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ABSTRACT 
A method  for  estimating  the  selfing  rate  using DNA sequence  data was recently  proposed by Milligan. 

Unfortunately, a number of errors make interpretation of his results problematic. In the present  paper 
we first show how the usual coalescent  process  can  be  adapted to models  that  include selfing, and then 
use this  result  to  find  moment  estimators as well as the  likelihood surface for the  selfing rate, s, and 
the  scaled  mutation  rate, 0. We conclude  that,  regardless of the method  used,  large  sample sizes are 
necessary to estimate s with  any degree of certainty,  and that the estimate is always highly  sensitive  to 
recent  changes in the true value. 

T HERE is long-standing interest in estimating the 
degree of self-fertilization, or selfing, in partially 

selfing populations. Several methods have been sug- 
gested, most of them based on allozyme frequency  data 
(BROWN 1990). Recently, MILLIGAN ( 1996) suggested 
a  method using DNA sequence  data based on  the differ- 
ence in coalescence time for alleles sampled within and 
between an individual. 

In this article, we first show in  general how the stan- 
dard  neutral coalescent process can be used for models 
with partial selfing. We use  this result to derive alterna- 
tives to MILLIGAN’S estimator and to compare  the  prop- 
erties of the estimators. Finally, we discuss the use- 
fulness of DNA data  for estimating the selfing rate. 

THE  COALESCENT PROCESS WITH 
PARTIAL SELFING 

Consider  a Wright-Fisher model of N diploid her- 
maphrodites, with Nvery large. Define  the selfing rate 
s as the  fraction of offspring that is produced by self- 
fertilization. The remaining  fraction 1 - s is produced 
via random mating. For a single locus with  two alleles, 
it is easy to show that the genotypic proportions quickly 
converge to p‘ + pqF, 2pq( 1 - F) , and q‘ + pqF, where 

F =  - S 

2 - s  

is the  equilibrium  inbreeding coefficient ( HALDANE 
1924). 

Now consider the dynamics  of a single neutral allele 
when N is finite. Under  the assumption that s % 1 / N,  it 
has been argued, using the diffusion approximation, that 
the theory for random mating populations holds with 
variance (and inbreeding) effective population size  of 
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1 2 - s  
N, = - 

l + F  2 
N N =  - 

( LI 1955; WRIGHT 1969; POLM 1987). 
We  will describe the analogous result for  the  standard 

n-coalescent ( K~NGMAN 1982a,c; TAV& 1984). More 
precisely, we  will demonstrate  that,  apart  from its initial 
behavior, the coalescent with partial selfing is identical 
to the coalescent for  random  mating if time is rescaled 
by a factor corresponding to the variance effective pop- 
ulation size ( 2 ) .  This similarity should not be unex- 
pected given the close correspondence between vari- 
ance effective population size and  the time scale of the 
coalescent ( K~NGMAN 1982b). 

Take the case of  two alleles first (in the  context of 
the coalescent, we  will use “allele” to denote  a region 
of DNA within which recombination can be ignored). 
With random mating, we simply trace their ancestry 
until  a single allele that is their  common  ancestor is 
found. Going backward in time, we have a Markov pro- 
cess  with  two  states: two alleles, or a single common 
ancestral allele (this state is of course absorbing). With 
selfing the same process has three states: two alleles in 
distinct  individuals,  two distinct alleles in the same individ- 
ual, and a single common ancestral allele. 

It is  easy to see that  the transition matrix (with  the 
states in  the  order  described)  for this process is 

1 1 
N 2N  2N 

- 

P =  
(1 -s) + (I(;) ;+(I(;) ;+ (I(;) 

L 
0 0 

Consider the first state: two alleles in distinct individuals 
in  a given generation. The two alleles will remain  in 
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distinct individuals for  a  random amount of time that 
is geometrically distributed with expectation N. When 
the process leaves this state (because  the two alleles 
find themselves in the same ancestral individual),  the 
common ancestral allele is found,  and thus the process 
jumps to the  third  state, with probability else the 
process jumps to its second state: two distinct alleles in 
the same individual. When the process is in its second 
state, it follows from the transition matrix ( 3 )  that it 
remains there  for  a  random  number of generations  that 
is geometrically distributed with expectation s/ ( 2  - s)  
+ O( 1 / N) . When it leaves the  second  state,  a  common 
ancestor will be  found,  and so the process will jump to 
its third  state, with probability 

otherwise it returns its  first state: two alleles in distinct 
individuals. 

In summary, the process remains  in  the first state for 
an amount of time that is geometrically distributed with 
expectation of O ( N ) ,  after which either  a  common 
ancestor is found with probability 1/2 or  the process 
jumps  to the  second state. The process remains in the 
second state for  an  amount of time that is geometrically 
distributed with expectation of O( 1 ) , after which a 
common  ancestor is found with approximate probabil- 
ity s/ ( 2  - s) , or else the process returns to the first 
state. 

Recall that in the coalescent, time is measured  in 
units of O( N) generations. With this time-scaling, any 
time spent  in  the second state is negligible. Thus in the 
coalescent approximation  to models with selfing, the 
second state becomes instantaneous. If the process 
starts in this state, it will leave it instantaneously for 
either  the first or  the  third state, with respective proba- 
bilities 1 - s/ ( 2  - s) and s/ ( 2  - s) . If the process 
starts in the first state, we  will never “see” any time 
spent  in  the  second state. A  proportion 1 - s/ ( 2  - s) 
of transitions to the  second state will instantaneously 
return to the first state, while the  remaining  proportion 
s/ ( 2  - s) will  move instantaneously to the  third state. 
Thus, with time measured in units of N  generations, 
the process moves from the first state to the  third state 
with rate 

Alternatively, if time is measured in units of ( 2 - s) N 
generations (that is, 2N,, where Ne is given by Equation 
2 ) ,  the process waits in the first state for  an  exponen- 
tially distributed amount of time with mean  one  before 
coalescing ( i e . ,  moving to the  third  state) . If the two 
alleles of interest  are sampled from  the same individual, 
the process starts in  the second state, but moves instan- 
taneously to  either  the first or third  state, with the  prob- 
abilities given  above. Thus,  except  for this initial behav- 

ior,  the process behaves  like the usual coalescent for  a 
sample of two alleles. 

The preceding  argument can easily be extended to 
a sample of n alleles. In this case, more states are possi- 
ble since one needs to keep track of the  number of 
ancestral alleles paired within individuals in each gener- 
ation. For instance, we  may have  all n alleles in separate 
individuals, n - 2 alleles in separate individuals and 
one individual with two alleles, n - 4 alleles in separate 
individuals and two individuals with two alleles, etc. 
When time is measured in units of O( N )  generations, 
however, all states involving one  or more pairs of alleles 
within the same individual are instantaneous, for rea- 
sons analogous to those given above. Again, the effect 
of selfing is to speed up the coalescence rate. In particu- 
lar, with n alleles in distinct individuals and time mea- 
sured  in units of ( 2  - s)  N  generations,  the transition 
to n - 1 alleles in distinct individuals occurs after an 
exponentially distributed amount of time with mean 2 /  
( n( n - 1 ) ) , again as in the usual coalescent. 

Thus, in the  presence of selfing and with  time  mea- 
sured in units of ( 2  - s)  Ngenerations, if  we start with 
all alleles in distinct individuals, this will remain the 
case, and it is only  necessary to track the  number of 
ancestral alleles. Further  the process describing the  an- 
cestry  of the sampled alleles is the usual coalescent. 
Another way  of thinking of  this result is that with  time 
measured in units of 2N generations,  the ancestry is 
described by a version of the usual coalescent in which 
the coalescence rates are increased by a factor of 2 /  ( 2  
- s)  . For a formal proof of this result, see MOHLE 
(1996). 

As we  saw with two alleles, the  other effect of selfing 
is to change  the initial behavior of the process. Suppose 
time is measured in units of O( N )  generations, and the 
n sampled alleles consist of 2k alleles sampled in pairs 
within individuals and n - 2 k  alleles sampled each from 
distinct individuals. Independently,  for each of the k 
pairs, the two alleles will instantaneously coalesce with 
probability s/ ( 2  - s) , otherwise they will instantane- 
ously jump to distinct individuals. Following these in- 
stantaneous transitions, there will be a  random  number, 
n - X, of ancestral alleles, all in distinct individuals, 
where X has a binomial distribution with parameters 
k and s/ ( 2  - s) . Thereafter,  the process behaves  as 
described in  the  preceding  paragraph. 

Simulating samples  from models with selfing: As is 
the case for the model with random mating, the coales- 
cent provides a  convenient and efficient simulation 
tool. The following algorithm describes how to simulate 
a sample of n alleles, 2k of which  were sampled in pairs 
within individuals. 

1. Simulate a binomial random variable X with 
parameters k and s/ ( 2  - s)  . 

2. With the usual coalescent algorithms for  random 
mating and  the  mutation mechanism under consider- 
ation, simulate a sample of  size n - Xalleles. The effect 
of selfing in increasing coalescence rates needs to be 
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allowed for. One approach is to use the  urn scheme of 
DONNELLY and  TAVAR~ ( 1995, p. 412), with 0‘ = 2 /  
( 2  - s) and 8 = 4Np, where p is the  mutation rate per 
gene per generation. Alternatively, a scheme such as 
that described in HUDSON (1990) can  be used with 8 
redefined  to take the value 2 ( 2  - s) Np. 

3. Take the n - X alleles simulated in step 2 and 
write them in random order as Yl ,   Y2 ,  . . . , Y,-x. Form 
Xdiploids, which are automatically homozygous,  as ( Yl , 
Yl ) , ( Y 2 ,   Y 2 ) ,  . . . , ( Yx,   Yx) .  Use the  remaining n - 2 X 
alleles from the simulated sample to form the re- 
maining 12 - Xdiploids and  the n - 212 alleles sampled 
each from a distinct individual. Thus  the final sample 
will be 

Other factors, such as geographic structuring or re- 
combination, can be included in the simulation by mod- 
ifjmg  step 2 above. Either  the overall coalescence rates 
need  to  be increased by a factor of 2/  ( 2 - s) , or 
all other rates need  to  be decreased by this factor, in 
coalescent simulations for  the  appropriate models with- 
out selfing. 

COALESCENT-BASED  ESTIMATES OF THE 
SELFING RATE 

The expected coalescence time for a pair of  alleles 
sampled from the same individual differs from that for 
a  pair of  alleles sampled from separate individuals, and 
this difference depends on the selfing rate, s. MILLIGAN 
(1996) recently exploited this fact for estimating s. 

Let T, be  the coalescence time for  a pair of alleles 
within an individual. Analogously, let Tb be  the coales- 
cence time for  a pair of  alleles sampled from two sepa- 
rate individuals. It follows  easily from the discussion  of 
the previous section that 

ET, = 1 - S, ( 7 )  

with time measured in units of 2N generations. These 
expectations were  also derived by MILLIGAN (1996) us- 
ing discrete-time recursions for  the genealogy of a pair 
of  alleles. 

Let S, ( S , )  be  the  number of  sites that distinguish a 
pair of alleles sampled within an individual (between 
individuals). Assuming the infinite-sites model of  neu- 
tral sequence evolution, we have 

ES, = (1 - s ) 8 ,  ( 9 )  

where 0 = 4Np, and p is the  neutral  mutation rate. 

Based on this, MILLIGAN ( 1996) suggested the following 
method-of-moments estimators for s and 8: 

e, = 2s, - su,. (12)  

These  equations  are identical to Equations 12 and 13 
in MILLIGAN ( 1996), ignoring terms of O (  1 / N) . 

Unfortunately, MILLIGAN’S study  of the usefulness  of 
these estimators suffers from two serious problems. 

Estimators based on homozygosity: The first prob- 
lem concerns  the estimators with  which MILLIGAN com- 
pares his estimators. For 0 he uses 

e = -  - 1 - F  
F ’  

where F is “the frequency of individuals homozygous 
for alleles identical by descent” ( p. 622), whereas for 
s he uses 

If F denotes  the sample homozygosity, and we assume 
random mating and either  the infinite-sites or the infi- 
nite-alleles model,  then  the expression (13) does in- 
deed serve  as an estimator of 8, however it has poor 
statistical properties (STEWART 1976; DONNELLY and TA- 
VM 1995). The expression (14) ,  on the  other  hand, 
is derived from the classical equation ( 1 ) , where F, 
WRIGHT’S “fixation index,” measures the deviation 
from Hardy-Weinberg proportions in a single-locus, 
two-allele model without mutation (BROWN and AL- 
LARD 1970). Thus, F has quite different meanings in 
(13) and (14 ) .  The choice of the estimator (14)  is 
based on a misinterpretation of Fin ( 14) as the sample 
homozygosity under the infinite-sites model (effectively 
confusing “identity by descent” with “identity in 
state”). It is not surprising then, that, as MILLIGAN 
finds, this estimator of s is extraordinarily poor. 

The homozygosity estimators used for comparison by 
MILLIGAN are  therefore  not  appropriate. Reasonable 
method-of-moments estimators based on homozygosity 
can be  found as  follows. 

Let H, ( Hb) be  the  proportion of  homozygous pairs 
of alleles  within (between) individuals. It is  easy to show 
that, under the infinite-sites model, we have 

EH, = 
2 + 9 s  

2 + ( 2  - s ) O ’  

c) 

E H b  = 
c 

2 + ( 2  - s ) 8 ’  

leading to the following method-of-moments estimators 
for s and 8: 
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Properties of the  estimators: The second problem 
in MILLIGAN’S study concerns  the evaluation of  the 
properties of the estimators. Rather  than simulating 
“real” genealogical samples, MILLIGAN simulates multi- 
ple realizations of the coalescent for  a pair of alleles 
and  then estimates the  properties of larger samples by 
drawing from this distribution.  He correctly notes that 
this  assumes independence of  all pairs of alleles, which 
is not  true because the alleles in a sample are  related 
by a  common genealogy, but states (p. 624) that “the 
effect of that  larger genealogy is to reduce  the actual 
variation between distinct pairs of alleles and  therefore 
to reduce  the variation in the estimates derived from 
those pairs.” This statement is not correct. In fact, ex- 
actly because of shared genealogy, distinct pairs of al- 
leles in  the sample are highly  positively correlated. As 
a  consequence,  the variance of the estimators will be 
larger, and probably substantially so, than would be the 
case  were  all pairs independent.  There is also another 
problem in that, as  we show  below, the estimators quite 
often show considerable bias when used on correctly 
simulated samples, or fail to yield meaningful estimates 
at all. 

To assess accurately the  properties of the estimators, 
we used the  method described above to simulate sam- 
ples from a selfing population with infinite-sites muta- 
tion. We simulated all combinations of n = 2, 10, 50, 
100, or 200, s = 0 ,  0.2,  0.4, 0.8, or 1, and 8 = 0.1, 1, 5, 
or 10. For each combination of parameters, lo4  samples 
were simulated. For each simulated sample, the estima- 
tors described above were calculated. The results for n 
= 200 were  very similar to those for n = 100 and  are 
not shown. 

The results from our simulations, summarized in Fig- 
ures 1-5, suggest behavior rather  different from that 
reported by MILLIGAN . In fact, the estimators have poor 
properties  for  a large range of parameter values. Take 
the estimators of s, first. It is clear from inspection of 
( 17) that SH yields a negative estimate of the selfing 
rate if H,“ < Hb. Likewise, ( 11 ) shows that s:C. gives a 
negative estimate if S,, > S,. One might  think  that this 
should only happen rarely, at least for reasonable sam- 
ple sizes, but as illustrated by Figure 1, which  shows 
the frequency of simulated samples that give negative 
estimates of s for various real parameter values, this is 
not so. It is natural to take a negative estimate of s to 
be zero (and this was done in our simulations) , even 
at  the cost  of introducing bias. Note also the frequency 
of samples that yield no estimate of s at all because S, 
= s b  = 0 (Figure 1, right column) . The estimators 
of 8 are  much  better behaved in these respects. The 
homozygosity estimator gH cannot be used when Hb = 
0,  but this was observed only  very  rarely ( <0.3% of the 
samples)  for n = 10 and never for n = 50 or greater. 

The bias  of the estimators of s is shown in Figure 2. 

It is clear that  both estimators have similar properties, 
although  the bias of the homozygosity estimator iH is 
always smaller. In general,  the bias  is  worse the smaller 
the value of 8. Of course, increasing the sample size 
always helps, albeit very  slowly. The standard deviations 
of & and SH are compared  in Figure 3. Again, both 
estimators have similar properties in general,  although 
fH is clearly superior. The bias and standard deviation 
of the estimators of 8 are shown in Figure 4. The homo- 
zygosity estimator, O H ,  is unquestionably inferior, ex- 
cept  perhaps  for small  values of s and high 8, in which 
case it is more biased but has smaller variance. 

Maximum-likelihood estimates: For moderate to 
large sample sizes, maximum-likelihood estimates 
should be superior to those based on moments. The 
structure of the process described above  allows the like- 
lihood  in  the  model with selfing to be written in terms 
of likelihoods for models with random mating. Loosely 
speaking, one simply has to allow for  the  extra ran- 
domness involved in initial instantaneous coalescences. 

Suppose the  data, I ) ,  consists of sequences from n 
diploid individuals. Write m for  the  number of  homozy- 
gous individuals and /)* for  the 2 ( n  - m )  alleles sam- 
pled in the non-homozygous individuals. Among the 
m homozygous individuals, write k for the  number of 
different alleles ( k  5 m ) .  Label these alleles A , ,  . . . , 
Ah and write m 2 ,  i = 1, 2, . . . , k for  the  number of A,A,  
homozygotes. In  other words, 

- 

I1 = AIAI. * AlAl  A2A2. * * A2A2. * 
” 

ml l z n m  m2 1 2 W A  

’ ’ AkA, I ) * .  (19) - 
rnk timer 

Re-parameterize, and write $ = ( 1 - s / 2 )  8. Then 
the likelihood I (  s, @, n )  for s and rC, with data D is 

where B (  n,  p ,  x) is the probability that  a Binomial ( n,  
p )  random variable will take the value x, 7)i,,...,y is a  data 
set formed from I )  by taking I)* and Z; + 2 ( ml - i,) 
copies of allele AJ, j = 1, . . , , k ,  i.e., 

Aka * Ak * * AkAkY)*, (21 ) 
“ 

tk 1imr.s r q -  zk tmles 

and I, (<, D) is the usual coalescent likelihood function 
with data I )  and mutation  parameter 0 = E .  Computer 
programs  for evaluating this function  are available 
( GIUFFITHS and  TAVAR~ 1994a-c; KUHNER et al. 1995), 
so it suffices to write a  “front-end’’  that  implements  the 
summation  in ( 20) . 
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n = 10 n = 10 

n = 5 0  n = 50 

FIGURE 1.-The fraction of simulated samples  that  yield  negative  estimates (left  column) or no estimate (right column) 
using &. The homozygosity  estimator .iH behaves  similarly. 

We wrote such  a  program, using code kindly provided 
by R. C .  GRIFFITHS to calculate 1,. Figures 6 and 7 show 
examples of likelihood surfaces produced using our 
program. Notice that  the surface is much  flatter in the 
s than in the 8 direction, indicating that  the estimate 
of s is considerably more  uncertain. Unfortunately, eval- 
uating expression (20)  is extremely timeconsuming 
because it involves a large number of calculations of I,, 
each of  which is quite  timeconsuming. For example, 
for typical samples of size n = 20, evaluation took on 
the  order of  days to weeks on  a workstation. We are 
therefore  unable to compare  the  properties of  this  esti- 

mator with those given  above using simulated data, ex- 
cept when nand 8 are both very small, in which  case the 
maximum-likelihood estimator performs very poorly.  In 
fact, for small n it performs worse than  the  moment 
estimators described above. On  the  other  hand, the 
method is fast enough to be used on real data sets. 
While we cannot asses its properties directly, back- 
ground statistical theory suggests that it should be pre- 
ferred  to  the  moment estimators in such cases. In addi- 
tion,  the  method gives the  entire likelihood surface, 
which is, of course, much more informative than a point 
estimate. In fact, according to the likelihood principle 
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estimated s estimated s e=o.1 e =  1 
1. 

0.6 .  

true s / . . . . .  
0 .2  0 . 4  0 . 6  0 . 8  1 

' ' true s 

estimated s estimated s 
e = 5  e =  10 

0.8 I/ 

0.2 0.4 0.6 0 .8  1 
true s true s 

FIGURE 2.-Expectation of the  moment estimators of s as a  function of the actual s for various combinations of 6' and n. The 
straight  line gives the unbiased expectation; the solid lines, results for fs; and  the dashed lines, results for 1,. For both estimators, 
results are plotted for n = 2  (largest bias), 10, 50, and 100 (smallest bias). 

std. dev. e = 0.1 std. dev. 
0. 

0 .  

0 .  

0. 

0 .  

0.2 0.4 0.6 0 . 8  1 true s 0 . 2  0.4 0 . 6  0 . 8  1 

std. dev. std. dev. e = 5  e =  10 
0 .  

0 .  

0 .  

0 .  

true s 

0 - 4 y - 1  0.3 , , """ 

0.2 I,? """ 

true s 

true s 

FIGURE 3.-Standard deviations of the moment estimators of s as functions of the actual s values for various combinations of 
6' and n. The solid lines give the results for X,, and the  dashed lines give those for fH. For both estimators, results are plotted 
for n = 2  (largest values), 10, 50, and 100 (smallest values). 
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estimated 8 

true 8 

estimated 8 
s = 0.6 

est imated 8 
s = o  

2 4 6 8 10 
estimated 8 

s = 0.6 

estimated 8 
s = l  

true 8 

t  is"^ 
10 2 4 6 8 

. true 8 
10 

estimated 8 
s =  1 

true 

1 

e true 8 
2 4 6 8 10 

FIGURE 4.-Expectation  of the  _moment  estimators  of 8 as-a function of the  actual 8 for various  combinations  of s and n. The 
left  column  gives  the  results  for Os and  the  right  those  for O H .  The  dashed  line  gives  the  unbiased  expectation. Results for s = 
0.4 and s = 0.8 are  not shown  but  are  very  similar. For both  estimators,  results  are  plotted for n = 2 (largest bias), 10, 50, and 
100 (least bias). Note  that  when n = 2, 8, exhibits  negative  bias rather  than positive  bias (and that it equals  zero  when n = 2 
and s = 1 ) .  

( BERGER and WOLPERT 1988) , the likelihood surface 
contains all  of the information  about  the  parameters 
in the  data. 

DISCUSSION 

The coalescent with selfing: We have  shown that par- 
tial selfing can be  incorporated  into  a coalescent frame- 
work without difficulty,  essentially because the ancestral 
process decomposes into two different processes, a 
“slow” one  that consists of common  ancestor events 
among individuals in  a  population, and a “fast” one 
that consists of common  ancestor events among alleles 
within individuals. 

Estimation: Using this theory, we have been able to 
assess correctly the properties of the estimators for sand 

0 proposed in MILLIGAN (1996)  and above. MILLIGAN 
estimated variance and bias by repeatedly drawing from 
the  distribution of pairwise coalescent times without 
regard  for the positive correlations  induced by the un- 
derlying genealogy of a real sample. This is inappropri- 
ate, and we note  the almost complete lack  of correspon- 
dence,  for  example, between his estimates of the vari- 
ance of fs (Figures 4 and 5, p. 624) and ours (Fig- 
ure 3 ) .  

The reason that  the estimators suggested in MILLIGAN 
(1996)  and above do  not provide much  information 
about  the long-term mating system is that  the only di- 
rect  information  about s comes from the initial, “fast,” 
coalescent events for alleles within individuals. These 
events are, of course, analogous to the deviations from 
Hardy-Weinberg proportions classically used to esti- 
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std.  dev. 

10 

8 

s = o  

std.  dev. 
s = 0.4 

std.  dev. 

12.5 
15 I 

s = l  

10. 

2 4 6 8 
. true 8 
10 

FIGURE 5.-Standard deviation of the moment estimators 
of O as a function of the actual O for the same combinations 
of sand n used in  Figure 4. The solid lines give the results 
for Os, and the dashed lines give those for Orr .  

mate s (BROWN and ALLARD 1970; BROWN 1990) . "hen 
we estimate sand Bjointly, we are estimating parameters 
of the two very different processes into which the coales- 
cent with partial selfing decomposes: the "fast" process, 
which provides information  about s only, and  the 
"slow" one, which provides information about  the pa- 
rameter (cr = ( 2  - s) 8/2, in  which 8 and s are con- 
founded. This can be seen from the likelihood function 
( 2 0 ) ,  which  loosely  consists  of a sum of "binomial- 
like" probabilities multiplied by coalescent likelihoods. 
Knowing this, the observed behavior of the estimators 
becomes easy to understand. Since information  about 
s is available from the fast, binomial-like process, we 
might expect  the variance of the estimate to decrease 
in the typical ( n" ) fashion of independent observa- 
tions with increased sample size. This is precisely  what 

1 

0.8 

0.6 

S 

0 . 4  

0.; 

c 
0 1 2 3 4 

e 
FIGURE 6.-Likelihood surface  for s and 0 for a simulated 

sample of size n = 10. The actual  parameter  values  are s = 
0.9, 0+= 2. For this sample, .fs = 0.96, 8, = 2.72, and & = 
0.93, O r /  = 7.00. 

we see in Figure 3, which  gives the  standard deviations 
of the  moment estimators of s. The situation is rather 
different for estimation of 8. Even  in the random-mat- 
ing case, it is  well known that increasing the sample size 
does not, in general, provide much extra information 
for estimating the scaled mutation rate,  here (cr (DON- 
NELLY and TAVAK~ 1995).  Indeed, estimators based on 
pairwise measures, such as the  moment estimators dis- 
cussed here,  are  not necessarily even consistent. Estima- 
tion of 8 is more difficult than estimation of (cr because 
of the  confounding with s and  the initial randomness 
induced by the fast process. Figure 5 shows that, as 
expected,  the  standard deviations of the  moment esti- 
mators of 8 do not decrease much with increased n. 

We have  shown  how  to derive the likelihood surface 
in s and 8. For moderate sample sizes,  likelihood-based 
inference  should be superior to the  moment methods, 
although this is difficult to assess  numerically. For small 
sample sizes, maximum-likelihood estimates are  not 
necessarily reliable and may be worse than the moment 
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FIGURE 7.-Likelihood surface for s and 0 for a simulated 

sample of size n = 10. The actual  parameter  value?  are s = 
0.9, 19 = 2, as-in  Figure 6. For this sample, f5 = 1 ,  Hs = 3.73, 
and .j,, = 1 ,  H l r  = 1.7.5. 

estimates  (Figures 6-8) .  For  the  likelihood  surfaces we 
examined,  estimation of 0 with s assumed known is ro- 
bust to the value of s, and conversely. Furthermore, 
reporting  of  the  likelihood surface is considerably more 
informative than simply providing  point estimates.  For 
asymmetric  surfaces ( P.R., Figure 6 ) ,  even standard in- 
terval estimates  could be  quite misleading. 

Robustness: MILLICAN  assumes a constant  popula- 
tion size and  notes  that his results are insensitive to the 
exact value of that  constant size. It  does  not follow, as 
he claims (p .  620 and p. 626), that  the results are 
insensitive to  the  assumption of constant  population 
size. In  fact, an extension of the  argument given above 
should show that  the  standard  theory  for  the  coalescent 
with varying population sizes ( DONNELL-Y and TAVAR~ 
1995) (with  modifications  analogous to  those  above) 
will apply to  the  coalescent with partial  selfing as well. 

0 

0 
FIGURI.: 8.-Likelihood surface for s and H for a simulated 

sample of size n = 20. The actual  parameter-values  are  again 
s = 0.9, = 2. For this sample, = 0.98, H,% = 7.03, and f,, 
= 0.92, H,, = 4.56. 

We have not assessed the  estimators in this more gen- 
eral  setting,  but  dependence  on  the  population size 
process  would  certainly be  expected. 

MILLICAN also argues  that his method estimates the 
long-term mating system,” rather  than  being  “based 

on  the segregation of alleles during a single  generation 
of mating.” In fact, the  opposite is true. Most of the 
information  about s comes  from  the association of al- 
leles within individuals, and this  information only re- 
flects the last few generations.  This is easily seen, for 
instance, by considering how data  from  the coalescent 
with partial  selfing is simulated  (see  above).  Going 
backward in time,  pairs  of alleles sampled within indi- 
viduals either coalesce instantly, or become  part of a 
standard,  haploid  coalescent with an  appropriate time- 
scale. This  point is further illustrated by Figure 9, where 
the  expectation of .fv is plotted  against the actual value 
of s under  the last few generations.  It is clear  that  the 

“ 
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FIGURE 9.-Sensitivity of the  estimated selfing rate to 
changes in s. The  “long-term” value of s is 0.9, and curves 
show the  expectation of j’s given that  the  actual value of s was 
that on  the  abscissa in the preceding few generations, where 
“few” is 0, 1, 2, or “many” ( i.e., when the long-term  value is 
the one on the abscissa). 

estimated s almost exclusively reflects the value  of s in 
the  preceding  generation, and  that  the “long-term” 
mating system is largely irrelevant to the estimate. Note 
that  the same argument  applies  to  the  other estimators 
discussed above. 

It can be shown that  in  a  model in which the selfing 
rate vanes independently from generation to genera- 
tion the behavior of the slow process in the coalescent 
with selfing is  as described above, with s replaced by 
the  mean of the distribution of selfing rates. The behav- 
ior of the fast process, and  hence of the estimators, on 
the  other  hand, is quite sensitive to varying selfing rates. 
While the actual value  of an estimator for s will be 
heavily dependent  on  the actual values  of the selfing 
rate over the last few years, the sampling properties will 
depend sensitively on  the  entire distribution of possible 
values for  the selfing rate over the same period. 

All results derived here assume a single neutral locus. 
It is worth pointing out that selection on linked loci 
may  have a very strong effect on  the variability at  neutral 
loci, either in reducing it through processes such as 
background selection ( CHARLESWORTH et al. 1993) and 
selective  sweeps (MAYNARD SMITH and HAICH 1974; 
KAPLAN et al. 1989), or in increasing it through some 
form of balancing selection ( STROBECK 1983; HUDSON 
and &WLAN 1988; KAPLAN et al. 1988; NORDBORG et al. 
1996), and  that all these effects will be stronger  under 
selfing ( NORDBORC et al. 1996).  

Conclusion: Coalescent-based estimates do  not pro- 
vide a magic bullet when it comes to estimating the 
selfing rate. As we have seen,  the  problem of recent 
fluctuations in the  degree of selfing is in no sense 
avoided. Furthermore, collecting data  to estimate both 
s and 0 involves a  contradiction: to estimate s, we want 
simple data ( the  genotype) from large number of indi- 
viduals, whereas to estimate 8 we need  detailed  data ( a  
sequence or several sequences)  fromjust  a few individu- 
als ( PLUZHNIKOV and DONNELLY 1996).  Because DNA 
sequence  data provide more certain information  about 
the genotype than do data based on classical markers 

such as  allozymes,  it is certainly preferable, ceterisparibus 
(in particular, the sample size needs to be roughly simi- 
lar) , but if moment estimators of s are of primary inter- 
est, not much is gained. 
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