Table 7.
Comparison of AUCs of the 5 machine learning models in the validation set
| Variable 1 | Variable 2 | Statistic | P-value | Test Method |
|---|---|---|---|---|
| SMV | XGBOOST | 2.130 | 0.033 | DeLong’s test |
| SMV | GNB | -1.956 | 0.050 | DeLong’s test |
| SMV | ADABOOST | -0.367 | 0.713 | DeLong’s test |
| SMV | Random forest | 1.508 | 0.131 | DeLong’s test |
| XGBOOST | GNB | -3.534 | <0.001 | DeLong’s test |
| XGBOOST | ADABOOST | -3.467 | <0.001 | DeLong’s test |
| XGBOOST | Random forest | -0.101 | 0.919 | DeLong’s test |
| GNB | ADABOOST | 2.171 | 0.029 | DeLong’s test |
| GNB | Random forest | 3.681 | <0.001 | DeLong’s test |
| ADABOOST | Random forest | 2.099 | 0.035 | DeLong’s test |
Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient Boosting; GNB, Gaussian Naive Bayes; ADABOOST, Adaptive Boosting.