infinity, 
the above result converges to 

,g* = 
( l -  e,*,) 1 s 7r Y*; (eZX)*,: (eZY) 

I k  2N7r2 0 1 - y$’x (e ’”)  $; ( e ” )  

X cos ( j x )  cos ( k y )  dxdy. (A6) 

Evaluation  of the integrals in (A4)  and  (A6) is detailed 
by SAWYER ( 1977)  and yields Equations 1-4. These for- 
mulas are asymptotic results for low mutation rates, ie., 
for y in the  neighborhood of 1. Taken as function of 
y these are approximations for  the  generating func- 
tions of coalescence times e( y )  in the  neighborhood 
of 1. 
Values of j? and CsT: It is useful to consider the  quan- 

tity 
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At the low mutation limit, it can be interpreted as a 
ratio of average coalescence times, 

This ratio has a finite limit when the  number of subpop- 
ulations increases though  the average coalescence times 
themselves become infinite. In finite populations To = 
2Nnp, where np  is the  number of subpopulations ( STRO- 
BECK 1987), hence is readily obtained when Cw is 
known. 

From Equation A3, 

x (1 - COS (y)) , (A9) 

and when n goes to infinity, 

0: - - 1 J T  y@' ( e " )  
1 - pi* 2N7r o 1 - y@'(  e") 

X (1  - COS ( j x )  ) dx. (A10) 

The integral is no more  than  a difference between two 
integrals discussed by SAWYER ( 1977). In this way one 
obtains Equation 5 as the difference between Equations 
1 and 2. Likewise Equation 6 is the difference between 
Equations 3  and 4. 

Discrete  migration  distributions, A2 values,  and 
Wright's neighborhood  size: The examples make  use 
of the following distributions of parent-offspring dis- 
tance. In some cases the probability of migration by I 
steps in one dimension is mL( d, n) = dC1,+""2-" + (1 
- d)Slo(neven), @ ( e " )  = 1 - d ( l  - cos"(x/2)) and 
g 4  - - dn/4. When n = 2 it corresponds to the  stepping 

stone model with migration rate in each dimention d/ 
2. (The migration rate m M din two dimensions if d is 
small.) When d = 1 and n 2 2, this is a "shifted" 
binomial that may be considered a discrete equivalent 
of Gaussian migration. In other cases q, = 1 - d/2 
and 

ml = (1 - q)qL-'d/4 for 1 f 0,  

@ ( e " )  = 1 - [I - (1  - q)(cos (x) - q ) /  

(1 - 2 ~ 0 s  ( x ) q +  q')]d/2 

and 

a ' =  ( d / 2 ) ( 1  + q ) / ( l  - q ) 2 .  

Thus,  the fraction of migrants is determined by d,  and 
among migrants distance follows a geometric distribu- 
tion described by q. 

A2 is defined by SAWYER (1977), Equation (3.4). 
Since C~v./ ( 1 - CS,) is almost identical to the  "poten- 
tial kernel" of the  random walk defined by the 9"s 
( SPITZER 1976), some results  of SPITZER (1976), p. 124, 
can be used to obtain a somewhat more explicit formula 
in the case of isotropic migration: 

where A = 0.9159 . . . is Catalan's constant. AI and A2 
were computed using Muthemutica (WOLFRAM 1991 ) . 

In the  present notations, WRIGHT'S neighborhood 
size (WRIGHT 1969, Equations 12.40-12.41) can be 
written 

for the lattice models. It has no simple relationship to 
Nand to A2 / 0 or the integral in the definition of A2, 


