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ABSTRACT 
The amounts of nucleotide variation  within and between  allelic  classes  were studied. The expectation 

and variance of the number of segregating sites and  the expectation of the average number of  pairwise 
differences among a sample of DNA sequences were obtained by using the theory of gene genealogy 
with no recombination. When the ancestral  allelic class  is unknown, it was found that the amount of 
variation  within an allelic class increases with its  frequency in the sample, while the amount of variation 
between two allelic classes  is the largest  when the two allelic  classes  exist  equally. On the other hand, if 
we  know the ancestral  allelic class, as the frequency of the mutant allelic  class  increases, the amounts 
of variation  within the mutant allelic class and between two allelic classes increase and the amount of 
variation  within the ancestral  allelic class decreases. As an example, we analyzed the polymorphism in 
the ND5 gene of Drosophila melanogaster and constructed the common  ancestral sequence with high 
confidence, suggesting that the pattern of polymorphism  within  species gives  useful information to know 
the ancestral sequence of the species. 

T HE amount and pattern of DNA polymorphism  in 
a population have  useful  information about the 

mechanism of maintenance of genetic  variation, the 
evolutionary  history of the population and so on. There 
are a number of polymorphic (segregating) sites  in 
DNA sequences  sampled  from a population. Knowing 
the ancestral sequence in the population might contrib- 
ute to  answering the above  questions.  In  some  cases the 
outgroup sequence is  available.  For example,  when we 
analyze the human population, a sequence in  chimpan- 
zee is often used as the outgroup sequence. In many 
cases,  however, the assumption that the ancestral  se- 
quence is identical  to the outgroup sequence is not 
correct because  of  back and parallel  mutations  between 
the ancestral and outgroup sequences.  In  this  article 
we show  how to reconstruct the ancestral  sequence 
from the pattern of DNA polymorphism. 

When there are two nucleotides  in a particular  site, 
one of them is the ancestral nucleotide under the infi- 
nite site  model ( K~MURA 1969). WATTERSON and GUESS 
(1977) have  shown by using the infinite  allele  model 
( KIMURA and CROW 1964) that the probability that the 
allele with frequency q is the oldest is q. This  suggests 
that the most frequent nucleotide is likely  to be the 
ancestor.  However,  this is not necessarily the case.  If 
the frequency of one nucleotide increased  recently, 
then this nucleotide may not be  ancestral even  when 
this nucleotide is the most frequent. If we use the pat- 
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tern of DNA polymorphism  at  linked  sites,  however, 
we can obtain more  information about the ancestor. 
Suppose that there are two nucleotides, say A and T, 
in a particular  site. Then, we can  divide DNA sequences 
into two  classes: one class includes  sequences with A 
and the other includes  sequences with T in  this  site. 
We call  such a class an allelic  class. We expect that the 
class  with the ancestral nucleotide is more variable than 
the class  with the mutant nucleotide. Our algorithm 
for reconstructing the ancestral  sequence uses both the 
frequencies of  classes and the amounts of nucleotide 
variation  within and between  allelic  classes. 

Recently,  SLATKIN (1996) has obtained the expected 
amount of nucleotide variation  within the mutant al- 
lelic  class under the condition that we know  when the 
mutant appeared. In  this paper, we obtain the uncondi- 
tional  expectations and variances of variation  within 
and between  allelic  classes by modifying the theory  de- 
veloped by HUDSON and MLAN ( 1986). 

THE AMOUNTS OF NUCLEOTIDE  VARIATION 

In this  article we consider a random mating  popula- 
tion with N diploid  individuals. We assume that muta- 
tions are selectively neutral ( KIMURA 1968, 1983). We 
use the infinite  site  model with no recombination 
(WATTERSON 1975) and the genealogical  relationship 
of DNA sequences  (GRIFFITHS 1980; KINGMAN 1982; 
HUDSON 1983; TAJIMA 1983). We consider the case 
where n sequences are randomly  sampled  from the pop  
ulation. 

The  numbers of segregating  sites within and between 
two allelic classes when  we do not know  the  ancestor: 
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Let  us  consider the evolutionary  relationship among n 
sequences. Assume that there are two allelic  classes, A1 
and A 2 ,  and that the A1 allelic  class  consists  of i se- 
quences and A2 consists of n - i sequences.  Denote 
this  state by A ( i,n - i )  . Now  we consider the number 
of segregating  sites  within  allelic  class.  Let S( i,n-i) be 
the expected number of the segregating  sites  within the 
A1 allelic  class in A ( i ,n-i)  . Note that the first number 
in the parentheses  indicates the number of the se- 
quences in the A1 allelic  class and  the second  indicates 
that in the A2 allelic  class.  When the n sequences  co- 
alesce into n - 1 sequences, there are two pos- 
sible  states, A ( i-1,n-i) and A ( i,n-2-1) , to which 
A ( i,n-  i) can change (Figure 1A) . Here, we consider 

the probability that A (  i ,n-i)  changes  to A (  z-1,n-i). 
Denote  this  probability by p .  Apparently, the probability 
that A (  i,n-i) changes  to A (  i,n-i-1) is 1 - p .  Since 
A1 and A2 are selectively neutral, the expected  fre- 
quency of A1 when the n sequences  coalesce into n - 
1 sequences  must  be the same as that in A ( i,n - i) . The 
expected  frequencies of A1 in A (  i,n-i) , A (  i-1,n-i) 
andA(i,n-i-1) are i /n ,  ( i -  l ) / ( n -   1 )  and i/(n 
- 1 ) , respectively. Then, from 

i -  1 i i + ( l - P ) - = -  
n - 1  n' P F i  

we have p = i/ n. HUDSON and KAPLAN (1986) also 
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used  this  probability. Therefore, for 2 5 i 5 n - 2, 
S (  i,n-a) can  be  written as 

S (  i ,n- i )  = - S (  i-1,n-i) 
i 
n 

n -  i ie +- S (  i,n-i-1) + > ( 1 )  
n n ( n  - 1 )  

where e = 4Np ( N  is the effective population size and 
p is the mutation rate per sequence per generation). 
The third term of the right  side  of ( 1 ) is the expected 
number of mutations  in the A1 allelic  class  in the time 
during which the n sequences  coalesce into n - 1 se- 
quences.  This  recursion was used by HUDSON and 
KAPLAN ( 1986) to  study the amounts of  variation  in the 
nested  subsamples  from  allozyme  alleles, although in 
their report mutations that cause  allozyme  changes 
were  also considered. In ( 1 ) , only  mutations that cause 
nucleotide changes are considered. 

When one of  allelic  classes  consists  of one sequence, 
Equation ( 1 ) cannot be  used. Here, let us consider the 
allelic state A ( n- 1 , l )  , where the A2 allelic  class  con- 
sists  of one sequence and the remaining n - 1 se- 
quences belong to A1 allelic  class (see Figure 1B). 
A ( n-1,l ) changes  to A ( n-2,l)  with  probability ( n - 
l ) / n  and to A ( n - 1 , O )  with  probability l / n .  When 
A(n-l,l)changestoA(n-2,l),theexpectednumber 
of mutations  in the A1 allelic  class during allelic  state 
A ( n- 1 , l )  is 8/ n. On the other hand, in the process 
of the change from A (  n-1,l)  to A (  n-1,0), there are 
( 2" ) possible  pairs  to  coalesce, of which ( n;l ) pairs are 
those among A1 sequences and n - 1 pairs are those 
between A1 and A2 allelic  classes.  Since A ( n-1,O) 
means that all of the n - 1 sequences  belong  to A1 
allelic  class, if the coalescence  occurs among A1 allelic 
class, A2 must have been changed from A1 by mutation. 
We denote this state by A (  n-2) because n - 2 out of 
n - 1 sequences  in A ( n- 1,0)  can contribute to the 
amount of  variation  within A1 allelic  class. The coales- 
cence between A1 and A2 allelic  classes  also  involves a 
mutational change from A1 to A2. Since, in this  case, 
all  of the n - 1 sequences  in A ( n- 1,0) can contribute 
to the amount of variation  within A1 allelic  class, we 
denotethisstatebyA(n-l).WhenA(n-1,l)changes 
to A ( n-  1,0), the expected number of mutations in 
the A1 allelic  class  is not given by 8 /  n, because one 
mutation that results  in the allelic  change  from A1 to 
A2 must  occur. TAJIMA ( 1983)  studied the distribution 
of coalescent  time for n = 2 under the condition that 
k mutations are involved,  which was presented by Equa- 
tion (19) of TAJIMA (1983). Modifying this equation, 
we obtain the distribution of t,, (time during which 
n sequences  coalesce into n - 1 sequences) when k 
mutations are involved. It becomes 

""t~exp[-B(n)t , ,] /k!,  ( 2 )  

where B( n )  = (2") + (n /2 )0 .  The expectation and 
variance of t,, for a given  value  of k are 

E(t,,lk) = 2N(k + l ) / B ( n ) ,  (2a) 

V(t,,lk) = 4@(k + l ) / [ B ( n ) ] ' .  (2b) 

In the present study, we are interested in a particular 
segregating  site that distinguishes two allelic  classes. 
Since the mutation rate in this  particular  site is very 
small, we can  assume 0 = 0. Then, we  have E (  t , l l )  
= 8N/n(n - 1 )  and V(t , , l l )  = 32@/n2(n - l)',  
respectively.  It should be noted that these  values are 
twice the values for k = 0. Assuming that the number 
of mutations on a branch with length t, follows the 
Poisson  distribution  with  mean t,,p, the expectation and 
variance of s (the number of mutations on a branch 
with length t,, for k = 1 ) are 

Then, the expected number of the segregating  sites 
within the A1 allelic  class during allelic  state A ( n- 1 , l )  
when A(n-1 , l )  changes  to A(n-1,O) is 28/n. 

Considering three allelic  states A ( n-2,l) , A ( n-2) 
and A ( n-1 ) as shown  in  Figure lB, we have 

S(n-1 , l )  = - - [ S(n-2,1) + - 
n n "I 

S ( n - 2 )  + - 2 S(n-1) + 
n 

where 
n-1 , 

k = l  

Since 

n - 2  2 e 
n n 

S(n-1) = - S(n-2) + - S ( n - 1 )  + - ,  (4)  
n 

( 3)  can  be  rewritten as 

n -  1 1 e 
n n 

S(n-1,l) = - S(n-2,l) + - S(n-1) + - . ( 5 )  
n 

Noting S (  1,n - 1 ) = 0 and using  Equations ( 1 ) and 
( 5 )  , we have a simple  solution 

2 

n 
S (  i,n-i) = - S (  i) . ( 6 )  

The expectation  within the A2 allelic  class  in A ( i ,n - i) 
is obtained by replacing the two numbers in the paren- 
theses. 

Next, we consider the number of segregating  sites 
between two allelic  classes. The segregating  sites  be- 
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tween two allelic  classes are the sites  in  which  different 
nucleotides are fixed in the two allelic  classes.  Let 
S b  ( i ,n - i )  be the expected number of segregating  sites 
between two allelic  classes  in A ( i ,n- i )  . It should be 
noted that S b (  i ,n - i )  = S b (  n - i , i ) .  Then, in the same 
way as above (see also  Figure 1 ) , Sb ( i,n- i) is  given  by 

i 
n n 

S,( i ,n - i )  = - $, (   i -1 ,n- i )  + - S/,( i ,n- i -1)  

( 2  I is 12- 2 ) ,  ( 7 )  

n -  i 

S,( n - 1 , l )  = - - ' [  Sb(n-2,1)  + 
n n ( n  - 1 )  

+-[- 1 n - 2  Sb(n-1) + 28 ] ( n s 3 ) ,  (8)  
n n  n ( n  - 1 )  

where 

8 
n -  1 

Sb(n) = -. 

S b  ( n )  is the same as the expected number of mutations 
on one external branch in the genealogy  with n se- 
quences,  which was obtained by Fu and LI ( 1993).  For 
the derivation for Sb ( n )  , see APPENDIX A.  Substituting 
(8a) into (8) ,  (8)  becomes 

+ 28 
n ( n  - 1) 

( n  s 3 ) .  (8b) 

Inthecaseofn=2 ( i = n -  i =  l),sinceonemutation 
must occur before the coalescence,  according  to (2c),  
S b (  1,1)  is  given  by 

Sb(191) = 28. (9)  

Then, (8)  becomes 

From  equations ( 7 ) ,  ( 9 )  and ( l o ) ,  it is  shown that 

n 

Note that 

S (  i ,n-i )  + S (  n-i , i )  + Sb( i ,n-i )  / 2  = S (  n ) .   ( 1 2 )  

Modifying ( 1 ) ,  ( 3 ) ,  ( 7 )  and ( 8 ) ,  we can  also obtain 
the variances of the number of segregating  sites  within 
and between  allelic  classes, and the results are shown 

The average numbers of  pairwise differences  within 
and between  allelic  classes are also obtained, following 
the scheme  in  Figure 1. Derivations for the average 
number of painvise  differences  within  an  allelic  class, 

in APPENDIX B . 

K (  i ,n - i )  , and that between  allelic  classes, D( i,n-z) , 
are shown in APPENDIX c. It is indicated that K (  i ,n - i )  
is a linear function of i for i ;2 2 and D (  i,n-i) is  given 
by adding ( n  - 2 )  8 / n  to Sb( i , n - i ) .  Namely, we have 

i 
n 

K (  2,n-2) = - 8, ( 1 3 )  

n - 2  
n 

D ( i , n - i )  = Sb( i ,n- i )  + - e. ( 1 4 )  

Table 1 shows numerical  examples of the number of 
segregating  sites for n = 20 when we do not know the 
ancestor. The expected value  is a linear function of 8, 
whereas the variance is a quadratic function of 8. It 
can be seen that the number of segregating  sites  has  a 
considerable amount of variance  when 8 > 1. Espe- 
cially, the variance of the number of segregating  sites 
between two allelic  classes, ( i, n - i) , is large,  because 
the coefficient of O 2  is  always larger  than that of 8. The 
expected values for 1 5 i I 19 are plotted in Figure 
2A. It is  shown that S (  i,n - i) increases as i increases, 
suggesting that an  allelic  class  maintained  in higher 
frequency  has  a  larger amount of  variation. s b (  i ,n-i )  
has the highest  peak at i = n - i = 10 and decreases 
symmetrically as i departs from 10. In other words, the 
expected number of segregating  sites  between two  al- 
lelic  classes  is the largest  when two allelic  classes  exist 
equally. The similar  results are also obtained from the 
numbers of  pairwise differences  within and between 
allelic  classes (Table 1, Figure 2B ) . K (  i, n - i) increases 
linearly as i increases,  while D ( i, n - i )  shows a  symmetri- 
cal  decrease  from the highest  peak at i = 10. 

The  numbers of segregating sites within and between 
allelic classes  when  we how the ancestor: In  this  sec- 
tion, let us  assume that we know  which  is the ancestral 
allelic  class.  Assume that A1 is the ancestral  allelic class 
and A2 is the new mutant allelic  class. In this  case, the 
probabilities that A ( i ,n-i )  changes  to A ( i-1,n-i) and 
to A( i,n-i-1 ) are different from  those in the case 
where the ancestor is unknown.  Let us consider the 
probability, p, that A ( i, n - i) changes to A ( i- 1, n - i) . 
When we do not know the ancestral  allelic  class, 
A ( i , n - i )  changes  to A(i -1 ,n- i )  with  probability i/ 
n,andtoA(i,n-i-l)with(n-i)/n,asshownin(l). 
Here, we  know that the A1 allelic  class  is the ancestor. In 
A ( i- 1 ,n- i )  , the probability that A1 is ancestral is ( i 
- 1 ) / ( n - 1 )  and the corresponding probability  in 
A(  i ,n-i-1) is i / ( n - 1 )  (WATTERSON and GUESS 
1977) .  Therefore, we have 

" 

i i - 1  
n n - 1  i -  1 

n -  1 
=- p =  i i - 1  n - i  i . ( 1 5 )  -- +-- 

n n - 1  n n - 1  

Figure 3 shows the coalescent  scheme  assuming that A1 
istheancestor.InA(i,n-i)andA(n-l,l),thescheme 



is nearly the same as that of Figure 1 ,  while  in A ( 1 ,n  - 1 ) 
the next coalescence  necessarily  occurs in the mutant 
allelic  class. 

First, we consider the number of segregating  sites in 
the ancestral  allelic class.  Let Sa ( i ,n-  i) be the expected 
number of segregating  sites  within the ancestral  allelic 
class.  Following the scheme in Figure  3, A and B, 
Sa ( i ,n - i) is  given  by 

i -  1 Sa( i,n-i) = - Sa( i-1,n-i)  + - n -  i Sa( i ,n-i-1) 
n -  1 n -  1 

+ 28 
n ( n  - 1 )  

( 2  I; is n -   2 ) ,   ( 1 6 )  

Sa( n - 1 , l )  = - n - 2  
n -  1 Sa ( n-291) 

1 8 
n -  1 n 

+- S (  n - 1 )  + -, ( 1 7 )  

where S (  n )  is  given  by (3a).  
Second, we consider the mutant allelic  class.  Let 

S,( i ,n-i)  be the expected number of segregating  sites 
within the mutant allelic  class.  Note that the number 
of sequences  in the mutant allelic  class  is the second 
number in the parentheses. Then, following the rela- 
tionship in Figure  3, A and C, Sm ( i,n- i )  is written as 

S,( i ,n-i) 

i -  1 =- Sm( i-1,n-i)  + - n -  i 
S,( i ,n-i-1) 

n -  1 n -  1 

Third, the number of segregating  sites  between two 

allelic  classes  is considered.  Denote the expected num- 
ber of segregating  sites  between two allelic  classes by 
Sf ( i ,n- i )  . Then, we have the following  recursions  to 
calculate Sf (i, n - i) : 

i -  1 
Sf (i,n-i) = - Sf(i -1,n-i )  + - n -  i 

Sf (i,n-i-1) 
n -  1 n -  1 

8 
n ( n  - 1 )  

S f ( 1 , n - 1 )  = S f ( l , n - 2 )  + 

n - 2  1 
n -  1 

Sf ( n - 1 , l )  = - Sf ( n - 2 , l )  + - 
n - 1  s b ( n )  

+ 8 " ( 2 +  1 i 
n ( n - 1 )   n - 1  

- 
k = 3  k(k 2 k - 1  - ' )  

( n  2 31, ( 2 2 )  

where s b  ( n )  is  given  by (8a). Modifying the Equations 
( 16)  - ( 2 2 )  , we can  also obtain the variances of the 
numbers of segregating  sites and the expected numbers 
of painvise  differences  within and between  allelic 
classes, and the results are shown  in APPENDIXES D and 
E, respectively. 

Table 2 shows numerical  examples of the numbers of 
segregating  sites and the expected numbers of  pairwise 
differences  within the ancestral  allelic class,  within the 
mutant allelic  class and between  them for n = 20. Even 
when we know the ancestral  allelic class, the numbers 
of segregating  sites have a  considerable amount of vari- 
ance. The expected numbers of segregating  sites are 
plotted in  Figure 4A. It is shown that Sa( i ,n-i)  de- 
creases and s,,, ( i,n- i) increases as n - i increases ( i 
decreases). Like S, ( i,n- i )  , Sf (i,n- i )  also  increases 
as n - i increases. The expected  numbers of  pairwise 
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0 10 

n - i  
20 

0 10 20  

n - i  

FIGURE 2.-The  expected  numbers of segregating  sites  and 
the  expected  numbers of painvise  differences with sample 
size n = 20, when the ancestral  allelic  class is unknown.  The 
unit of the vertical a x i s  is 8. (A) The  expected  numbers of 
segregating  sites within and  between  allelic  classes. S( i,n-z) , 
S( n- i,i) and Sb ( i,n- i) were  calculated  using  Equations ( 6) 
and ( 11 ) . ( B ) The  expected  numbers of pairwise  differences 
within and  between  allelic  clhsses. K( i,n- i) , K( n-i,i) and 
D( i,n-i) were  calculated  using  Equations (13) and (14). 

differences are plotted in  Figure 4B. K ,  ( i ,n-i)  , 
IC,,,( i ,n-z) and D*( i ,n-i)  indicate the average  num- 
bers of pairwise differences  within the ancestral  allelic 
class,  within the mutant allelic  class and between them, 
respectively.  Like the number of segregating  sites, as n 
- i increases, K,,, ( z,n- i) and D* ( i ,n-i)  increase while 
K ,  ( i,n- i )  decreases. 

RECONSTRUCTION OF THE COMMON 
ANCESTRAL SEQUENCE 

To  explain the algorithm  to  reconstruct the ancestral 
sequence, we use nucleotide  polymorphism in a  mito- 

chondrial  gene as an  example  because  recombination is 
a very rare event  in  mitochondrial DNA. RAND and KANN 
(1996) reported the nucleotide  polymorphism  in the 
mitochondrial  gene ND5 of Drosophila mlanogaster. A 
total of 21 segregating  sites  were  detected  in  the 1515- 
bp  region of 59 sequences. In all the polymorphic  sites, 
there were two nucleotides.  Using  Equations (16) - 
( 22), we calculated the expected  numbers of segregat- 

ing  sites  within and between  two  segregating  nucleotides 
(allelic  classes)  for  each  site (Table 3)  . In the left  side 
of Table 3, the ancestral  nucleotide is  assumed to  be 
the nucleotide  in D. simulans, and in the right  side the 
alternative  nucleotide is  assumed to  be  ancestral.  For 
example,  nucleotides G and A are segregating at nucleo- 
tide  position 161, where  only one sequence  has A and 
the remaining 58 sequences  have G. The observed  num- 
ber of segregating  sites  within the allelic  class  having G 
is 20, while there is no segregating  site  within the allelic 
class  having A because  it is a  unique  polymorphism. The 
number of segregating  sites  between the two  allelic 
classes  is  also  zero,  excluding  nucleotide  position 161. 
Note that site 161 was excluded and the information on 
the remaining 20 segregating  sites was used.  Since the 
D. simulans sequence  has G in the corresponding  site, 
we assume that G is the ancestor  in the left  side  of  Table 
3. The expected  numbers of segregating  sites  within G, 
within A and between G and A are 19.288, 0.000 and 
0.712, respectively.  Alternatively,  in the right  side of Ta- 
ble 3, A is  assumed  to  be  ancestral. The expected  num- 
bers of segregating  sites  within A, within G and between 
them are 0.000, 11.205 and 8.795, respectively.  Compar- 
ing the both sides  in  Table 3, the observed  numbers of 
segregating  sites are close  to the expected  values  when 
G is  assumed  to  be the ancestor, as shown  in the left 
side  of  Table 3. In the other sites,  according  to  this way, 
the  expected  numbers of segregating  sites  within the 
ancestral  allelic  class (nucleotide) , within the mutant 
allelic  class and between  them are obtained, and the 
results  are  shown  in  Table 3. 

Here, we consider the probability that each nucleo- 
tide is ancestral  in  each  site. As an example,  again, we 
consider nucleotide position 161 where G and A are 
segregating. We need to know the probabilities that G 
is the ancestor and A is the ancestor. Assume that the 
probability that the other two nucleotides,  T and C, are 
the ancestor is extremely low. Denote the probability 
that G is the ancestor and the probability that A is the 
ancestor by  Anc { G )  and Anc (A},  respectively.  Let X ,  Y 
and Z be the observed numbers of segregating  sites 
within the ancestral  allelic class,  within the mutant al- 
lelic  class and between them, respectively. In the case 
of nucleotide  position 161, X + Y + Z = 20, and 59 
sequences are partitioned into 58 and one sequences. 
We denote this  probability by PI X -t Y +Z = 20;  (58,l) 1. 
Under this condition, Anc{ G} and Anc(A1  can  be ob 
tained. Let P((58*,1)1(58,1)) and P((1*,58) I (58,l)l 
be the probability that 58 sequences are the ancestor 
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A(i-1, n-i) A(i, n-i-1) 
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000” 0e.e”- 0 
A(i,  n-i) 

B A(n-2,l) A(n-1)  A(n-2) 

FIGURE 3.-Coalescent 
scheme  in A ( i, n- i )  when 
we  know  the ancesval al- 

ancestral  allelic  class  and 0 
represents  the  mutant al- 
lelic  class. 

A(n-l, 0) lelic  class. 0 represents  the 

- - -  000 

0” 000. 
A(n-1,  1) 

C Btf:‘n A(l, n-2) 

0.0”- .e 
A(l, n-1) 
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and the probability that one sequence is the ancestor, 
respectively,  when  59  sequences are partitioned into 58 
and one sequences. P{ ( X , Y , Z )  = (20,0,0) I (58*,1) } 
denotes the probability that ( X ,   Y , Z )  = (20,0,0) when 
58 sequences are assumed  to  be  ancestral and 
P{ ( X , Y , Z )  = (0,20,0) I ( 1 *,58) ) denotes the probabil- 
ity that ( X , Y , Z )  = (0,20,0) when one sequence is as- 
sumed  to  be  ancestral. Then, Anc { G} and Anc{A} at 
nucleotide  position  161 are given by 

Anc1GI 

- - P { X , Y , Z )  = (20,0,0)1(58*,1)}P((58*,1)I(58,1)) 
P I X +  Y +  Z =  20; (58,l)) 9 

Anc{A) 

- - P { ( X , Y , Z )  = (0,20,0)1(1*,58))P~(1*,58)1(58,1)) 
P I X +  Y +  Z =  20; (58,1)} 

It is known that the probability that an allelic  class  with 
frequency q is ancestral is q (WATTERSON and GUESS 
1977). Therefore, P{ (58*,1) 1 (58,l)j  = 58/59 and 
P{(1*,58))(58,1)}=1/59.SinceAnc(G)+Anc{A)= 
1, Anc 

h C  

AnC 

G] and Anc{A}  can  be  rewritten as, respectively, 

G)  = 
58P{ ( X , Y , Z )  = (20,0,0) I (58*,1)} 

58P{(X,Y,Z) = (20,0,0)1(58*,1)} ’ 
+ P ~ X , Y , Z )  = (0,20,0) I (1*,58)) 

P{(X,Y,Z) = (20,0,0)1(58*,1)) and P{(X,Y,Z) = 
(0,20,0) I ( 1 *,58) ) were obtained by computer simula- 
tions  with  10,000  replicates.  For  each  replicate  of the 
simulation, a genealogical tree with  20 mutations was 
constructed by following HUDSON et al. (1994). 
Namely, the number of mutations on a genealogical 
tree was fixed at 20 and the parameter 0 was not used. 
P { ( X , Y , Z )  = (20,0,0)1(58*,1)} and P ( ( X , Y , Z )  = 
(0,20,0) I ( 1 *,58) } turned out to  be  0.733 and 0.002, 
respectively. Therefore, we have  Anc { G} = 0.99995 and 
Anc{A} = 0.00005. 

Following  this way, these  probabilities  were obtained 
for the other 20 segregating  sites (Table 3) . In 18 sites, 
the ancestral  nucleotide was determined at the 99% 
level. Out of these  sites, in 13 sites the expected  ances- 
tral nucleotide is the same as that of D. simulans,  while 
in the remaining five sites the ancestor is different from 
that of D. simulans.  At nucleotide  positions  240,  813 
and 1122, we could not determine the ancestral  nucle- 
tide at the 99%  level.  This is partly  because  parallel 
mutations occurred in D. melanogarterlineage.  Since  re- 
combination  must  be a very rare event in the mitochon- 
drial DNA, parallel  mutations  should  be  necessary  to 
interpret the observed pattern of polymorphism  (exis- 
tence of “four gametes”: HUDSON and KAPLAN 1985). 
It is most  plausible  to  assume that one parallel  mutation 
occurred at the nucleotide position  1122,  because we 
find no four gametes if nucleotide  position  1122 is  ex- 
cluded. This  parallel mutation results in the contribu- 
tion of  this  site (nucleotide position 1122) to the num- 
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n - i  

4 
10 

n - i  

FIGURE 4.-The  expected numbers of segregating  sites  and 
the expected numbers of pairwise differences with  sample 
size n = 20, when  the  ancestral  allelic  class  is known. The 
unit of the  vertical axis is 8. (A) The  expected numbers of 
segregating  sites  within  the  ancestral  allelic  class,  within  the 
mutant  allelic  class  and  between  them. Sa( z,n-i), S,( i,n-i) 
and St( i,n-z) were calculated  using  Equations (16) - (22) .  
(B) The  expected numbers of pairwise differences  within  the 
ancestral  allelic  class,  within  the  mutant  allelic  class  and be- 
tween  them. &( i ,n- i ) ,  &( i,n-i) and D*( i,n-i) were  calcu- 
lated  using  Equations ( E l  ) - (E7).  

bers of segregating  sites  within both of  two allelic  classes 
at nucleotide positions 813 and 840, where X + Y + 2 
= 21 although the total number of segregating  sites is 
20. Of course, at nucleotide position 1122, X + Y + 2 
exceeds 20 ( X  + Y + 2 = 22) .  At nucleotide position 
240, since A and G are polymorphic in intermediate 
frequency (A: 32 / 59; G 27/ 59 ) , it is difficult  to deter- 
mine the ancestral nucleotide with high level  of  confi- 
dence although the observed number of segregating 

sites is more consistent with the expected value  when 
G is assumed to be  ancestral than is A. 

Next, the nucleotide distance  between D. simulans 
and D. mlanogaster  is examined (Figure 5 )  . When we 
have 59 D. melanogaster sequences and one D. simulans 
sequence, we can  estimate the average number of  nucle- 
otide differences between two species.  This is illustrated 
in  Figure 5A and the average number of nucleotide 
differences  between two species is 6.119. Note that only 
the 21 polymorphic  sites  in D. mlanogaster are consid- 
ered here, although there are 69 differences  between 
two species that are fixed in D. melanogaster. In  this 
report, we have reconstructed the common  ancestral 
sequence of 59 D. melanogarter sequences.  Using  this 
information, the nucleotide  distance  between two spe- 
cies  can be reconsidered (Figure 5B). The number 
of nucleotide differences  between D. simulans and D. 
melanogaster ancestral  sequence is 6.005. Note that the 
D. mlunogasterancestral  sequence is  given  by two possi- 
ble  nucleotides in each  site  with their probabilities. The 
average number of  pairwise differences  between D. ml- 
anogaster and its  ancestral  sequence is 1.667. The sum 
of these two  values (6.005 and 1.667) is 7.672, which 
is larger than the average number of nucleotide differ- 
ences  between two species.  It is suggested that there 
may exist  a few undetected mutations  between two spe- 
cies  resulted  from  back and/or parallel  mutations. 

DISCUSSION 

In  this  article we obtained the expected amounts of 
variation  within and between two allelic  classes  with no 
recombination by using the theory of gene genealogy. 
First, we considered the case  where we do not know the 
ancestral  allelic class. It was found that the amount of 
variation (the number of segregating  sites and the aver- 
age number of  pairwise differences) within  an  allelic 
class  increases  with  its  frequency (Figure 2 ) . On the 
other hand, the amount of  variation  between two allelic 
classes  is the largest  when two allelic  classes  exist 
equally.  Second, the case  where the ancestor is  known 
was considered. As shown  in  Figure 4, the amount of 
variation  within the mutant allelic  class  increases as its 
frequency  increases. The amount of  variation  within 
the ancestral  allelic class  also increases as its  frequency 
increases, but the amount of increase is larger than that 
of the mutant allelic  class. The amount of variation 
between two allelic  classes  increases as the frequency of 
the mutant allelic  class  increases. A notable  difference 
between the two  cases  is the amount of variation  be- 
tween  two allelic  classes. 

The mitochondrial DNA polymorphism in D. melane 
gaster ND5 gene region (RAND and KANN 1996) was 
analyzed. The common  ancestral  sequence of 59 D. ml- 
anogaster sequences was reconstructed. The common 
ancestral sequence was given  by  two  possible nucleo- 
tides in each  site with their probabilities as shown  in 
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TABLE 3 

Polymorphism in the ND5 gene of Drosophih: mehoguser 

Out group: D. simuhns 
~~ 

Out group: not D. s imulad  

Pos. Poly. Anc.’ i n-z X S,(i,n-z] Y S,,,(<n-tf z @(i,n-i) P i n-i X .sJ~,~-s) Y .Sm(<n-i) z g(<n-z]  P 

161 G/A G 58 1 20 19.288 0 0.000 0 0.712 1.000 A 1 58 0 0.000 20 11.205 0 8.795 0.000 
218 T/C T 58 1 20 19.288 0 0.000 0 0.712 1.000 C 1 58 0 0.000 20 11.205 0 8.795 0.000 
222 A/G A 58 1 19 19.288 0 0.000 1 0.712 0.999 G 1 58 0 0.000 19 11.205 1 8.795 0.001 
240 A/G A 32 27 8 9.729 12 4.857 0 5.414 0.118 G 27 32 12 8.244 8 5.852 0 5.904 0.882 
529 T/C T 58 1 19 19.288 0 0.000 1 0.712 0.999 C 1 58 0 0.000 19 11.205 1  8.795 0,001 
657 A/G A 58 1 20 19.288 0 0.000 0 0.712 1.000 G 1 58 0 0.000 20 11.205 0 8.795 0.000 
682 T/C T 58 1 19 19.288 0 0.000 1  0.712 0.999 C 1 58 0 0.000 19 11.205 1 8.795 0.001 
687 G/A A 1 58 0 0.000 20 11.205 0 8.795 0.000 G 58 1 20 19.288 0 0.000 0 0.712 1.000 
813 T/C T 51 8 16 16.871 5 1.218 0 2.912 0.937 C 8 51 5 2.684 16 10.211 0 8.105 0.063 
840 A/G A 57 2 19 19.675 2 0.134 0 1.191 0.999 G 2 57 2 0.470 19 11.541 0 8.990 0.001 
930 A/G A 58 1 19 19.288 0 0.000 1  0.712 0.999 G 1 58 0 0.000 19 11.205 1 8.795 0.001 

1053 G/A A 7 52 0 2.232 19 9.934 1 7.834 0.002 G 52 7 19 16.468 0 0.974 1 2.558 0.998 
1062 C/T C 58 1 20 19.288 0 0.000 0 0.712 1.000 T 1 58 0 0.000 20 11.205 0 8.795 0.000 
1122 A/G A 36 23 15 12.041 7 4.473 0 5.486 0.945 G 23 36 7 7.777 15 7.319 0 6.904 0.055 
1134 C/T T 1 58 0 0.000 20 11.205 0 8.795 0.000 C 58 1 20 19.288 0 0.000 0 0.712 1.000 
1181 G/A G 58 1 20 19.288 0 0.000 0 0.712 1.000 A 1 58 0 0.000 20 11.205 0 8.795 0.000 
1239 G/A A 2 57 0 0.447 20 10.991 0 8.561 0.000 G 57 2 20 18.738 0 0.128 0 1.135 1.000 
1306 G/A G 58 1 20 19.288 0 0.000 0 0.712 1.000 A 1 58 0 0.000 20 11.205 0 8.795 0.000 
1367 A/G A 58 1 20 19.288 0 0.000 0 0.712 1.000 G 1 58 0 0.000 20 11.205 0 8.795 0.000 
1442 T/C T 52 7 19 16.468 0 0.974 1 2.558 0.998 C 7 52 0 2.232 19 9.934 1  7.834 0.002 
1479 T/G G 1 58 0 0.000 20 11.205 0 8.795 0.000 T 58 1 20 19.288 0 0.000 0 0.712 1.000 

Data for  ND5  polymorphism  in Drosqphila  melanogaster is  from RAND and KANN (1996) and  the D. simulans sequence is from 
Figure 1 in RAND et al. (1994). & Y and 2 are  the  observed  numbers of segregating  sites  within  the  ancestral  allelic  class,  within 
the  mutant  allelic  class  and  between two allelic  classes,  respectively. Sa( i n -  z), S,( i,n- z) and s$ (i,n- 9 are  the expected numbers 
of segregating  sites  within  the  ancestral  allelic  class,  within  the  mutant  allelic  class  and  between  two  allelic  classes,  respectively. 
Pos., position;  Poly.,  polymorphism; Anc., ancestral; 

a Not D. simulans indicates  the  sequence  which is not common to D. simulum in the  polymorphic  site in D. melanogaster. 
* Hypothetical  ancestral nucleotide. 

Table 3. Among the total of 21 polymorphic  sites  de- suggested that the pattern of polymorphism  within  spe- 
tected  in the investigated region, in 18 sites the ances- cies  gives  useful information  to know the ancestral  se- 
tral  nucleotide was determined at the 99% level. It was quence of the species. 

A 

D. simulans 

B 

D. simulans 

- The nucleotide distance  between D. melanogasterand 
D. simulans was estimated by  two methods (Figure 5 )  . 
The first method is  simply  averaging the number of 

while the second one utilizes the information on the 
reconstructed common  ancestral  sequence of D. m h n e  
gaster (Figure 5B). The distance  estimated by the first 
method was 6.119 and the distance  estimated by the 

from the second method is - 1.25 times  larger than the 
first one. This  difference  might have been caused by 
back and/or parallel  mutations  between D. samulans 

tations  can  be  revealed by using the information on 
D. m l a w h  the ancestral  sequence. Our result  indicates that the 

nucleotide distance obtained without  considering the 
intraspecies  variation may lead  to underestimation. 

In nuclear genes, it is known that recombinations 
frequently occur and that the effect of recombination 
on the pattern of polymorphism is not small.  If  recombi- 

D. melanogaster pairwise differences between two species (Figure 5A), 
(n = 5 9 )  

6.119 second method was 7.672, indicating that the distance 

D. mehnOgUStW 
ancestral sequence and D. melanogasterancestral sequence. Undetected mu- 

(n = 59) 

FIGURE 5.-The relationship  between D. melanogaster and nation  occurs, it is difficult  to know the correct amounts 
D, simulam. The number of painvise nucleotide &ifferences Of variation Within and between  allelic ClaSSeS. One re- 
is indicated. combination  between two allelic  classes  can  decrease 
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the amount of  variation  between  two  allelic  classes and 
increase the amounts of variation  within  both  allelic 
classes,  because the several  segregating  sites may be 
counted within both allelic  classes.  For  example,  con- 
sider the case where A and T are polymorphic  in the 
first  site, and G and C are polymorphic  in the second 
site. If a recombination  occurs  between the two sites, 
four gametes  (A-G, A-C,  T-G and T-C ) are formed. If 
we count the numbers of segregating  sites  within A, 
within T and between A and T, it turns out that ( X ,  Y ,  
Z )  = ( 1, 1, 0 ) .  However,  actual number of mutations 
occurred is one  and, if no recombination occurred, ( X ,  
Y ,  Z) should be ( 1 ,  0, 0 )  or (0, 1 , O ) .  From  such data, 
it is difficult  to  know the correct number of mutations 
that occurred within a particular allelic  class. Frequent 
recombinations  lead  to more obscurity  of the difference 
of the amounts of variation  within two allelic  classes. 
Therefore, recombinations  can  result  in a decrease of 
the power  to determine the ancestral  sequence. 

One of our motivations  to promote this  study is to 
develop a statistical  test for detecting natural selection 
from the pattern of intraspecific  variation.  It is possible 
to know whether the neutral hypothesis  holds by investi- 
gating the amounts of variation  within and between 
allelic  classes. The statistic G can  be introduced to  mea- 
sure the degree of deviation  from the neutral expecta- 
tion, which is given  by 

G =  [ X -  S,( i ,n- i ) l2  [ Y -  s r n ( i , n - i ) l 2  + 
V, ( i,n- i) V, ( i,n- i) 

We can  see the degree of deviation  site by site, and we 
can  search more likely  sites  where natural selection is 
acting. The idea has  some  similarity  to the haplotype 
test  developed by HUDSON et al. ( 1994). By computer 
simulation, the distribution of G was investigated (data 
not shown). It was found that the distribution depends 
on i and n and that no consensus  distribution was de- 
tected. The only way to know the confidence  limits of 
the distribution is to conduct computer simulation, but 
this  test may be  conservative  because of a large amount 
of  variance.  Recombination  can also affect the power 
of  this  test. It may be  difficult  to  test the neutral hypoth- 
esis  by using the amounts of  variation  within and be- 
tween  allelic  classes. 

This work was supported  in part by a grant-in-aid from the Ministry 
of Education, Science, Sports and Culture of Japan. 
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APPENDIX A 

According  to the coalescent  scheme  in  Figure 1, we 
can have s b  ( n )  . Sb ( n )  is the same as the expected  num- 
ber of the segregating  sites on an external branch in a 
sample of n sequences  without outgroup (Fu and LI 
1993). When n sequences  coalesce into n - 1 se- 
quences, a sequence  coalesces  with one of the re- 
maining n - 1 sequences with  probability ( n - 1 ) / 
(2") and does not coalesce  with  probability 
( ; ) / ( 2" ) . Then we have  following  recursions: 

Using the above  two equations, we have 

0 
n -  1 '  

S b ( n )  = - 

which  is equivalent  to that obtained by Fu and LI 
(1993). In the same way, the variance of the number 
of segregating  sites, V,( n )  , is  given  by 

n - 2  V,(n-1) + e +  V , ( n )  = - e2 
n n ( n -  1)  n 2 ( n -  1)' 
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V,(2) = 8 + e2. (A3a) 

Using the above  two equations, we have 

8 
V,(n) = - 

n -  1 

+ 1 [ 2 +  i 2 k  - 3 
18'. (A4) 

n ( n  - 1) k = 3  ( k  - l )  ( k  - 2)  

APPENDIX B 

The variances of the numbers of segregating  sites 
within and between  allelic  classes  can  be  derived by 
modifying  Equations ( 1 ) ,   ( 3 ) ,  ('7) and ( 8 ) ,  when the 
ancestral  allelic class  is unknown. In A ( i,n- i) , denote 
the variances  within an allelic  class and between  allelic 
classes by V ( i, n - i) and V, ( i, n - i) , respectively. Then, 
V(  i,n- i) can  be  given by 

i n -  i 
V( i,n-i) = - V( i-1,n-i) + - V (  i,n-i-1) 

n n 

+ i e 2  + 2(;)e2 
n ( n  - 1) n 2 ( n  - 1)' n 2 ( n  - 1 ) 2  

+ - [S(i-1,n-i)l2 + - a n -  i 
n 

[ s (  z,n-i-1) 1 * 
n 

- [ n n 
S(i-1,n-i) + - n -  i 

S (  i,n-i-1) 

i 
= - V(i-1,n-i) + - 

n n 
V( i,n-i-1) 

n - i  

(2  5 i 5 n - 2 ) ,   ( B l )  

n -  1 1 8 
V(n-1, l )  = - V(n-2,l) + - V(n-1) + - 

n n n 

O2 n - 1  1 
n2 n n 

[s(n-2,1)12 + - [ s (n -1 )12  +-+ -  

S (  n-2,l) + - S (  n-1) 
1 
n 

where 
n-1 n-1 7 

i 
n n 

V,( i,n-i) = - V,( i-1,n-i) + - n -  i V,( i,n-i-1) 

+ i (  n - i) 
[sb(i-l,n-i) - sb(i,n-i-1)]2 n2 

( 2  5 is n - 2 ) ,  (B3) 

where V, ( n )  is  given  by (A4) . Note that the variance of 
the number of mutations occurred on a branch during 
allelic  state A ( i, n - i) is 

e2 
n ( n  - 1) n 2 ( n  - 1) '  

and the covariance of the numbers of mutations  be- 
tween  two branches in this  time duration is 

e2 
n 2 ( n  - 1)2  

(see TAJIMA 1983). 

APPENDIX C 

Denote the expected numbers of  pairwise differences 
within and between  allelic  classes  in A ( i,n-i) by 
K(i,n-i) and D(i,n-i), respectively. To obtain 
K (  i,n-i), we also  follow the scheme in Figure 1 and 
modify Equations ( 1 ) and ( 3 ) .  Here, we must  consider 
the case  where  two sequences  in the A1 allelic  class 
coalesce  with  probability 1 / ( i )  , when A ( i,n- i) 
changes  to A ( i- 1, n - i) . Then, we have 

K (  i-1,n-i) 1 
n -  i 28 ( i  + l ) ( i  - 2)  +- K (  i,n-i-1) + 

n 
- - 

n ( n  - 1) n ( i -  1) 

n -  i 28 
X K(i-1,n-i) + - K (  i,n-i-1) + 

n n ( n -  1 )  

n - 3  ( n + 1 ) 8  n - 1  
n - 2  n ( n  - 1) n 

=- K(n-2, l )  + =- 8. (C2) 
and V, ( i, n- i) can  be  given by 
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Using equations ( C 1 )  and ( C 2 ) ,  we have a  simple  solu- 
tion 

K( i,n-i) = - e. i 
n (C3) 

In the same way,  by modifying  Equations ( 7)  and ( 8 ) , 
the expected number of  pairwise differences  between 
two allelic  classes, D (  i,n-i) , is written as 

D (  i,n-i) = - D(  i-1,n-i) + - i n -  i 
n n 

D (  i,n-2-1) 

n -  1 e D (  n-2,l) + - + D(n-1,l) = - 2e 
n n n ( n  - 1 )  

n 
From  Equations ( l l ) ,  ( C 4 )  and ( C 5 ) ,  D(i,n-i) is 
rewritten as 

D(i,n-i) = Sb(i,n-i) + - n - 2  
n 

e. (c6) 

APPENDIX D 

We consider the variances of the numbers of segre- 
gating sites  within and between  allelic  classes  when the 
ancestral  allelic class  is known. Denote the variances 
within the ancestral  allelic class,  within mutant allelic 
class and between  them by V ,  ( i n -  i) , V, ( i,n- i) and 
V t  ( i, n - i )  , respectively.  These are obtained by  follow- 
ing the scheme  in  Figure 2 and by modlfylng ( B l )  - 
( B 4 ) .  Namely, we have 

i -  1 V,(i,n-i) = - V , (  i-1,n-i) + - n -  i 
V , (  Cn-i-1) 

n - 1   n -  1 

ie + + i2e2 + ( i -  l ) ( n -  i )  
n ( n  - 1 )  n 2 ( n  - 1)' ( n  - 1)' 

X [Sa(z-l,n-z) - ~ , ( i , n - i -1 ) ]~  

( 2  s i s  n -  2 ) ,  ( D l )  

n - 2  1 e V,(n-1,l) = - 
n -  1 

V , (  n-2,l) + - 
n -  1 

V(n-1) + - 
n 

e2 n - 2  1 +-+ -  
n2 n - 1  [ ~ , ( n - 2 , 1 ) 1 ~  + - [S(n-1)12 

n -  1 

1 
Sa( n-2,l) + - 

n -  1 

2- 1 
Vm(i,n-i) = - V,( z-1,n-i) + - n -  i V,( in-i-1) 

n -  1 n - 1  

+ n -  i ( n  - i l 2  ( i -  l ) ( n -   i )  
n ( n  - 1 )  n 2 ( n  - n -  1 

e +  e 2  + 
X [&(i-l,n-i) - S,(i,n-i-1)]2 

( 2  5 i s  n - 2 ) ,  (D3) 

e e2  
V,,(l,n-1) = Vm(l,n-2) + - + - 

n n2 

k=S k=S 

i- 1 
V ( i n - i )  = - Vt  (i-1,n-i) + - n -  i 

Vir (i,n-i-l ) 
n -  1 n - 1  

+ ( i -  l ) ( n -  i )  
( n  - 1)' 

[Sa((i-l,n-i) - ~f(Z ,n- i - l ) ] '  

( 2  5 is n -  2 ) ,  ( D 5 )  

V (1,n-1) 

n - 2  1 
n -  1 

V( n-1,l) = - V (n-2,l)  + - v,( n)  n -  1 

, e  + e 2  + 
n ( n  - 1 )  n'(n - 1)' 

n - 2  1 
n -  1 n -  1 

+- [St(n-2,1)l2 + - [S,(n)12 

APPENDIX E 

Denote the expected numbers of  pairwise differences 
within the ancestral  allelic class,  within the mutant al- 
lelic  class and between  them by K.  ( i, n - i) , &, ( i, n - i) 
and D* ( i,n- i )  , respectively.  Modifying ( C 1 )  - ( C 5 ) ,  
it is  easy to have the following  recursions: 

&(i,n-i) = ( i +  l ) ( i -  2 ,  K(i-1,n-i) + - n -  i 
i ( n  - 1 )  n -  1 

x ,&(i,n-i-l) + ( 2  s i 5 n - 21, ( E l )  
2e 

n ( n  - 1 )  
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&(i,n-i)  = - i -  1 
n -  1 

L( i-1,n-i) 

+ ( n -  i -  2 ) ( n -  i +  1 )  
( n -  l ) ( n -  i -  1 )  

L(i ,n-Z-l)  

+ 28 
n ( n  - 1 )  

( 2 1  2 s n  - 2 ) ,  

L ( 1 , n - 1 )  = 
n(n - 3 )  

( n -  l ) ( n -  2 )  
K R ( L n - 2 )  

28 - n 2 ( k - 2 )  - e, ( ~ 4 )  
n(n - 1 )  ( n  - 2 )  kt=3 k 2 ( k  - 1 )  

+ 

i -  1 n -  i 
n -  1 n -  1 

D*( i,n-Z) = - D*( 2-1,n-2) + - 
x D*( i,n-i-1) + 2e 

n ( n  - 1 )  
( 2  5 is n -   2 ) ,  (E5) 

28 
n - 1  n(n - 1 )  

n + 2  + n ( n -   1 )   8 = 1 [ . + 2 i  n -  1 t ] B ,  (E6)  
k= 3 

D*( 1,n-1) = D*( 1,n-2) 

+ 28 = ( 3  -%)e. (E7)  
n ( n  - 1 )  


