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ABSTRACT 
The robustness of parametric linkage mapping against model misspecification is considered in experi- 

mental breeding designs, with a focus on localization of the  gene. By examining the expected LOD across 
the  genome, it is shown that single-gene models are quite robust, even for polygenic traits. However, 
when the marker map is of low resolution, linked polygenes can give rise to an  apparent “ghost” gene, 
mapped to an incorrect interval. The results  apply  equally well to quantitative traits or qualitative 
(categorical) traits. The results are derived for backcross populations, with a discussion of extensions to 
intercross populations and relative-pair mapping in humans. 

I N linkage mapping, researchers often begin by adopt- 
ing  a parametric model for  the  dependence of the 

phenotype on  the unknown (single) gene of interest. 
The LOD score is then used to estimate the  gene loca- 
tion. A natural question arises:  how robust is the LOD 
score? In other words, if one  or more trait genes exist 
but  the assumed phenotype model is incorrect, will the 
LOD score still tend to be maximized near  the  true 
gene or genes? This issue  has not  been extensively  inves- 
tigated in the  experimental  breeding setting, although 
some robustness is implicitly assumed in the  common 
practice of estimating multiple gene locations using a 
single-gene model (LANDER and BOTSTEIN 1989, e.g., 
JACOB et al. 1991). Related robustness investigations in 
human  mapping  include CLERGET-DAIZPOUX et al. 
(1986),  VIELAND et al. (1992), NscH and GIUFFRA 
(1992), and HODGE and ELSTON (1994). This paper is 
strictly concerned with the localization of genes, assum- 
ing  that linkage has already been established. Other 
investigators (WILLIAMSON and AMOS 1990; FREIMER et 
al. 1993) have examined another form of robustness 
involving the adequacy of linkage testing where some 
parameters (e.g., marker genotype frequencies)  are mis- 
specified. 

The LOD score is based on a likelihood model for 
the  phenotype, and if the model is specified correctly 
it follows from the consistency property of likelihood 
(COX and HINKLEY 1974) that as the  number of individ- 
uals increases, the estimate of the  gene location will 
converge to the  true location. However, under model 
misspecification a likelihood-based estimate may con- 
verge to an incorrect location on the  genome.  Further- 
more, some degree of  misspecification may be unavoid- 
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able, and  the trait may in fact be polygenic. A main 
point of  this paper is to show that with large sample 
sizes the LOD score tends to reach its maximum within 
the  marker interval containing  the  gene, as long as no 
more  than one trait gene resides on the chromosome 
under study. This result may appear to contrast with 
the finding of  CLERGET-DARPOUX et al. (1986) that mis- 
specification may result in  highly  biased location esti- 
mates. However these authors assumed that only a single 
marker is present, while the  present  paper  demon- 
strates that  additional markers will greatly reduce  the 
bias. 

Even stronger results hold for the dense marker case 
in  which a marker resides at every  locus. Although not 
feasible with current technology, this hypothetical sce- 
nario provides insight into  the effect of marker maps 
of  very high resolution. The results are established here 
for backcross populations, (see LANDER and BOTSTEIN 
1989 for an  introduction to mapping in experimental 
crosses) and apply to doubled haploids with  trivial mod- 
ification. Extensions to intercross populations and hu- 
man relative pair designs are considered in the DISCUS 

SION. Some finer statistical details are  contained in a 
technical report (WRIGHT and KONG 1995) and are 
omitted here. 

Throughout this paper,  the term assumed model refers 
to the model under which the likelihood is constructed, 
while true model refers to the  true state of nature.  To 
avoid confusion, the term gene will be used to refer only 
to loci that  influence  the  phenotype of interest. 

Likelihood estimation: LANDER and BOTSTEIN (1989) 
provided an  important development of the likelihood 

method for quantitative trait locus (QTL) estimation 
in experimental populations. The extension of  this  like- 
lihood approach to more  general settings (e.g., categori- 
cal traits) is relatively straightforward ( JANSEN 1993, 
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CHURCHILL and DOERCE 1994). The examples in this 
paper involve QTL mapping,  but the theoretical devel- 
opment is equally applicable to quantitative and cate- 
gorical traits. 

Let PO and P1 denote two parental  inbred lines, from 
which a  population of  backcross individuals is created, 
with  (say) PO as the  recurrent  parent. Let yi  represent 
the  phenotype  for  the ith individual and gj the genotype 
at  a  particular locus. Following LANDER and BOTSTEIN 
(1989), g, may be coded as a (0, 1) indicator variable 
for  the number of  P1 alleles. The assumed model sup- 
poses that  the  gene lies at  the locus, and that  the  pheno- 
type distribution is either fo (if g, = 0) , or f i  (if gi = 
1). These two phenotype distributions are themselves 
unknown, but  are specified by a  parameter vector A 
that can be estimated from the  data. We  will use A to 
denote this maximum likelihood estimate (MLE), i.e., 
the  parameter value that maximizes the likelihood or 
probability L ( A )  of the observed data. Finally, we use 
m, to represent  the  marker genotype information  for 
the zth individual. It is straightforward to show  (e.g., 
equation  7 of LANDER and BOTSTEIN 1989) that  the 
likelihood is 

~ ( h )  = n Ifo(yi; A ) P ( ~  = 0 I mJ 
1 

+ fi(y;; A)P(g = 1 ImJl. 

The quantities P(g, I mi) appear because the genotype is 
not observed directly, and  the probabilities are com- 
puted using the genotypes and positions of the flanking 
markers. We  will assume throughout  that Haldane’s 
map  function applies, i.e., there is no interference. 
(Note  that in the special instance that  the locus is ex- 
actly at a  marker the likelihood contribution  from  the 
ith individual will  simply be fo(yL; A) or f i ( y j ;  A),  ac- 
cording  to  the value of g, because the genotype is 
known exactly.) 

The familiar LOD score method, as implemented in 
experimental  populations, summarizes the evidence for 
the  gene as  follows: 

LOD = lOg~o(UA)/UL,,)), 

where A ,  is the  constrained MLE under  the null hy- 
pothesis that  no  gene is linked. The LOD score is then 
computed  at each genetic  location, with high scores 
(exceeding  a  threshold  computed to control  the false 
positive rate) used to identify regions likely to contain 
a trait gene. Note that  the LOD score takes a somewhat 
different form in traditional two-point linkage analysis 
in humans (OTT 1991). 

The following example illustrates LOD score map- 
ping under misspecification. 

Example: The  normal  single-QTL assumed model.  Most 
QTL mapping studies use the assumed model 

yi  = a + bs; + E , ,  (1) 

co- 

a -  

* -  

cu- 
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Position x (cM) 

FIGURE 1.-The  two-QTL true model with a QTL  at 30 cM 
and a second QTL of somewhat smaller effect at 70 cM (true 
locations  indicated by A).  A normal  single-QTL  model is as- 
sumed and the LOD score for 100 simulated  individuals is 
given for dense  markers (thin curve) and markers at 20-cM 
intervals (bold curve). 

where the c i  are  independent N(0,  a‘) errors.  Here A 
= (a, b, a2), fo is N(a,  a2) and fi is N ( a  + b, a2) .  

Now suppose  that in fact there  are two QTLs on  the 
chromosome, with true  model 

yz = 1 + ui + .75 u, + E ; ,  ( 2 )  

where ~i - N(0, 1) and uj, ui are  the genotypes of the 
QTLs at 30 and 70  cM on a single chromosome of 
length 100 cM. 

One  hundred such backcross individuals were simu- 
lated for illustration. Figure 1 plots the LOD  curve for 
these simulated individuals under two marker density 
scenarios: the  dense  marker case (thin curve) and  the 
nondense  marker case (bold  curve), with markers at 
intervals of  20  cM. The dense-marker LOD has a distinct 
peak at 32 cM and a lesser peak at 68 cM, corresponding 
to the genes at 30 and 70 cM,  respectively. In this exam- 
ple (as will be proven later) it appears  that  the  dense- 
marker case provides a kind of robustness for location 
estimation, with the global maximum near  one of the 
gene locations although  the  model is misspecified. Note 
that  the dense-marker LOD is a  step  function, with 
jumps  at  the observed crossover locations. Examina- 
tions of such dense-marker LODs  have been  performed 
for  breeding designs by DAVARSI et al. (1993) and KONG 
and WRIGHT (1994),  and  for  human relative pairs by 
KRUGLYAK and LANDER (1995). 

In  contrast,  the  nondense LOD peaks at  53 cM, in an 
interval that  contains neither  of the trait genes. Several 
researchers have noted this phenomenon of a so-called 
“ghost”  gene  (HALEY and KNOTT 1992; MARTINEZ and 
CURNOW  1992),  but  the underlying reasons for it have 
not been extensively studied. 

The approach A fixed set of fully informative mark- 
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ers is typed for each individual, and a single-gene model 
is adopted for likelihood estimation. Two forms of 
model violation are considered: 

1. the  phenotype distributions are incorrectly speci- 

2 .  more  than  one  gene influences the  trait. 
fied, 

HUBER (1967) has shown that under misspecification 
maximum likelihood estimates will,  with increasing 
sample size, generally converge to  the value that has 
greatest expected log-likelihood (see APPENDIX, Part 1). 
This result has been used in other linkage contexts 
(WILLIAMSON and AMOS 1990, 1995). We denote  the 
expected log-likelihood maximized over A 

M = max E(log Li( A)) ,  

where Li is an arbitrary individual i s  contribution to 
the likelihood and “log” signifies natural logarithm. M 
may be computed at each putative gene location, form- 
ing  an  entire curve M(x), which  has the same shape as 
the  expected LOD curve. If the maximum of M occurs 
at a  true  gene  location,  then we declare the likelihood 
procedure (ie., the LOD score)  “robust”  for localizing 
that  gene. 

In  the following RESULTS section we examine the 
function M(x) to determine  the effects of marker den- 
sity and model misspecification on  the estimation pro- 
cedure.  The theory is illustrated with  QTL mapping 
examples. A common  theme  throughout  the  paper is 
that robustness depends  more on the presence of rea- 
sonable flexibility in the assumed model than in the 
particular form of the  true  model. This fact may bring 
peace of mind to the  researcher, who  has control over 
the assumed model and only imperfect knowledge  of 
the  true model. 

Additional  notation: A consequence of the  breeding 
design is that  for each individual the  chromosome will 
be composed of entire regions of genotype = 0 and 
genotype = 1 ,  with the crossovers forming  the  bound- 
aries between regions. We will use g ( x )  to denote  the 
genotype at location x. Let x* represent  the  true loca- 
tion of the  gene, with the phenotype following either 
the  true distribution b if g( x * )  = 0, or hl if g(x*) = 1 
(the notation  required  for multiple true genes will be 
introduced as necessary). 

.h 

RESULTS 

One  gene  per  chromosome,  dense markers 

Here we consider the  dense  marker situation where 
a single gene lies on  the  chromosome under study. The 
main result of this section is covered in some detail, 
because it underlies  much of the  subsequent develop- 
ment.  To illustrate the robustness in this case, consider 
the following contrived example: 

Example: Suppose a  researcher  adopts  the  normal 

-2 0 2 4 
Phenotype y 

-2 0 2 4 
Phenotype y 

0 20 ,4 40 60 80 100 
Position x (cM) 

FIGURE 2.-Misspecification of the  phenotype model. (A) 
The assumed distributionsh  andfi. (B) The  true distributions 
h,,, h,. ( C )  The expected log-likelihood across the chromo- 
some when the markers are dense. Despite the misspecifica- 
tion, the function is maximized at exactly the  true location 
x* = 30 cM (indicated by A). 

single-QTL assumed model ( l) ,  but does not wish to 
bother with maximum likelihood estimation of the phe- 
notypic means and variances. The researcher decides 
to jix the assumed phenotype distributions as fo = N(0, 
1) andfi = N( 1, 1) when performing likelihood estima- 
tion of the  gene location (Figure 2A). In other words, 
the  researcher assumes a particular parameter value AI 
= (a, b, a‘) = (0, 1, 1),  and will consider no  other 
possible parameter values. Note that this is a far cry 
from the usual maximum likelihood approach in  which 
the best-fitting means and variance are  computed  at 
each putative location. Now also suppose that  the  true 
phenotype distributions b and hl are as plotted in Fig- 
ure 2B, with the  gene  at 30 cM on a 100 cM chromo- 
some with dense markers. Clearly the model is misspeci- 
fied: the assumed distributions have a very different 
form than  the  true distributions. Nonetheless, the ex- 
pected log-likelihood  peaks at the  true  gene location 
x* (Figure 2 C ) ,  indicating that  the researcher’s location 
estimate is robust, even under misspecification. 

To understand this phenomenon, we  will examine 
the  expected log-likelihood over the chromosome. 
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TABLE 1 

Genotypes, phenotype distributions and likelihood 
~ 

Genotypes  Likelihood  True  distribution 
g( 9) ,  g(x) Probability at x of y 

Again assume that  the  researcher rigidly adopts  the 
fixed phenotype distributions fo and fi for  the assumed 
model, i.e., the  parameter A is fixed rather  than esti- 
mated. Recall that  the likelihood contribution  for  a 
single individual i is f o ( y L )  in regions of the  genome 
where g, = 0 and is fi (yJ where gi = 1. The likelihoods 
and  true phenotype distributions are given  below for 
the  four possible pairs of genotypes at & (the  true 
location) and  another location x, where 8 is the recom- 
bination fraction between the two loci (Table 1 ) .  Sum- 
ming over the  genotype possibilities and taking expecta- 
tions over the  phenotypes gives the expected log-likeli- 
hood  at x 

where = Elq,[log Cfo(y)/f i  (y)) 1 + Eh, [log (y)  /fO(y)) 1 
is a  constant. Because 8 is the  recombination fraction 
between the  (fixed)  true location and the current puta- 
tive location x, it  is apparent  that if K > 0, then  the 
expectation decreases for putative locations moving 
away from 3. In other words, if K > 0, then  the maxi- 
mum of the  expected log-likelihood must be exactly at 
&, and robustness holds. 

K is a form of distance measure between probability 
distributions, similar to that discussed in KONC and 
WRIGHT (1994). Roughly speaking, K > 0 if the distribu- 
tion h0 is “more similar” to fo than it is to j, and if h, 
is more similar to J than fo. It is intuitively reasonable 
that K > 0 in our example above, as one can see by 
inspection of Figure 2, A-C that hl has a similar mean 
and variance as,L),, and hl has a similar mean and vari- 
ance as fi. 

To establish robustness generally, we must consider 
what happens when fo and f i  are specified up to the 
parameter A, and where the likelihood is maximized 
over A at each putative location x. It can be shown 
(APPENDIX, Part 2) that  indeed robustness holds in most 
realistic situations, and that this robustness essentially 
does not  depend  on  the true distributions h0 and hl. 

Result 1: Suppose a single gene lies on a chromosome hau- 

ing dense markms. If the assumed phenotype distributions f o  
and f, are of the same distributionalform,  with no restrictions 
on the ualues of A to be considered in maximizing the likeli- 
hood, then the LOD score is robust for the gene. 

The term “distributional  form” means that j, and fi 
are  the same type  of distribution, e.g., both  normal as 
in the  normal single-QTL model ( 1 ) .  This will almost 
always be the case in gene  mapping,  whether  the trait 
is quantitative or categorical. We emphasize that Result 
1 holds no matter what the true state of nature is because 
of the maximization over A at each location x. The only 
requirement is that jl and J; be of the same distribu- 
tional form, and  the  researcher has utter  control over 
this choice. 

In view  of the  example above the  intuition  behind 
robustness may seem fairly simple: the maximization 
over A will tend to choose estimates A such that j )  is 
similar to hr, and J; is similar to h,. Thus K > 0 and  our 
overall LOD score is robust. This intuitive argument is 
largely correct and will suffice for those readers  inter- 
ested mainly in the results and implications. However, 
the generality of Result 1 stems from a subtle symmetry 
in the  parameterization of j ,  and h,  considered in 
greater detail in  the APPENDIX, Part 2. 

As a final note, we stress that  the results of this section 
apply when one  gene lies on  the  chromosome under 
study, regardless of  the  number of genes on  the re- 
maining  chromosomes. 

One  gene  per  chromosome,  nondense markers 

The main result of the previous section was that  the 
single-gene assumed model  tends to be  robust when 
the markers are dense and a single gene lies on the 
chromosome under study. In this section we consider  a 
similar scenario,  but with nondense markers. The main 
result is similar to that of the previous section,  but only 
guarantees  that  the LOD score will tend to be max- 
imized near the  gene. 

Result 2: The markers are uniformly spaced on the chromo- 
some under study, a single gene laes on the chromosome under 
study, andh, and f, are ofthe same distributional form. Then 
the LOD score  is robust  to within the marker i n t m a l  con- 
taining the gene, or an ad?a,cen,f in,tPr?,al. 

The proof is given in  the APPENDIX, Part 3, and is 
similar to that of the previous section. It  is clear from 
the proof that  for most models the  gene will tend to 
be mapped to within the  correct interval, rather  than 
an adjacent interval. However,  within the  correct  inter- 
val, the misspecification will generally cause the esti- 
mate within the interval to be biased. 

This result forms a logical  basis for  current practice 
in linkage mapping, whereby  local peaks in the LOD 
score are  attributed to the  presence of genes at those 
locations. As long as no  more than one  gene lies on 
the  chromosome under study, such a  procedure will 



Robustness of Single-Gene  Models  421 

A '  

0 20 40 60 u80 100 
Position x (cM) 

FIGURE 3 . -M(  x) for a normal  single-QTL assumed model 
under a two-QTL true model when  only one of the true genes 
lies on the chromosome under  study,  at  location 75 cM (indi- 
cated by A ) .  Markers are present at 20-cM intervals. Despite 
the  presence of an additional unlinked gene, M ( x )  is max- 
imized very near  the true location. 

not lead the  researcher to an incorrect  portion of the 
chromosome. 

Example: One QTL on the chromosome under 
study, another QTL elsewhere on  the  genome.  Here 
the assumed model is the single-QTL normal  model, 
while the  true  model is 

y& = u; + uj + 4u,v, + E , ,  

where E - N(0, l ) ,  u, is the genotype for  a QTL at 
75 cM on  the chromosome under study, and v, is the 
genotype  for  a QTL on  another chromosome. The 
QTLs interact, and  the  interaction  term is intentionally 
strong  in  an  attempt to heighten  the  degree of misspeci- 
fication. The chromosome under study is  of length 100 
cM,  with markers at intervals of 20 cM. The curve in 
Figure 3 plots M ( x )  for this example, As predicted by 
Result 2, the  function peaks in  the  correct interval. 
Indeed, it peaks at almost exactly the  correct location 
at 75 cM. 

Multiple genes  per  chromosome,  dense markers 

The results of the previous two sections suggest that 
single-gene assumed models have desirable robustness 
properties when a single gene is present  on  the chromo- 
some under study. 

In this section we consider  the  dense  marker case 
with multiple genes per chromosome. For most of the 
assumed models in current use, the LOD score will still 
tend to be maximized at  one of the  gene locations. We 
begin with the following simple lemma. As always, the 
expectations  are under  the  true model. 

Lemma: On a  chromosome with multiple genes,  the 
difference in conditional  phenotype  means 

attains its maximum at exactly the location of one  (or 
more) of the genes. 

Proof of Lemma: We focus on  a  chromosome with mul- 
tiple true genes. Suppose x is a location between two 
adjacent genes denoted $ and $. Let d l  denote  the 
recombination fraction between $ and x, and O2 the 
recombination fraction between x and x$. Define pjk as 
the average phenotype  among individuals with geno- 
type = j at  the first gene and genotype = k at  the second 
gene, or Pjk = E(y,l g($) = j ,  gt(x$) = k ) .  We have for 
a single individual 

E(y,Igi(x) = 1 )  = E[E~y,IgM), g(4 

= 1, g1(49)1 = Q I & P O O  + - &?)POI 

+ (1 - f%)02P,, + (1 - Q l ) ( l  - 0dPIl. 

A similar expression may be derived for E(y, I g(  x) = 0 )  , 
giving 

{D(x)I' = { ~ ( y , I g t ( x )  = 1) - E(yiIgi(x) = 0)12 

= {(Pull - Pod (1 - 0, - 02)  + (PI0 - P O I )  (01 - Q d Y .  

The second derivative  of the above expression with  re- 
spect to O1 is positive. Therefore D ( x )  is convex between 
3 and x$ and achieves  its maximum over the interval 
[$, $1 at  either 3 or $, or  perhaps  at both locations. 
The above argument applies to any pair of adjacent 
genes, so that D(x)  must be maximized at  a  gene loca- 
tion. 

Using the Lemma, the following result can be  shown: 
Result 3: The markers  are  dense on the  chromosome under 

study, and the  assumed  model is the nmmal single-QTL model 
(1) or the oneparameter  exponential family single-gene  model 
(discussed  below). Then M(x) is  maximized  at  the  location of 
one of the  genes, and consequently  the LOD score is robust for 
that gene. 

The one-parameter  exponential family of models in- 
cludes commonly used models for categorical traits 
such as  Poisson and binomial distributions, including 
models for  dichotomous traits such as  disease status. 
The proof is given in the APPENDIX, Part 4. The proof 
proceeds by pointing out that  for these assumed models 
A4( x) is maximized at  the same location that maximizes 
D( x), and thus robustness follows from the  lemma. 

Example: The normal  single-QTL assumed  model: The 
assumed model is the normal single-QTL model given 
earlier in (1). The true model is (repeating Equation 2 ) ,  

yz = 1 + u, + .75v, + E , ,  

with ci - N(0, 1) and  the QTL residing at 30 and 70 
CM on a  chromosome of length 100 cM. The thin curve 
in Figure 4 plots the  dense-marker M(x) for this exam- 
ple. Result 3 applies and M ( x )  peaks at  the QTL  of 
greater effect at 30 cM. Here M ( x )  represents  the as- 
ymptotic shape of the  dense-marker LOD, and may be 
compared with the small-sample results in Figure 1. 
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FIGURE 4 . -M(x)  for a normal single-QTL assumed model 
under a two-QTL true model when both of the genes lie on 
the  chromosome  under study. This  scenario was originally 
depicted in Figure 1 .  With dense markers (thin  curve), M( x) 
peaks at exactly 30 cM, the location of the QTL of stronger 
effect. With nondense markers at 20-cM intervals, M (  x) peaks 
at 47 cM in an  incorrect interval (bold  curve). Note the simi- 
larity in shape between the LODs in Figure 1 and  the limiting 
forms depicted  here. 

Multiple  genes  per  chromosome,  nondense  markers 

We conclude  the results on a cautionary note,  point- 
ing  out  that when the markers are  not  dense  and multi- 
ple genes reside on a  chromosome,  the LOD score can 
be maximized in an incowect interval on  the chromo- 
some under study. This was the case  with the  nondense 
map of the first example in the  Introduction,  in which 
apparent evidence was observed for  a ghost gene. This 
bias was not merely the result of an unlucky simulation, 
but persists for large sample sizes,  as demonstrated in 
Figure 4. The bold curve plots M ( x )  for  the  nondense 
case  with two QTL on  the same chromosome and mark- 
ers at 20-cM intervals. More detailed analytic explora- 
tions of the two-QTL true  model can be found  in 
WRIGHT and KONG (1995). 

DISCUSSION 

In  a genome-wide search for trait genes, multiple 
high peaks in  the LOD score on different chromosomes 
are often taken as evidence for  separate  genes  at those 
locations. The results obtained in this paper provide 
considerable justification for this practice, despite the 
apparent  contradiction in using a single-gene assumed 
model to map multiple genes. The extreme generality 
of the results is particularly useful, as more sophisti- 
cated models (e.g., generalized linear  models)  for  phe- 
notypes become more commonly used in  gene map- 
ping. Interestingly, gene  interactions (epistasis) played 
little role in the results. 

TABLE 2 

S u m m a r y  of robustness  results 

No. genes on Marker 
chromosome density Robust? 

1 Dense Yes 
1 Nondense Yes, to within correct interval 

> 1  Dense Yes, for one of the genes 
>1 Nondense No 

In  experimental crosses it is sometimes cost-effective 
to perform selective genotyping of the progeny with 
extreme  phenotypes (LANDER and BOTSTEIN 1989), and 
it is important to note  that  the results here were derived 
assuming no such selection of the progeny. For the 
assumed models commonly used in practice, the results 
are summarized in  Table 2. 

It is important to keep  in  mind  that this paper focuses 
only on  the robustness of single-gene assumed models 
for estimating gene locations. Such a  model may not be 
very efficient (e.g., have much power to detect  linkage) 
compared to a  more realistic (e.g. ,  polygenic) assumed 
model. Even a plausible model, however, is unlikely to 
ever be the  “true” state of nature,  and it is of interest 
to understand how seriously the  researcher can be led 
astray. 

The results have been developed here  for backcross 
populations,  but  an  extension of some of the results to 
E2 intercrosses is straightforward. For intercross data  the 
assumed model specifies three  phenotype distributions, 
fo, fi and &, where as before  the subscript indicates the 
number of alleles inherited identical by descent from 
the P1 population  at  the  true  gene.  In  general if a single 
gene is present on  the chromosome under study, then 
robustness will hold, as long as fo, f i  and & again have 
the same distributional form without restrictions on  the 
parameter values.  However, strict dominance assump- 
tions can cause this condition to fail, and  the robustness 
under these restrictions deserves further exploration. 

A direct  connection exists between mapping in ex- 
perimental crosses and mapping using human relative 
pairs, where the genotype is recorded as the  number 
of alleles shared identical-by-descent by the two rela- 
tives. For many  types  of  relative pairs, the IBD status 
follows a transition pattern similar to that  in  experimen- 
tal  crosses (see  Table 1 in KRUCLYAK and LANDER 1995). 
For quantitative trait mapping, pairs of relatives are of- 
ten genotyped without prior selection based on  pheno- 
type, and for this  type  of design the robustness results 
of this paper also hold. 
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APPENDIX 

Part 1: HUBER (1967)  provided  results  on  the  con- 
vergence of maximum  likelihood  estimates under 
misspecification. The conditions  required  are  quite 

weak and will apply  in  most  realistic  situations. The 
two most  relevant  assumptions are  that  the  expected 
log-likelihood exists and  that  the  expected log-likeli- 
hood varies for  different  parameter values. The  latter 
is considered  in WRIGHT and KONG (1995) as an iden- 
tifiability condition,  along with an  example of its fail- 
ure. 

The existence of the log-likelihood is difficult to state 
generally in terms of the f and h distributions, a diffi- 
culty  also encountered by HUBER (1967). For discrete 
distributions, the log-likelihood will be unbounded if an 
individual’s phenotype is observed that is incompatible 
with the  correspondingfdistribution.  Thus, it is recom- 
mended  (quite sensibly) thatf,  andfi be parameterized 
to have  positive  mass at all conceivable phenotype val- 
ues. For continuous phenotypes, difficulty will arise if 
f ,  and fi have  tails that  are  too  short (i .e. ,  go to zero too 
quickly) compared to the  true densities h. For biological 
data, such cases  will  likely be rare. Nonetheless, some 
data  trimming and examination of influential pheno- 
type observations may be reasonable when performing 
analysis. 

Part 2: The  argument of the  proof is outlined below, 
followed by the  (much  shorter)  proof.  The  researcher 
in the  example was fortunate  enough to fix a  parameter 
value Al that gives robust estimates of the  gene location. 
We  will  say that Al is robust because of this property. 
Now suppose  that another researcher  had chosen to 
map  the same gene by fixing the assumed distributions 
as f o  = N( 1, 1), f i  = N(0,  1), or equivalently had fixed 
a single parameter value A2 = (a, 6, c2) = (1, - 1, 1). 
Note the second researcher chose exactly the opposite 
assumed distributions as the first researcher. We  will 
say that  parameters A, and A, are  “complementary” 
because they specify an exact exchange of the assumed 
phenotype distributions. If  Kl (the Kvalue correspond- 
ing to A,) is greater  than zero, then K2 (corresponding 
to X,) must  be less than zero, because the switching 
of  the assumed phenotype distributions (for any true 
distributions and h,) implies Kl = -&. In other 
words, A2 is not robust  at all, and in fact has its mini- 
mum expected log-likelihood at  the  true  gene location. 
Manipulation of (3) shows that if AI is robust then E[log 
L,(h1)] > E[log Li (Ap) ]  for all locations on  the  chromo- 
some. 

We now  have the necessary components to complete 
the  argument,  in  the  more typical scenario where the 
likelihood is maximized over A at each location x. We 
have the following: 

1. Each parameter value Al has a  complementary Ap. 
This is  why  we required  that f ,  and f i  be of the same 
distributional form without restriction on  the possi- 
ble choice of A, so that  an  exchange of the two distri- 
butions is permitted. This property is stated in 
WRIGHT and KONG (1995) as a symmetry condition 
for fo and fi. 
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2. If K2 < 0, then Kl > 0. Thus if a  parameter is nonro- 
bust, its complementary  parameter is robust, and 
the  robust  parameter gives a  higher  expected log- 
likelihood over the  entire  chromosome. 

These facts ensure  that only robust A’s need be con- 
sidered, because these dominate  the  others in expected 
log-likelihood. For a  robust A, the  function E[log L,(A)] 
is maximized at 9, and it is simple to show that, as a 
consequence, the global maximum over all x and A 
occurs at location x* .  

PmoJ Fix x f XV. For any A, there is a  complementary 
parameter value Ap, and assume without loss  of general- 
ity that E[log Lj(A1)] > E[log Li(A2)]  at location x. 
Rewriting E[log L,(A,)] - E[log &(A2)] > 0 gives, after 
some manipulation of (3),  

(% - o w ,  > 0, 

where 8 is the  recombination  fraction between x and 
x + ,  and thus Kl > 0. This further implies E[log Li(A,)] 
is maximized at XV. A, was chosen arbitrarily, so M(XV) 
> M ( x ) .  

Part 3: The markers are equally spaced across the 
chromosome, with adjacent markers lying map distance 
6 apart. For a single individual (the subscript i is s u p  
pressed) and  at location x (not in the interval con- 
taining x + ) ,  define &( x) = P(g( x) = 1 I W = k; s), where 
W indexes  the joint state of the two markers flanking 
location x as  follows: W = 1, if the left and right  marker 
genotypes are, respectively, 0 and 0; W = 2, if the left 
and right  marker genotypes are 0, 1; W = 3, if the left 
and right  marker genotypes are 1, 0; W = 4, if the left 
and right  marker genotypes are 1, 1. Let xA be the 
marker lying nearest the  true  gene location x+. Let 8 
be the  recombination  fraction between XV and xA, and 
let be the  common  recombination  fraction between 
adjacent markers. At location x the expected log-likeli- 
hood can be written 

E[log L,(A)I = wb[x1 + X,] + E ~ ,  [x, + - e a  

where 

K = {Eh[X,  + X2 - X, - &I 

- E h ,  [XI + x2 - x3 - &I), 

and where 

X1 = lOg(fo(J’; A)(1 - p f ( X ) )  +A() ’ ;  A ) & ( X ) ) ( l  - 861, 

X2 = log(f,(y; A)(1 - $(x)) + fi(r; A)$(x))86, 

X, = log(f,(y; A)(1 - &(x)) + f i ( ~ ;  A)&(X))O~> 

& = lOg(f,((y; A ) ( 1  - p:(x)) + f i ( J ’ ;  A)p:(x))(l - 0 6 ) .  

Note the similarity in  form between the expression for 
E[log &(A)] above and  the expression used in  the  proof 

of Result 1. Here, however, we have a term K that de- 
pends  on  both  the location x and  the  parameter A. In 
general, M(x) is not monotonically decreasing away 
from x * .  However, we  may compare  “analogous” loca- 
tions, that is, different locations that have the same 
position relative to their flanking markers. Applying 
essentially the same argument as in Result 1 (covered 
in  more  detail  in WRIGHT and KONG 1995), one can 
show that M( xB) > M(xc) ,  if xB and X(; are analogous 
locations and x(; is farther from the  gene. The global 
maximum in this case cannot  then  occur  more  than 
one marker interval away from XV. 

Careful examination of E[log L,(A)] in the interval 
containing x+ is much  more difficult and  the lengthy 
details are  not  reported  here.  These results can be 
roughly summarized as  follows: if there  are A values 
such that both Eb[logV;(y; A)/f(y; A ) ) ]  > 0 and 
Eh,[logV;(y; A)/f,(y; A ) ) ]  > 0, then M(x) will tend to 
be maximized in the  correct interval. This condition 
will,  of course  hold unless one  or  both of and hl are 
severely misspecified. 

Part 4: The normal single-QTL  assumed  model: The 
assumed model is as  given in (1 ). At a locus x, let 0; 
be  the limiting value  of the maximum likelihood esti- 
mate for c2. It can be shown that 

and  that M ( x )  is maximized where this  value is mini- 
mized. A simple variance decomposition gives 

Var(yi) = a; + %{E(YtIgi(X) = 1) - E(y,Ig,(x) = 0))’ 

= 0: + X{D(X) l 2  

and because Var(y,) is constant  the result follows from 
the Lemma. 

The  one-parameter  exponential family fitted  model: 
We consider here  the case where the assumed model 
has A = [I,!J0, I,!J1] and  the distributions can be written 

for known constant a > 0 and known functions b($ )  
and c(y). Many commonly used distributions are mem- 
bers of the  exponential family (COX and HINKLEY 
1914; MCCULLAGH and  NELDER, 1989), and may be 
continuous or discrete. Examples include Poisson and 
Binomial models (and  hence binary traits such as dis- 
ease), as  well  as Gamma models with known dispersion 
parameter. 

LetJ=  the  true  number of trait  genes  on  the  chro- 
mosome under study. Define = ordered  map loca- 
tion of the  jth  gene, j = (1, . . . , J. With respect to 
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the  chromosome  under study, the  true  conditional 
phenotype  distributions  then  depend  on  the joint ge- 
notype of the J genes { g i ( k f ,  . . . , gi( $)I. For  a back- 
cross individual there  are 2Jsuch possible joint geno- 
types. 

At a locus x, an examination of the derivatives of 
E[log L,(X)] with respect to $o and $l reveals that  for 
fixed x the limiting nuisance parameter estimates qOx 
and +hlx satisfy 

b’($Ox) = E(yiIgi(x) = O ) ,  br($lx) = E ( J ~ I ~ ( x )  = 11, 

giving 

1 
M ( x )  = % M o x b ’ ( $ o x )  - b ( $ o x )  

+ $Ixb’($lx) - N$lx)} + E(c(y)). 

Define %(x) = E(yiI &(x) = 0 )  and el(x) = E(yil gi(x) = 
1). Using the fact that %(x) + el(x) = 2E(yi) implies 
that 

d d 
8% ( 4  

s(x) = - - 
de1 (x) 

4 x) 

for a  smooth  function s(x). Then 

d 
M ( x )  = - 1 { - a [$ox~’($ox)  - W$Ox)l 

8% ( 4 2a &(x) 

d 
de1 ( x) 
” [$lxb’($lx) - b ( $ l x ) l  9 } 

and 
d 

a%(%) [$oxb’ ($ox) - b ( $ o x )  1 

d d - ” wax [ $ o x b ‘ ( $ o x )  - b($Ox)l - 
8% ( 4  

$Ox 

a 
8% ( 4 = [ $ o x H ’ ( $ o x )  + b’ ($ox)  - b ’ ( $ o x )  1 - b’”(%(X))  

1 
= ~ $ o x ~ r ~ $ o x ~ l  - - - $ox. 

fl (*ox) 

So, finally 
d 1 

8% ( x) 
M ( x )  = - {$ox - Ccllxl. 2a 

A  property of the  exponential family implies that %( x) 
is strictly increasing in $ox (KENDALL et al. 1987), and 
similarly  with el($ and $lx.  Then if, for example, %(x) 
< el(x), it follows that $ox < $lx and M ( x )  decreases as 
%( x) increases. Thus M (  x) is maximized at the location 
where D(x)  = (el (x) - %(x))‘ is maximized. 


