Skip to main content
. 2025 Apr 16;15(5):4816–4846. doi: 10.21037/qims-24-1791

Table 6. Hemorrhages detection approaches.

Year Reference Methods Database Results with evaluation metrics
2024 Sathiyaseelan
et al. (86)
Fast-CNN, modified U-Net, enhanced machine-based diagnostic IDRiD, DIARETDB1 Specificity: 99.6%; sensitivity: 80%; accuracy: 98.6%
2024 Biju and Shanthi (87) Enhanced visual geometry group model, data augmentation, Gabor transform, hemorrhages segmentation, and classification module HRF, DIARETDB1 Specificity: 98.71%, 98.44%; sensitivity: 98.59%, 98.37%; accuracy: 98.66%, 98.74%
2024 Atlas et al. (88) Maximally stable extremal regions approach, CNN, ELSTM, DPFE DIARETDB2 Specificity: 98.91%; sensitivity: 98.67%
2023 Li et al. (89) CNN, ResNet-50, customized computer vision algorithm Local dataset: University of California Specificity: 74.5%; sensitivity: 100%; F1-score: 0.932; accuracy: 90.7%
2023 Alwakid et al. (90) CLAHE filtering approach and ESRGAN network, Inception-V3 model APTOS datasets Case1: accuracy: 98.7%;
case 2: accuracy: 80.87%
2023 Saranya et al. (91) CNN, U-Net, morphological operations Messidor, STARE DIARETDB1, IDRiD Specificity: 99%; sensitivity: 89%; accuracy: 95.65%
2023 Kiliçarslan (92) ResNet-50, YOLOv5, and VGG-19 EyePACS Accuracy: 93.38%, 94.75%, 91.72%
2022 Mondal et al. (93) ResNeXt, DenseNet101, CLAHE DIARETDB1, APTOS19 Accuracy: 96.98%; precision: 0.97; recall: 0.97
2023 Xia et al. (94) MGNet, U-Net IDRiD, DIARETDB1 Accuracy: 99.12%; sensitivity: 53.53%; specificity: 99.66%
2021 Goel et al. (95) DL, transfer learning, VGG16 IDRiD Accuracy: 91.8%; F1-score: 81.5%; precision: 81.5%
2022 Zhang et al. (96) Inception-V3 model, class activation mapping Kaggle Sensitivity: 0.925; specificity: 0.907; harmonic mean: 0.916; AUC: 0.968
2020 Hacisoftaoglu
et al. (97)
ResNet50, GoogLeNet, AlexNet models Messidor-2, EyePACS, Messidor, IDRiD Specificity: 99.1%; sensitivity: 98.2%; accuracy: 98.6%
2020 Li et al. (98) DL system, inception ResNet-2 Local dataset: ZOC Sensitivity: 97.6%; specificity: 99.4%; AUC: 99.9%
2019 Chowdhury et al. (38) Classifier: random forest and Naïve Bayes classifier approach Messidor, Tele-Ophtha, DIARETDB1, DIARETDB0 Accuracy: 93.58%
2018 Suriyal et al. (99) DeepCNNs, MobileNets Kaggle Accuracy: 73.3%
2017 Gondal et al. (54) CNNs, for generate the class activation DIARETDB1 AUC: 95.4%
2016 Paing et al. (55) Artificial neural networks, and ROI localization DIARETDB1 Accuracy: 96%
2015 Guo et al. (100) Multi-class discriminant analysis, wavelet transformation, and discrete cosine transformation Real-world dataset Accuracy: 90.9%

APTOS, Asia Pacific Tele-Ophthalmology Society; AUC, area under the curve; CLAHE, contrast limited adaptive histogram equalization; CNN, convolutional neural network; DIARETDB, diabetic retinopathy database; DL, deep learning; DPFE, double-pierced feature extraction; ELSTM, enhanced long short-term memory; ESRGAN, enhanced super-resolution generative adversarial network; EyePACS, eye picture archive communication system; HRF, high-resolution fundus; IDRiD, Indian diabetic retinopathy image dataset; Messidor, methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology; MGNet, multi-scale gated network; ROI, region of interest; STARE, structured analysis of the retina; VGG, visual geometry group; YOLOv5, you only look once version 5; ZOC, Zhongshan Ophthalmic Center.