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ABSTRACT 
A Bayesian method  for  mapping linked  quantitative  trait loci (QTL) using multiple  linked  genetic 

markers is presented.  Parameter estimation and hypothesis testing was implemented via  Markov chain 
Monte  Carlo (MCMC) algorithms.  Parameters included were allele frequencies and substitution effects 
for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and 
polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL geno- 
types. Three  different MCMC schemes for testing the presence of a single or two linked  QTL on  the 
chromosome were compared.  The first approach includes  a model  indicator variable representing two 
unlinked QTL affecting the trait, one linked and  one  unlinked QTL, or both QTL linked with the 
markers. The second approach  incorporates  an  indicator variable for each QTL into  the  model  for 
phenotype, allowing or  not allowing for a  substitution effect of a QTL on  phenotype,  and  the  third 
approach is based on model determination by reversible jump MCMC. Methods were evaluated empiri- 
cally  by analyzing simulated granddaughter designs. All methods identified correctly a second, linked 
QTL and  did  not reject the one-QTL  model  when there was only a single QTL and  no additional or 
an  unlinked QTL. 

C URRENTLY, several methods  are available for map- 
ping  genes in outbred livestock populations, in- 

cluding  methods based on linear regression (LS), maxi- 
mum likelihood analysis (ML), residual maximum 
likelihood (REML)  with expected covariance matrix of 
random quantitative trait locus (QTL) effects, and 
Bayesian  analysis. LS is computationally fast, easy to 
implement even  with standard statistical  packages, pro- 
vides estimates of QTL position but  not of any other 
genetic parameters, and is restricted to specific mating 
designs. The REML method (GRIGNOLA et al. 1994, 
1996a,b; GRIGNOLA and HOESCHELE 1996) postulates 
normally distributed QTL  allelic  effects and is computa- 
tionally somewhat more  demanding  than LS analysis, 
provides estimates of variance contributions of QTL, 
and allows  use  of pedigree information in fitting poly- 
genic and QTL  effects. REML with an  expected covari- 
ance matrix of  QTL effects conditional on observed 
marker  information is an  approximation to ML and 
Bayesian  analyses. These  latter  methods  account  for  the 
distribution of genotypes on the  pedigree given ob- 
served phenotypic and marker  data, and enable  the 
estimation of  all genetic parameters assuming specific 
QTL models (e.g. ,  biallelic or normal-effects QTL), but 
are computationally very demanding. Approximate im- 
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plementations of ML linkage analysis for livestock popu- 
lations are available (.g., WELLER 1986; GEORGES et al. 
1995; MACKINNON and WELLER 1995). Bayesian  analysis 
provides alternative parameter estimators to  the stan- 
dard ML estimators conditional on a most  likely  QTL 
position and alternative tests for linkage based on poste- 
rior probabilities of linkage (HOESCHELE and VANRA- 
DEN 1993a,b). Additional fixed and random effects can 
be  included in the analysis,  as  well  as allele frequencies 
and map positions of markers. Bayesian  analysis  utilizes 
pedigree information in fitting QTL and polygenic  ef- 
fects, and is suitable for  different  breeding designs. A 
more complete review  of different statistical methods 
for gene  mapping in livestock populations is given by 
HOESCHELE et al. (1996). 

In earlier contributions, Bayesian linkage analysis for 
outbred livestock populations proposed by HOESCHELE 
and VANRADEN (1993a,b) was implemented via  Markov 
chain Monte Carlo (MCMC) algorithms for a single 
marker and a biallelic  QTL (THALLER and HOESCHELE 
1996a,b). UIMARI et al. (1996a) extended this method 
to Bayesian  analysis mapping  a biallelic  QTL using mul- 
tiple linked markers. HOESCHELE et al. (1996) modified 
the latter  method to fit a normal-effects  QTL model. 

The  current  paper was motivated by evidence of de- 
tecting a single “ghost QTL” with  LS  analysis,  when 
two linked QTL  were  actually segregating (HALEY and 
KNOTT 1992; MARTINEZ and CURNOW 1992). The same 
phenomenon has been  reported by GRIGNOLA and 
HOESCHELE (1996) using REML. To avoid detecting  a 
ghost QTL, a two-dimensional search for two  QTL can 
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be  performed with  LS and REML methods (GRIGNOLA 
and HOESCHELE 1996; SPELMAN et al. 1996; UIMARI et al. 
1996b). An alternative approach has been suggested by 
ZENG (1993, 1994) and XU and ATCHLEX (1995), re- 
ferred to as Composite Interval Mapping, where pheno- 
types are regressed on linked and unlinked markers, or 
marker variances are fitted, respectively. Furthermore, 
JANSEN (1993,1996) andJANsEN and STAM (1994) devel- 
oped maximum likelihood interval mapping  including 
selected markers as cofactors to account for the effects 
of other QTL. 

In this paper, we extend Bayesian linkage analysis to 
two linked QTL. Three  different MCMC algorithms are 
compared for testing the hypotheses of zero, one  and 
two QTL linked to the markers. The first approach 
follows the idea of THALLER and HOESCHELE (1996a) 
and  UIMARI et al. (1996a), where a linkage indicator 
variable is included in the joint posterior distribution. 
The second approach employs the idea of variable  selec- 
tion by KUO and MALLICK (1994),  and  the  third ap- 
proach applies Bayesian model determination by revers- 
ible jump MCMC (GREEN 1995).  The  methods  are 
evaluated by analyzing simulated granddaughter de- 
signs. 

MATERIALS AND METHODS 

Bayesian inferences about  the  number of linked QTL 
and parameters were  based on the joint posterior distri- 
bution of  missing data and parameters given observed 
marker ( M )  and phenotypic data (y) of a quantitative 
trait. Parameter vector 0 included  gene frequencies (PI  
and &), substitution effects (a1 and ap)  and map posi- 
tions ( dQl and d@) of the QTL (QTL, and QTL,) , vector 
of allele frequencies (9) and map positions (d) of m 
marker loci, an overall mean and additional fixed  ef- 
fects (p) ,  and polygenic (a:) and residual (a:) vari- 
ances. The position of the first marker was taken as the 
origin of the linkage group (dl = 0) .  The missing data 
included polygenic  effects (u) and multi-locus marker- 
QTL genotypes (MG) for the  entire  pedigree. Following 
UIMARI et al. (1996),  the MG genotype was defined such 
that in each Gibbs  cycle the linkage phases of the mark- 
ers and QTL are known. This approach enables the 
sampling of  QTL allele frequencies from standard Beta 
distributions and  the sampling of marker allele frequen- 
cies from Dirichlet distributions. Map positions were 
converted to recombination rates using Haldane's no 
interference map function. Below, P(.) will denote  the 
joint probability of discrete variables and f c . )  the joint 
probability density of continuous variables or a combi- 
nation of discrete and continuous variables. 

Also included in the joint posterior distribution and 
in the Gibbs sampler were indicator variables for the 
linkage model (no QTL, one QTL, or two QTL linked 
to the  markers).  Three MCMC algorithms that differed 
in the definition of the linkage indicator variables and 
the one  (or single-)-QTL model were compared. 

The first approach (MCMC scheme 1) follows the 
idea of THALLER and HOESCHELE (1996a,b) and  UIMARI 
et al. (1996a), where a linkage indicator variable 4 is 
included in the joint posterior distribution. The follow- 
ing  notation is used to denote  the  four different states 
of linkage: I = 00 denotes two unlinked QTL, 1 = 01 
and I = 10 denote  one linked and  one unlinked QTL, 
and 1 = 11 denotes two linked QTL on the chromosome 
under a study.  Note that  the single-QTL model in 
scheme 1 postulates one linked and  another unlinked 
QTL, and polygenic  effects. The  joint posterior density 
of the parameters, the missing data, and the linkage 
indicator variable  given observed marker and  pheno- 
typic data is 

f(@, MG? u, 4 %  M) OC f(Of(0I Of(ul @)RMGI 0) 

X P(MIMG)f(yIO, u, MG),  (1) 

where parameters are assumed to be independent a 
priori; or 

f ( Q  I O  = f(P)fcal)f(a*)f(Pl)f(~~L) 

x f(dQ1, dpI Of(q)f(~)f(af)f(a3 (2) 

and observations are  independent conditional on miss- 
ing  data, or 

P(MIMG)f(yI@, U ,  MG) = IIy'=, P(MiIMG;) 

x rIE1 f(yzIP, a,, %, ut, MG,, a33 (3) 

where n ( N j  is the  number of individuals with marker 
(phenotypic)  data, andfcp) = constant. Prior distribu- 
tions are as  follows: uniform on [ p ,  p,] for p ,  and p,  
where 0 < p,  < p ,  < 1; uniform on [a1, au], with 0 < 
a1 < a ,  and a ,  being a large constant, for a,  and az; 
and uniform on [0 ,  c] for a: and a:, where c is a large 
constant. Marker allele frequencies are Dirichlet (1) at 
each locus. The marker positions are order statistics 
from a uniform distribution on the assumed prior 
length of the linkage group,  and d, and d@ are  order 
statistics from a uniform distribution (QTL, is to the 
left of QTL,). If I = 00, d,, and d, are uniform on the 
remainder of the genome  not  including  the chromo- 
some under study ( [  Tu - TL, q). If 1 = 10, dQ1 and d, 
are uniform on the chromosome under study ( [ TL, Tu] ) 
and  on  [Tu - T,, T ] ,  respectively.  Similarly, if I = 01, 
dQl and dp are uniform on [Tu - TL, r ]  and [ 7;, T,], 
respectively; and if 1 = 11, dQl and dp are  order statistics 
from the uniform [ TL, T,], where Tis the total length 
of the  genome, and TL and Tu are assumed lower and 
upper limits,  relative to the origin of the linkage group, 
of the chromosome under a study, respectively. Further- 
more, f (  uI 0) = f (  u I a:) is the density of N(0,  A d ) ,  
where A is a known  additive genetic relationship matrix, 
and P(MGl0)  is the joint probability of a set of multi- 
locus genotypes on the pedigree. 

Univariate conditional sampling distributions were 
used for all parameters in (1) except that 1, dQl, and d p  
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were sampled jointly using the  method of composition 
(TANNER  1993). Linkage indicator variable 1 was sam- 
pled according  to  the  conditional probability 

where k = 00, 01, 10, and 11, and 

P(MGId, 1 = 00) = P(MGId, rQ, = 0.5, r@ = 0.5) 
Tu 

P(MGId, 1 = 01) = J 
0 

X P(MGI d, ~ Q I ,  d@)f(d~l)f(d~~)dd~ld@, (5) 

where rQk ( k  = 1,2) is recombination rate between QTL, 
and the first marker, and 0 and dm are  the positions of 
the first and  the last marker, respectively. Note that  (4) 
is obtained by conditioning on all  variables except dQl 
and d,. For the last conditional probability of MG in 
( 5 ) ,  the inner integration is for QTLI  with integration 
limits equal  to  the left end of the  chromosome and the 
minimum of the position of the left flanking marker of 
QTL, (dIAMm) and a position c cM to  the left of  QTL,, 
with c cM being  the allowed minimum distance between 
QTL. The  outer  integration  for QTL, is from the origin 
of the linkage group to the chromosome end. These 
integration spaces were defined  to assure that  at least 
one marker is located between the QTLs. Samples of 
the QTL map positions were obtained by discretizing 
their  conditional (on 1, d, and MG) distribution, i e . ,  by 
computing  the  conditional probability densities of dQl 
and d@ on a two-dimensional grid over their joint sam- 
ple space. Sampling distributions for  the other parame- 
ters and missing data can be  found in UIMARI et al. 
(1996a). 

The second approach (MCMC scheme 2) follows the 
idea of variable selection in linear and generalized lin- 
ear models of KUO and MALLICK (1994). Note that  for 
this scheme,  the single QTL model postulates that  the 
trait is affected by one linked QTL and polygenes, but 
not by an  additional  unlinked QTL. The  linear model 
for phenotype y of individual i given its QTL genotypes 
is 

yi  = x$ + X1ztIal + X2zC2a2 + ui + e,, (6) 

where x: is row i of design covariate matrix X, p is a 
vector of  fixed  effects, Z , ~  and are coefficients equal 
to - 1, 0 or + 1 depending  on  the genotype at each 
biallelic QTL, and XI and X2 are  indicator variables  tak- 

ing values 0 or 1. If A, = 1 ( k  = 1,2),  QTL,  with substitu- 
tion effect ak has an effect on mean  phenotype. The 
joint posterior density of the parameters, the indicator 
variables and missing data given  observed marker and 
phenotypic data is 

f ( 0 ,  MG, u, Aly, M> P(A)f(e)f(ul@f'(MGI@ 

x P(MI M G ) J ~ I  0, u, MG, A ) ,  (7) 

where A = [ X1, X,] I .  Vector A was sampled according 
to the  conditional probability 

P(Xl = j ,  h2 = j f  I 0, u, MG, y) 

- - P(X1 = j ,  X2 = j ' ) f ( y  I 0, u, MG, XI, X,) 
X:=, C:,=, P(X1 = k, X2 = k ' ) f ( y18 ,  u, MG, XI,  X,) . 

(8 )  

Conditional on A, the sampling distributions for  the 
parameters and missing data  are as before, except that 
if X k  = 0 ( k  = 1, 2), then ak is sampled from its prior 
distribution. 

The third  approach (MCMC scheme 3) is based on 
Bayesian model determination by reversible jump Mar- 
kov chain Monte Carlo (GREEN  1995).  In this approach, 
one linkage indicator variable is defined as  in the single 
QTL analysis  of UIMARI et al. (1996a) with 1 = 0 (no 
linkage) and 1 = 1 (at least one QTL linked),  and  an 
additional QTL model indicator variable is denoted by 
h with h = 1 (one QTL linked) and h = 2 (two QTL 
linked). This analysis can alternatively be conducted in 
two steps by first performing  the single QTL  analysis  of 
UIMARI et al. (1996), and if linkage ( 1  = 1) is sampled 
frequently, subsequently running  an analysis  with 1 = 1 
fixed and h being sampled. The two-step approach is 
chosen here. As for MCMC scheme 2, the one-QTL 
model ( h  = 1 )  postulates a single linked QTL and poly- 
genes, but  not  an  additional unlinked QTL. 

The dimension of the  parameter vector and  the sam- 
pling spaces of the MG differ for the cases  of one us. 
two linked QTL. The reversible jump MCMC approach 
allows  switching  between different sample spaces  within 
a single Gibbs chain. Define 8, = [p, all, PI,, dQll, d, 
q, a:, a:] as the  parameter vector under  the one-QTL 
model, 02  = [P,  a z l ,  a z z ,  fiz, d,,, dw2, d, q, 
a:] as the  parameter vector under two-QTL model, MGI 
as the vector of multi-locus  marker-QTL1 genotypes, 
and MG2  as the vector of marker-QTL1-QTLz genotypes. 
Then, a move from one model or sample space to an- 
other is proposed  according  to  the probabilities of 
"birth" and "death", where birth refers to a move from 
a lower to  a  higher dimensional space, here from the 
one-QTL to the two-QTL model,  and  death is the oppo- 
site move. When the  current model is the one-QTL 
model, probabilities of birth  and  death  are 

61 = cmin(1, P(h = 2 ) / P ( h  = l )}  and d, = 0, 

and when the  current model is the two-QTL model, 
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b2 = 0 and d2 = cmin(1, P(h = l ) / P ( h  = 2 ) } ,  

where P( h = 1)  and P( h = 2 )  are  prior probabilities of 
the one-QTL and  the two-QTL model, respectively, and 
c is a  constant to be specified. [GREEN (1995) recom- 
mends  setting c such that bk + dk = 0.9 for k = 1, 21. 

A move from the one-QTL to the two-QTL model 
requires  obtaining values for aY2, fill, p12, d,,, and 
d,,, while the reverse  move requires  obtaining values 
for all, PI,, and dQll. We chose to set aPl = all  and 
generate ay2 = w, with w, - U[ae a , ] .  New and b2 
were generated from the  current P I ,  as p2, = PI + wp 
and = 611 - up ,  where wl, - U[Pmin,  P,,,,,l and Pr1Iax 

= min{p,, - PI,, P I ,  - P, 0.201 and pmin = -p,,,,,. New 
QTL positions were generated  from dQl as dyLl = dQl I 

and d,, = d,, + w,!, where w , ~  - U [ & i r , ,  &,,,I and d,,,;,, 
= max(dQ1 - dmrQ1, dmQl - dQ1, 20 cM1 and Lax = &in 

+ 40 cM  is the position of the  right flanking 
marker of QTL,). For the reverse  move from the two- 
QTL to the one-QTL model, a l l  = aql ,  PI, = 0.5 (pll 
+ pa), and dQl = dp1. These proposal distributions 
for  the  parameters satisfy the dimension-matching re- 
quirement of reversible jump MCMC (GREEN  1995), 
i.e., the  dimension of [e,, w,, wp,  WJ and [ H 2 ]  are equal. 
Other proposal distributions consistent with dimension 
matching can be used. 

Because MG1 does not contain genotypes for QTL,, 
MG2 has to be generated also subject to the  dimension- 
matching  requirement. Marker and QTL, (GI)  geno- 
types  were the same as under  the one-QTL model, and 
QTL, genotypes (G2) were sampled using the condi- 
tional probabilities P(G2102,  MG,). For the reverse 
move from the two-QTL to the one-QTL model, GI was 
kept and G2 deleted. 

A proposed move is accepted or rejected in a Metrop- 
olis-Hasting step. A move from the one-QTL model to 
the two-QTL model is accepted  according to the  proba- 
bility 

min 1, P(h = 2 )  f (&) P(MG2 1 0 2 )  { P(h = 1) f(Odf(w) P(MGII&)P(G2I%,  MGI) 

where 

TABLE 1 

Granddaughter  designs with different map positions  and 
substitution effects (in genetic  standard  deviations) 

of two biallelic QTL 

QTL I QTLz 

Position ( dQ,) Effect Position (dq2) Effect 
Design (CM) ( 0 1 )  (CM) (ad 

I 30 1 .o 70 0.75 
I1 30 1 .o 70 0.375 
I11 30 1 .o 
N 30 1 .o Unlinked 0.75 

- - 

A move from the two-QTL to the one-QTL model is 
accepted  according to the reciprocal of the above for- 
mula. 

Simulation: The methods were evaluated empirically 
by analyzing simulated granddaughter designs (WELLER 
et al. 1990).  The simulated pedigree  structure was iden- 
tical to that of THALLER and HOESCHELE (199613) and 
UIW et al. (1996a) with 2000 sons, 20 sires, and nine 
ancestors of sires. All dams were unrelated. Phenotypic 
data consisted of daughter yield deviations (DYDs) 
(VANRADEN and WIGGANS 1991) of 2000 sons. Heritabil- 
ity  of the quantitative trait was set to 0.3, and reliability 
of DYDs was 0.7. Marker information consisted of  five 
markers with  five alleles each at  equal frequencies and 
was available for all animals in the  pedigree  excluding 
dams. Markers were 20 cM apart. QTL were assumed 
to be biallelic. Locations and effects  of the QTL varied, 
and  are listed in Table 1. Depending on  the design, 
one linked QTL, one unlinked and  one linked QTL, 
or two linked QTL were simulated, and  the  remaining 
genetic variation was polygenic. QTL and marker geno- 
types were simulated for all sons, sires, and ancestors. 
Each design was replicated four times and analyzed  with 
all three MCMC schemes. 

RESULTS 

Starting values: For all  analyses the same starting val- 
ues were used. Starting values for  the  parameters in 8 
were arbitrary, and true values  were used as starting 
values for d (this can be justified by the fact that  marker 
distances are usually  well estimated in advance). Start- 
ing values for MG and u were obtained by first sampling 
sires and sons jointly by ignoring ancestors of the sires, 
and  then sampling the paternal ancestors conditional 
on offspring genotypes but  ignoring  parental  geno- 
types. The starting  model  for  the first MCMC scheme 
was the one-QTL model or 1 = 10; X I  = 1, X2 = 0 for 
the  second  scheme, and h = 1 (with 1 = 1 fixed)  for 
the  third  scheme.  The  starting value for dQl was 25 cM 
for all MCMC schemes. The starting position for  the 
second QTL was “unlinked”  for  the first MCMC 
scheme, 65 cM for  the  second MCMC scheme, and  no 
starting position was required  for  the  third MCMC 
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FIGURE 1.-Proportions 
(%) of samples where the 
two-QTL model was  se- 
lected. Proportions were 
calculated within consecu- 
tive blocks of 2000 Gibbs 
cycles, for design I1 and 
MCMC schemes 1 ( O ) ,  2 
(El), and 3 (m). 

Gibbs cycle (~1,000) 

scheme, where the one-QTL model  did not include d, 
in the  parameter vector. 

Prior distributions: For MCMC schemes 1 and 2, 
prior probabilities for 1 = 00, 1 = 10, 1 = 01, and 1 = 
11 (or A = [0, O]’, X = [ l ,  O]’, A = [0, l]’, and A = [l ,  
13’) were 0.8, 0.08, 0.08, and 0.04, respectively. For 
reversible jump MCMC, equivalent values  were P(1 = 
0) = 0.80 and P(l = 1) = 0.20, and P(h = 1) = 0.80 
and P ( h  = 2) = 0.20. Limits for the  prior distributions 
of the QTL substitution effects varied depending  on 
the MCMC scheme used. The  upper limits for a1 and 
a2 were set  to 2.00,, where O, is a  prior guess of the 
total genetic variance. For the first MCMC scheme,  the 
lower limit was set to 0.250,. This limit was chosen to 
ensure  that  the  model with one linked QTL is sampled 
by moving the  second QTL away from the linkage group 
instead of  allowing its effect to become very  small and 
still linked, if the one-QTL model is true. For the  second 
MCMC scheme,  the lower limit for  the QTL effect was 
set to 0, allowing an  unlinked QTL to reach  a small 
value, and thus allowing the  sampling of X k  = 0 ( k  = 1, 
2). For reversible jump MCMC, the lower limit was set 
to 0. 

Diagnostics from Gibbs output: After 2000 cycles  of 
burn-in,  the  length of a single Gibbs chain was set  to 
20,000 for  model selection. Few chains with 100,000 
cycles  were run to verify that  parameter estimates from 
the  shorter  chains were consistent with those from the 
longer chains. Based on  the estimated  autocorrelations 
for lags 1-5000 (GEYER 1992),  an effective sample size 
(ESS), which estimates the  number of independent 
samples with information content equal to that of the 
dependent sample (SORENSEN et al. 1995), was com- 
puted  for  each  parameter. Analysis  of the  simulated 
data with a Gibbs chain of  20,000 took -26, 7 and 20 
hr  for  the MCMC schemes 1, 2 and 3, respectively, on 
an IBM-SP2 with  RS/6000 390/590 processors. The 

most time consuming  parts of the  programs were the 
sampling of MG genotypes, the  joint sampling of dQ, 
and d@, and  the calculation of the  ratio in (10) for  the 
reversible jump MCMC. 

To  monitor  the movement of the samplers between 
QTL models, Figure 1 contains the frequencies of  cycles 
with the one-QTL model  sampled, calculated within 
consecutive blocks of 2000 cycles, for all three MCMC 
schemes (see  below). 

Model selection: Frequencies of the sampled models 
(the one-QTL and  the two-QTL model), averaged over 
four replicates (numbers  for individual replicates given 
in parentheses),  are  presented in Table 2. All  MCMC 
schemes yielded similar results, were able to select the 
correct two-QTL model when the second QTL had  a 
relatively large effect on phenotype  (Table 2) ,  and were 
able to move between the two models when the second 
QTL had  a small effect on phenotype (Figure 1). In 
Figure 1 the  proportion of samples, where two-QTL 
model was selected, within consecutive blocks  of  2000 
Gibbs  cycles is presented  for  a replicate for  granddaugh- 
ter design 11. More similar frequencies across blocks 
should  indicate faster movement of the chain between 
models. From this figure and similar findings for other 
replicates, it appears  that  the movement for scheme  1 
is best. 

The single-QTL model  for  the MCMC scheme with 
linkage indicator variable I includes a second unlinked 
QTL (design IV), while the single-QTL model  for  the 
other MCMC schemes includes only a single QTL in 
addition to polygenes (design 111). Due to the differ- 
ence in single-QTL models between MCMC schemes, 
all MCMC schemes were applied to designs 111 and IV 
representing  the two alternative single-QTL models. All 
schemes correctly sampled the single-QTL model  much 
more  frequently  than  the two-QTL model  for designs 
I11 and IV. The lower frequency of the single-QTL 
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TABLE 2 

Frequency (%) of samples  where  two-QTL model was selected using linkage  indicator  variable C (MCMC 
scheme l), variable selection of KUO and " L I C K  (1994) (MCMC scheme 2), and  reversible 

jump MCMC of GREEN (1995) (MCMC scheme 3) 

Granddaughter design" 

MCMC scheme I I1 I11 Iv 

1 100 (100, 100, 99, 43 (55, 82, 24, 11) 18 (10, 10, 18,  33) 38 (73, 21, 27, 32) 
2 100 (100, 100, 100, 100) 58 (96, 23, 51, 64) 16 (12, 3, 44, 4) 11 (20, 14, 4, 7) 
3 93  (94, 100, 97, 80) 52 (82, 45, 64, 19) 2  (2, 4, 2, 2) 3 (4, 1, 6, 1) 

Designs are  defined in Table 1. 
'First number is average  frequency across four replicates.  Individual  frequencies of the four replicates  are 

given in parentheses. 

model  for MCMC scheme 1 and design IV was due to 
the first replicate, where the position of the second 
QTL  was sampled frequently in the left flank at  a recom- 
bination  rate of 0.43 with the first marker,  hence  the 
two-QTL model was sampled with an almost unlinked 
second QTL. A model with two unlinked QTL and poly- 
genic effects, or with polygenic effects only, was in- 
cluded in MCMC schemes one  and two, respectively. 
However, these models were never sampled,  a  finding 
that is consistent with results from a previous study 
(UIMARI et al. 1996a), where nonlinkage was never sam- 
pled (after  burn-in) when there was a single linked QTL 
with a large effect (UIMARI et al. 1996a). 

To facilitate movement between QTL models for 
MCMC scheme 3, adjustments  to  parameters and miss- 
ing  data  present under  both  the one- and two-QTL 
models were investigated. For example, when at- 
tempting  a move from the  one- to the two-QTL model, 
the  mean was adjusted for  the new genotypic mean as 

P = P* + (&I - 0.5)a21 

+ (Pz - 0.5)a22 - (pi1 - 0.5)a11, 

where * denotes  a  parameter  in  the one-QTL model. 
Furthermore,  the total genetic variances in  the  one- 
and two-QTL models were set equal  in  the transition 
between models, or 

0.5pll(l - p11)a:l i- 0:. = 0.5&1(1 - &~)(Y;I 

+ 0.5p22(1 - p 2 2 ) ( Y &  + 0:. 

When currently  at  the one-QTL model and with  new 
QTL parameters  for  the two-QTL model  generated,  the 
above equation was solved for a:, and subsequently 
polygenic values (u) were rescaled by multiplication 
with uu/uu,. The results presented in Table 2 were com- 
puted without adjustments, as adjustments were found 
not to decrease  but  rather increase the staying rate  for 
the  acceptance ratio in (9). 

Parameter estimation: Estimates of the  parameters 
for  the  three MCMC schemes are given in Table 3. 
Estimates of the  parameters  for  both QTL were close 
to the  true values for all MCMC schemes, when the 

second QTL explained 28% of the total genetic vari- 
ance and was linked with the first QTL (design I). When 
the second QTL explained only 7% of the total genetic 
variance (design 11),  its position was not well estimated, 
and MCMC schemes 2 and 3 gave better estimates than 
scheme 1. The  higher estimate for a2 from the first 
compared to the  other MCMC schemes was probably 
due to the lower limit of 0.250, used in MCMC scheme 
1. Estimates  of the position of the second QTL in de- 
signs I11 and IV are meaningless because most of the 
time the one-QTL model was sampled. Also, estimates 
of p ,  and a2 are meaningless for MCMC schemes 2 
and 3, when the two-QTL model was sampled with  low 
frequency. However, for MCMC scheme 1, these param- 
eters  represent  the frequency and  the effect of an un- 
linked QTL. It  should  be  noted  that these results are 
based on a small number of replicates. 

A few (six) chains were run with  100,000  cycles for 
MCMC scheme 2 and design I. Means of the  parameter 
estimates from these runs were  close to those of the 
shorter chains (20,000 cycles)  given in  Table 3.  Effective 
sample size varied from 65 ( a l )  to 693 (de).  The high- 
est posterior correlations  among  parameters were 
found between variance components (- -0.9), which 
is in close agreement with previous single-QTL studies 
(THALLER and HOESCHELE 1996b; UIMARI et al. 1996a). 
The  other correlations  ranged from -0.3 to 0.3 without 
any noticeable pattern. Polygenic variance was overesti- 
mated while residual variance was underestimated,  a 
finding in agreement with previous studies (e.g. ,  UIMARI 
et al., 1996a). The marginal posterior distribution of 
polygenic variance is skewed to the  right, causing an 
upward bias of the  posterior  mean estimator. This bias 
is a small sample bias resulting from the small number 
of halfsib families. Due to  the  strong, negative posterior 
correlation between polygenic and residual variances, 
the residual variance is underestimated. Posterior corre- 
lations between the variances and  the QTL parameters 
are small to moderate,  hence inaccuracy in the estima- 
tion of the variances should have little impact on  the 
estimation of the  other parameters. 

When data simulated with the two-QTL model were 
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Average  parameter  estimates of three MCMC schemes 

Granddaughter design" 
One-QTL 

True value I I1  I11 lv model 

0.50 

54.77 

0.30 

0.50 

41.08/20.54/0.00/41.08 

0.70/0.70/NLd/NL 

0.00 

164.1/322.3/375.0/164.1 

750.0 

0.54 (0.04) 
0.54 (0.04) 
0.52 (0.04) 

49.00 (3.15) 
51.69 (2.86) 
53.23 (1.93) 
0.33 (0.019) 
0.32 (0.004) 
0.35 (0.031) 
0.48 (0.13) 
0.46 (0.08) 
0.70 (0.01) 
45.9 (1.23) 
44.9 (0.99) 

37.55 (2.36) 
0.73 (0.03) 
0.69 (0.03) 
0.66 (0.01) 

-0.39 (3.47) 
-1.94 (2.87) 

(1.76) 
355.7 (62.1) 
311.9 (49.1) 
440.8 (53.8) 
517.7 (83.2) 
525.4 (95.6) 
414.5 (95.6) 

0.53 (0.09) 
0.58 (0.05) 
0.53 (0.02) 

49.63 (2.91) 
50.56 (2.68) 
49.87 (4.19) 
0.34 (0.035) 
0.34 (0.035) 
0.32 (0.004) 
0.36 (0.04) 
0.50 (0.07) 
0.73 (0.04) 

30.33 (2.11) 
23.52 (3.41) 
25.94 (3.46) 

0.53 (0.10) 
0.64 (0.04) 

2.3 (1.55) 
4.15 (2.46) 

463.6 (53.9) 
448.0 (52.6) 
465.9 (43.8) 
450.0 (60.6) 
621.7 (98.0) 
589.6 (88.8) 

-0.81 (0.20) 

-0.98 (6.10) 

0.59 (0.02) 
0.56 (0.03) 
0.54 (0.02) 

53.40 (0.86) 
51.54 (2.96) 
53.68 (0.70) 
0.32 (0.006) 
0.31 (0.010) 
0.31 (0.005) 
0.45 (0.14) 
0.58 (0.05) 
0.61 (0.03) 
28.6 (1.26) 

12.57 (6.44) 
5.11 (0.51) 

0.55 (0.04) 
0.65 (0.02) 
4.57 (2.58) 
2.75 (1.16) 

437.8 (64.6) 
435.8 (4.39) 
479.4 (80.3) 
486.6 (1 18.6) 
662.9 (17.5) 
553.7 (132.3) 

-1.29 (0.17) 

-0.39 (0.18) 

0.45 (0.03) 0.56 (0.04) 
0.46 (0.03) 
0.48 (0.03) 

47.76 (3.24) 53.3 (1.55) 
49.51 (2.65) 
49.28 (3.19) 
0.31 (0.015) 0.41 (0.034)' 
0.31 (0.014) 
0.32 (0.010) 
0.39 (0.07) 
0.46 (0.10) 
0.47 (0.07) 

34.51 (4.51) 
11.77 (3.03) 
4.62 (1.45) 

0.59 (0.04) 
0.69 (0.01) 

-1.26 (0.16) 

-3.95 (2.55) 2.13 (2.46) 
-1.53 (1.74) 
-0.73 (1.76) 
440.6 (59.9) 505.9 (18.7) 
458.0 (53.2) 
508.5 (68.3) 
442.1 (122.3) 517.7 (83.2) 
726.8 (60.3) 
637.5 (62.2) 

Empirical standard  errors of means across replicates within  design and method  are shown in parentheses. 
a Designs are defined in Table 1. 
bThe parameter estimates in rows 1, 2, and 3 are for MCMC schemes 1, 2, and 3, respectively. 
'QTL positions conditional on marker intervals are as  follows: interval 3, 0.33 [56%]; interval 4, 0.48 [38%]; interval, 0.61 

[S?]. Marginal posterior probabilities of QTL location in an interval are  in brackets. 
QTL not linked. 

analyzed using the single-QTL model by applying the 
restriction 1 5 1 in MCMC scheme 1, parameter esti- 
mates were  close to the  true values for  the QTL  with 
the  larger effect (Table 3). The QTL position was sam- 
pled near  the  true position of the larger QTL, as a ghost 
position in between the QTL, or in the interval of the 
smaller QTL. In most replicates the position was sam- 
pled exclusively  within the interval of the larger QTL, 
with most of the variance contribution of the smaller 
QTL being  incorporated  into  the polygenic variance. 

DISCUSSION 

Bayesian linkage analysis  allowing for linked QTL 
and implemented with three different MCMC schemes 
was investigated. MCMC scheme 1 was an extension of 
previous work by UIMARI et al. (1996), where a linkage 
indicator variable was incorporated  into  the analysis. 
MCMC scheme 2 was based on  the work  of KUO and 
MALLICK (1994) on variable selection in (generalized) 

linear models, and scheme 3 was an application of  re- 
versible jump MCMC (GREEN 1995). 

All methods  performed well for  the simulated grand- 
daughter designs. Reversible jump MCMC  was very sen- 
sitive to the way in which  new  variables  were generated 
when moving from the  one- to the two-QTL model and 
back. The most  successful way to generate new  variables 
(parameters  and genotypes at  the second QTL) was to 
set  the values for all  variables pertaining to the first 
QTL equal  to  the  current values under the single-QTL 
model, and to generate new  values for the second QTL. 
The only exception was that  gene frequencies were gen- 
erated using the old value  as a basis for new gene fre- 
quencies at both QTL and  an average of the  gene fre- 
quencies at  both QTL when returning from the two- to 
the one-QTL model (see METHODS). Furthermore, 
the  generating distribution of G2 was crucial for MCMC 
scheme 3 to perform well. The  optimum [in the sense 
of acceptance rate based on (lo)] generating distribu- 
tion for  the  additional QTL, genotypes, when moving 
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from  the  one- to the two-QTL, model is P(Gp I On, MG1, 
y) , because Gn is sampled conditional on all other geno- 
types and  on phenotypes. However, the resulting 
scheme would be computationally unfeasible, because 
the normalizing constants for P(MG21 e,) and 
P(MGI 10,) are unknown and require  summation over 
all  possible genotypes of  all animals in the  pedigree. 
Therefore,  the G2 were generated using the  conditional 
probabilities P(G2102, MGl). With dZl = dll, the ratio 
of P(MG1lO.J to P(MGIl0,) in (10) reduced to a term 
dependent only on p,, and pil. 

In MCMC scheme 3, the  second QTL was  always gen- 
erated to the  right of the first QTL  by setting dZ2 = dle 
+ w , ~  with w,f positive.  However, if the  true position of 
the second QTL is to the left of the first QTL,  this 
procedure may fail. Therefore, first the single-QTL 
analysis should  be  performed using different  starting 
positions for  the QTL on  the chromosome, and subse- 
quently, several  two-QTL  analyses  may be run,  one with 
h2 = dle + w,{ and  another with dZ2 = dI2 - w,~. 

The  three MCMC schemes differed in  their  require- 
ments for  the  parameter spaces of d, and d,. In 
MCMC scheme 1, including the flanks was necessary to 
enable moves from the single-QTL model (with the 
second QTL unlinked) to the two-QTL model (with the 
second QTL linked). For MCMC schemes 2 and 3,  
flanks did not  need to be considered. If there is  evi- 
dence  that  a QTI, may be located in either of the flanks, 
the  parameter space can be expanded to include  the 
flanks. Expanding  the  parameter spaces of dul and de 
to include flanks increases computing  time, and  the 
QTL position may occasionally be sampled in the flanks 
even if the  true position is within the linkage group, as 
can be seen in Table 3 (design 11). 

THALLER and HOESCHELE (1996a) and SATAGOPAN et 
al. (1996) performed QTL model selection based on 
Bayes factors, which  were estimated using different 
MCMC algorithms. THALLER and HOESCHELE (1996a) 
found  that MCMC sampling with model indicators gave 
much  more stable results than MCMC estimates of 
Bayes factor. SATAGOPAN et al. (1996) stabilized Bayes 
factor estimation using normal and multivariate t 
weighting densities. In  general, estimation of  Bayes  fac- 
tors via  MCMC  is not a trivial  task. 

In conclusion, this paper  demonstrates  that it is feasi- 
ble to fit linked QTL simultaneously using Bayesian 
analysis  with MCMC algorithms. The Bayesian  analysis 
provides estimates of all genetic  parameters and can fit 
alternative QTL models (e.g., a normal-effects QTL), 
rather  than  a biallelic QTL (HOESCHELE et ul. 1996). 
We recommend  pursuing an analysis  with two linked 
QTL after results from  the single-QTL study indicate 
QTL presence on  the chromosome of interest.  In this 
work,  also compared were three MCMC schemes for 
QTL-model selection, which perfomled well, yielding 
similar results for  the simulated designs. The schemes 
differed, however, in their CPU time requirements and 

ease of implementation, with MCMC scheme 2 outper- 
forming  the  others in these two criteria. 
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