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ABSTRACT 
Estimation of allelic  and  genotypic  distributions  for  continuous  data  using  kernel  density  estimation 

is discussed and  illustrated  for  some  variable  number of tandem  repeat  data.  These  kernel  density 
estimates  provide a useful  representation of data  when  only  some  of the many  variants at a locus  are 
present in a sample.  Two  Hardy-Weinberg  test  procedures  are introduced for continuous  data: a continu- 
ous chi-square  test  with  test  statistic TCa and a test  based  on  Hellinger’s  distance  with  test  statistic Tm. 
Simulations  are  used  to  compare  the  powers  of  these  tests  to  each  other  and  to  the  powers  of a test  of 
intraclass  correlation TIC, as  well as to the power  of  Fisher’s  exact  test T ~ T  applied  to  discretized  data. 
Results indicate  that  the power  of TCcs is better  than  that of THDt but neither is as powerful  as TET. The 
intraclass  correlation test does not perform as well as  the other tests  examined  in  this  article. 

F ROM MENDEL’S work onward, the language of popu- 
lation genetics has usually been phrased in terms 

of loci with discrete alleles, and a rich body  of theory 
has been developed to analyze discrete genetic data 
(reviewed in WEIR 1996). With molecular technology 
now making available DNA sequences for  population 
studies, the  dominance of discrete data  might  be 
thought  to  be  complete. Paradoxically,  however,  molec- 
ular  techniques have often  introduced uncertainty into 
allelic designations. Whenever alleles are  detected elec- 
trophoretically, there is uncertainty in the relationship 
between measured migration distances and inferred 
fragment lengths. Although this was recognized when 
protein variants were the primary type  of population 
genetic data,  there were  usually so few alleles at a locus 
that  there was little trouble in distinguishing between 
them. Measurement error was not an important consid- 
eration. The  more  recent introduction of minisatellite 
markers, especially the variable number of tandem re- 
peat (VNTR) loci employed for individual identifica- 
tion, has revealed such a high degree of variation, with 
hundreds of alleles, that allelic differences cannot  be 
determined with certainty from  fragment  length differ- 
ences. At locus DlS7, for example, the  repeat  length is 
9 bp  and estimated fragment  lengths between 600 and 
22,000 bp  are  found  in samples from human popula- 
tions. It is not possible to distinguish all 2300 alleles 
by electrophoresis and  the estimated fragment lengths 
should  be  considered as continuous  data, notwithstand- 
ing  the fact that they represent integral numbers of 
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repeat units and  are usually reported as integers. The 
estimate of the  fragment  length is a function of the 
true size and measurement  error. 

The effect of the  measurement error  on estimated 
fragment lengths has been addressed by DEVLIN et al. 
(1991) and EVETT et al. (1993). Not only does measure- 
ment  error obscure allele definition, but also if a hetero- 
zygous individual has two fragments of similar length, 
the fragments may coalesce and  appear  on  the gel as 
a single fragment  rather  than two distinct fragments 
(DEVLIN et al. 1991). Sometimes coalescence can be 
resolved by modifying electrophoretic conditions, but 
in this paper we ignore  the coalescence problem and 
concentrate on allele definition. 

Even  with measurement  error obscuring some allele 
definition, VNTR markers have an incredible amount 
of variation and this makes them of great use for identi- 
fication. It also makes analysis  of population  data diffi- 
cult. One approach to analyzing continuous  population 
genetic data is to apply a discretization process. In es- 
sence, this is what was done with protein variants. The 
additional variation sometimes revealed by changing 
electrophoretic conditions (JOHNSON 1976) was hidden 
by the few alleles seen under standard conditions. Dis- 
cretization is made explicit by the  “binning” tech- 
niques used by forensic scientists (e.g. ,  BUDOWLE et al. 
1991). Fragment lengths at DlS7, for example, are as- 
signed to  the 31 intervals, or bins, between  successive 
bands on a sizing ladder. Such strategies have the advan- 
tage  of  simplicity, although  there can still be ambiguity 
over  which discrete allele is appropriate  for a particular 
fragment  length. More importantly, the resulting dis- 
crete  data  can  be analyzed  with traditional methods. 

An alternative approach is to employ continuous 
analyses. These analyses are generally more difficult and 
cannot  be  done without computers,  but they do recog- 
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nize the  nature of the  data. Several such analyses  have 
appeared in the forensic literature (BERRY 1991; BUCK- 
LETON et al. 1991; EVETT et al. 1993; HARTMANN et al. 
1994; AITKEN 1995). These analyses  use kernel density 
estimation as a way of estimating allelic distributions for 
use in the calculation of profile frequencies. However, 
these papers generally assume Hardy-Weinberg equilib 
rium and  do  not address testing for Hardy-Weinberg 
equilibrium in a continuous framework. Inference 
about  independence of  allelic frequencies at single loci 
from a continuous viewpoint has previously been in 
terms of correlation coefficients (WEIR 1992a,b; CHA- 
KRABORTY et al. 1993; HAMILTON et al. 1996). 

Because  of the  potential use  of continuous  data in 
population genetic studies (PROUT and BARKER 1994), 
we explore some continuous analyses here. This work 
also responds to  the call by the NATIONAL RESEARCH 

COUNCIL (1996) for research into  methods  for analyz- 
ing  continuous genetic data. In particular, we show  how 
both allelic and genotypic data may be represented by 
“smoothed” distributions, and  then we compare geno- 
typic distributions with products of  allelic distributions 
to provide a continuous analogue of the traditional tests 
for Hardy-Weinberg equilibrium. We focus on kernel 
density smoothing and find that test  statistics  of the 
Rosenblatt-Bickel  type (BICKEL and ROSENBLATT 1973) 
perform well, although  not as  well  as  tests on discretized 
data. We illustrate the  procedures by applying them to 
some simulated databases. 

THE DATA 

Although this work was motivated by the  need to 
accommodate VNTR data,  the general approach ap- 
plies to any  locus where the variants are described by 
continuous measurements. For a VNTR locus, a sam- 
pled individual has a pair of estimated lengths X, Y. 
Although there is generally no way to determine  paren- 
tal origin of these two lengths, it is convenient to use 
the different symbols and  denote heterozygotes by both 
X, Y and Y,  Xwhen X # Y. We  will use Xwhen referring 
to just  one of the lengths. The lengths are  considered 
to be related to the  number a of repeat units, in the 
simplest model that ignores flanking regions, by 

x =  TU + E, (1)  

where ris  the  length of the  repeat  unit and E is an  error 
term. We assume that r is constant within and between 
individuals.  Several authors have  discussed the distribu- 
tion of errors E (BUCKLETON et al. 1991 ; DEVLIN et al. 
1991; EVETT et al. 1993). Measurement errors have been 
found to be skewed and also to depend  on the lengths 
of the fragments. However, measurement  errors  are a 
small fraction of the total fragment lengths (-2% ac- 
cording to EVETT et al. 1993) and a strong  dependence 
among  measurement  errors  need not cause a strong 
dependence  among  fragment lengths within or be- 

tween  individuals. We will concentrate on tests for de- 
pendence between the two fragment lengths per locus 
within individuals without seeking to deconvolve or sep- 
arate  the error term from the  true  length of the  repeat 
unit. 

ALLELIC AND GENOTYPIC  DENSITY  ESTIMATION 

For discrete data, tests  of the Hardy-Weinberg law 
depend  on comparisons of genotypic frequencies 
(strictly, sample proportions serving as estimates for 
population probabilities) with appropriate products of 
allelic frequencies (MAISTE and WEIR 1995). We  wish 
to adopt  the same general strategy for continuous  data, 
but  need to work  with probability density functions 
rather  than discrete probabilities. For highly  variable 
loci, unless samples are  much larger than is usually the 
case, empirical density functions are very “spiky” for 
both genotypes and alleles.  For this reason we have 
chosen to smooth these empirical functions before con- 
ducting Hardy-Weinberg  tests. 

Empirical density functions, whether or  not they are 
smoothed,  are analogous to histograms for discrete 
data. For a discrete locus  with m alleles, the m allelic 
counts can serve as the heights of bars in a histogram 
and the histogram itself  provides a nonparametric esti- 
mate of the probability distribution. It is also  possible 
to construct a histogram, with m(m + 1)/2 bars, for  the 
set of genotype counts and of course it is the genotype 
counts  that  are summed to provide allele counts. An- 
other histogram of expected  counts could be con- 
structed, from the Hardy-Weinberg relation,  to provide 
a graphical indication of whether  the sample supports 
Hardy-Weinberg. The observed and expected genotypic 
histograms could be constructed in three dimensions, 
as shown in Figure 1. Unless maternal  and  paternal 
alleles can be distinguished, these bivariate histograms 
must be symmetric about  the diagonal whose elements 
represent homozygote counts. 

If continuous  data  are discretized by binning, con- 
struction of histograms needs to consider the issue of 
the  number  and  the width  of the bins (histogram bars). 
The bins are  not specified as they are in the discrete 
case and could be chosen to be of equal width (B-S 
et al. 1989), equal frequency (GEISSER and JOHNSON 

1992, 1995; WEIR 1993), or by some external means 
(BUDOWLE et al. 1991). Once bin widths and boundaries 
have been  determined,  the  data can be sorted into  the 
bins. The  number of occurrences for each bin serves 
as the  height of the histogram bar  for  that bin. 

For a continuous analysis, there  are several different 
nonparametric statistical techniques used to estimate 
probability densities. These include splines, wavelets 
and kernel density estimation. We use kernel density 
estimation because we consider it to be a straightfor- 
ward procedure and because it has been used in this 
context previously (BERRY 1991; BERRY et al. 1992; EVETT 
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FIGURE 1.-An example of histogram estimates for blood 
group data. (A) An histogram for allelic blood group data. 
(B) An histogram for genotypic blood group data. (C) A 
bivariate histogram for genotypic blood group data 

et al. 1993; HARTMANN et al. 1994; AITKEN 1995). Addi- 
tionally, it is  easy to  ensure positive density estimates 
with the  kernel  approach. Kernel density estimation has 
been reviewed  in general by SILVERMAN (1993) and  for 
VNTR loci by AITKEN (1995). We  now consider univari- 
ate density estimation for allele frequencies  and bivari- 
ate estimation for genotype frequencies. 

Univariate  kernel  density  estimation: The essence of 
kernel density estimation is to impose upon each data 
point  a distribution or kernel density. The estimated 
density at any point  along  the range of the  data is the 
sum of all the overlapping kernel densities at that  point. 
The  procedure is shown graphically in Figure 2 for a 
trivial  case of a sample of  size  seven. The seven data 
points  are filled triangles, the kernels are shown  as dot- 
ted curves, and their sum forms the kernel density 
shown  as a solid line. In this example a normal kernel 
with the mean equal to  the observed data  point  and  a 
common  standard deviation was used. 

For a  fragment  length of x, the general form of a 
univariate kernel density estimate f n ( x )  of the  continu- 
ous probability density functionJx), based on a sample 
of n values Xi, i = 1, 2, . . . , n, is 
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FIGURE 2.-How to use kernel density estimation to make 
a  nonparametric density estimate. (A) Kernel estimator with 
smoothing  parameter h = 1. (b) Kernel estimator with 
smoothing  parameter h = 0.5. 

where K is the kernel function, and h is  known  as the 
bandwidth or smoothing  parameter.  Under  the condi- 
tions h + 0, and nh + UJ as n + 03, the kernel density 
estimate will converge in probability to the  true density 
(SILVERMAN 1993). 

Kernels can have  any defined density and can vary 
over the  range of the data. For  simplicity we have 
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elected  to  use  a  normal  kernel that is not changed over 
the range of the data (Figure 2). The normal  kernel is 

+) x-x - e - ( * X i ) w .  (3) 

Equations 2 and 3 provide the kernel  density  estimate 
at a  single point x. If many points along the range of 
interest are examined,  a very clear representation of 
the density function can  be  achieved.  Making the grid 
finer, or increasing the number of points at which the 
density is evaluated, will increase the resolution. All 
density  estimation  in  this paper used  grids  of  equally 
spaced  points  over the range of the data.  Generally, we 
used  a  grid  of 50 intervals for allelic  density  estimates, 
and a  two-dimensional  grid  of 50 X 50, or 2500 inter- 
vals, for genotypic  density  estimates. 

The choice of kernels  has  been  discussed and re- 
viewed  by GHOSH and HUANC (1991) and SILVERMAN 
(1993). These authors have found the normal  kernel 
to  be  efficient, and they found that choosing  a different 
symmetric  kernel  does not appear to have  much  impact 
on the efficiency  of the estimated  density. The width 
of the kernel is affected by h, which  is the standard 
deviation of the normal  kernel in Equation 3. This  pa- 
rameter has  a  major  effect on the analysis and is analo- 
gous  to the width  of the bars in a  histogram. In Figure 
2B the same data were  used as in Figure 2 A ,  but a 
bandwidth  of h = 0.5 was used  instead of h = 1. A larger 
bandwidth will produce a smoother density  estimate, 
which explains the term “smoothing parameter.” 

For the VNTR data in  this  study h was kept the same 
over the entire range of the data. In cases  where the 
tails  of the distribution are long, a  small h for the entire 
density  estimate  can  result  in  noise  in the tails  of the 
estimated  density.  However, if one tries  to  smooth the 
tails by increasing h, the central part of the density may 
be  overly  smoothed. One solution is to vary h along the 
range of the data. Another solution is to  transform the 
data:  a  logarithmic  transformation  has the same  effect 
as increasing h along the range of the data. We have 
not varied h or transformed the data in this  study as 
there were no long tails  in  these  simulated  distributions. 
However, the methods  described in this paper can  be 
applied  to  transformed data. HARTMANN et al. (1994) 
did allow h to vary along the range of the data. 

Note that our choice of a  kernel is not related to the 
measurement errors associated  with fragment lengths, 
even though these errors may coincidentally have a nor- 
mal distribution. The lengths X already include the 
measurement error (Equation 2), and it is the density 
for the overall length (the sum  of the true length plus 
the error) that is  to  be estimated. If it was desired  to 
formulate  a  density  estimate of the number of repeats 
r, then some  deconvolution  process  would have to be 
implemented (LIU and TAYLOR 1989), based on a 
model for the errors E .  Therefore, the choice of a  kernel 

depends on concerns  such as efficiency  of  calculation 
and existence of  derivatives  of  all orders rather than 
the structure of the measurement error E .  Although 
there are many automatic  methods for choosing h, since 
the effect  of h on Hardy-Weinberg  testing procedures 
was not known at the outset, several “reasonable” val- 
ues  were  used. 
As an example, we show in Figure 3 the kernel  density 

estimates  from  a  sample of 610 fragment lengths  from 
305 African-American  individuals for locus D1S7 col- 
lected by the Broward  County  Crime  Laboratory,  Flor- 
ida  (individuals  with  only one length were  omitted  from 
the analysis).  It  can  be  seen that the estimate for h = 
5 was still  very  spiky, and the estimate for h = 1000 was 
so smooth as to have  lost  much  information.  Reason- 
able  choices appear to  be  in the range h = 100 - 500 
for this  locus. SILVERMAN (1993) has  a  standardization 
of h / s  allowing  a  comparison of h values for different 
data sets.  For  this  example h / s  gives  values  of 0.034 - 0.17. 

Bivariate kernel density estimation: Each  individual 
has two fragment lengths so a  bivariate  distribution 
f i x ,  y) is needed for genotypic  distributions.  Univariate 
methods are easily extended to  provide  a  bivariate den- 
sity  estimate at gridpoint x, y: 

where X;, are the fragment lengths for the ith individ- 
ual, i = 1, 2, . . . , n. For the bivariate  kernel  estimate 
to  converge in probability  to the true density  it is neces- 
sary that h + 0, and nh2 + co as n -+ m. We use  a  bivariate 
normal kernel with zero correlation between the two 
variables: 

An example of the genotypic  density  estimate for the 
Broward  County D1S7 data is  shown  in  Figure 4, both 
as a  surface and as a contour plot.  These  figures may 
be  easier  to interpret than the corresponding bivariate 
histogram. 

HARDY-WINBERG HYPOTHESIS 

Consider  a  locus with discrete  alleles Ai having fie- 
quencies pi, and genotypes A d j  having  frequencies Pij. 
The Hardy-Weinberg relation, if heterozygote frequen- 
cies are written as Pv + q ,  is as follows: 

For  a continuous analysis, the Hardy-Weinberg  rela- 
tion is expressed in terms of  density  functions 
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where Ax, y) is the bivariate density for genotypes with 
fragment  lengths x, y, and Ax)  is the univariate density 
for  length x. Equation 7 is the usual definition of inde- 
pendence  for variables X, Y,  and  it suggests a test proce- 
dure. Using data on 1~ individuals, the genotypic kernel 
density estimatef,(x, y) expected under  the null hypoth- 
esis  of Hardy-Weinberg equilibrium is calculated as the 
product of the allelic kernel density estimates f n (  x) and 
fn(y). Note that  the  functional forms of fn(x)  and f n ( y )  
are  the same since the  parental origin of the alleles is 
considered not to affect frequency distributions. 

Alternative hypothesis: The evaluation of different 
testing strategies will be based on power considerations, 
and this requires  the specification of an alternative hy- 
pothesis. A convenient alternative in the discrete case 
is phrased  in  terms of the within-population inbreeding 
coefficient f = F& 

All alleles are  treated alike, so that  there is  only one 

h=lOO 
FIGURE 3.-Kernel den- 

sity estimates of allelic  dis- 
tributions for VNTR locus 
DlS7. 

VNTR size h=lOOO 

value off Testing against this alternative refers just to 
the  population sampled, and  no evolutionary implica- 
tions can be drawn. In the language of  WEIR (1996), 
the analysis  is for a “fixed” population. To address the 
issue  of dependence imposed by population  structure, 
when allele and genotype frequencies both  refer to a 
total population consisting of a series of subpopula- 
tions, it is necessary to replace f by F = Fni the total 
inbreeding coefficient, and the analysis  is  now for “ran- 
dom” populations. For random-mating populations, 
the total inbreeding coefficient is the same as the coanc- 
estry coefficient, F = 8(Fn = FsT). The  inbreeding coef- 
ficient Fm is the probability that two alleles  within one 
individual are identical by descent (ibd), whereas the 
coancestry 8 is the probability that two alleles in two 
different individuals are ibd. Both measures are aver- 
aged over subpopulations. Although the analysis we 
present is meant to be within populations, we use 8 in 
place off in Equation 8 to avoid confusion with density 
function  notation. 

By analogy, the alternative hypothesis in the  continu- 
ous case is 
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TESTING  PROCEDURES 

We have examined two tests for  independence of 
continuous distributions: a specific form of the Rosen- 
blatt-Bickel test (ROSENBLATT 1975) and a test  based 
on Hellinger's distance (KOTZ andJoHNsoN 1981). We 
have examined  the effects  of h and of 0, as  well  as  of the 
range of the  data  and  the underlying marginal allelic 
distribution on the power  of each of these two tests. 
We have also tested for  the  presence of intraclass corre- 
lation and we have applied Fisher's exact test. In tests 
for Hardy-Weinberg we expect  the test statistic to be 
affected by the value  of 0 and we point  out this effect 
in the discussion  of the test statistics. 

Continuous  chi-square test: BICKEL and ROSENBLATT 
(1973) presented a univariate test statistic that was the 
continuous  analog of the chi-square goodness-of-fit  test. 
ROSENBLATT (1975) gave the two-dimensional exten- 
sion and showed the distribution of the test statistic 
under  the null was normal, with mean and variance 
depending  on h and  the  range of the  data in the case 
of a uniform [0, 11 marginal distribution. We do not 
invoke this asymptotic distribution of the test statistic, 
but rely instead on the  permutation  procedure, de- 
scribed in the numerical procedures section, to deter- 
mine power and significance levels. 

We refer  to  the test as the  continuous chi-square test, 
CCS, and  note  that it is based on the quantity 
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FIGURE 4.-Kernel  density  estimates of genotypic  distribu- 

tions  for VNTR locus DlS7. (A) Surface plot. (B) Contour 
plot. 

In  other words, the  joint density is (1 - 6 )  times the 
product of the two marginal  densities everywhere on 
the x, y plane,  plus an additional  term of 0 times the 
common  marginal density on  the  line x = y.  Evidently, 
0 is the intraclass correlation  for  fragment  lengths 
within individuals, and  under  the alternative  in Equa- 
tion 9 a test  for an intraclass correlation  coefficient 
larger  than  zero is a test for Hardy-Weinberg equilib- 
rium. However, there  are cases where the  data may be 
uncorrelated  but  not  in Hardy-Weinberg equilibrium. 
The intraclass  correlation is zero  in  this  scenario, al- 
though clearly the two fragment  lengths  are  not  inde- 
pendent. 

The unknown density functions  are replaced by kernel 
density estimates, and  the  numerator is expanded to 
provide 

We evaluated this integral numerically by evaluating the 
function at each  point of the twodimensional grid used 
for  the  kernel density estimate, multiplying by the 
(equal) grid widths dx and dy and  adding all these terms 
together. For computational purposes it is possible to 
drop  the constants nh2, -1, and dx, dy and write the 
test statistic as Tea: 

This test statistic increases as 0 increases. 
The bandwidth h affects the test statistic. Increasing 

the  range of data,  but keeping the bandwidth constant, 
will increase the test statistic. This effect is analogous 
to widening the  range in the discrete case and leaving 
the bin width the same, thus creating  more categories 
to be considered and increasing the value  of the chi- 
square test statistic.  Alternatively, histogram bin widths 
can  be widened to accommodate a larger range, and 
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bandwidths  can  similarly  be  increased. In that case,  a 
shrinkage in the test  statistic is observed. 

Hellinger’s  distance test: Hellinger’s  distance ( KOTZ 
and JOHNSON 1981)  provides  a  means  of comparing 
two density functions by means of a  quantity bounded 
between  zero and one. To compare bivariate  functions 
fI x, y) and g( x, y) , the distance HD is calculated as 

H.D = [ s, s, ( G - 3  - h r ) Z d x d y ]  
1/2 

= [ 2 - 2 s, s, m d x d Y ] l ’ z .  (11) 

If &(x, y) is a  bivariate kernel density  estimate and 
fn(x)fn(y) is the product of the kernel density  estimates 
of the two marginal  distributions,  a  Hellinger  distance 
can  be  calculated  between them. From the form of 
Equation 11, we define a  test  statistic THD as 

X Y  

This  decreases as 8 increases.  Significance  levels and 
power are determined using the permutation proce- 
dure described below. 

Intraclass correlation  coefficient  test: An estimator 
T I C  for the intraclass correlation coefficient was given 
by WEIR (1992a). If the fragment lengths  in the ith  of 
n  individuals are (X, x), this  statistic is 

where the between-individual and within-individual 
mean  squares are 

B =  
2(n - 1) n 

For the alternative  hypothesis in Equation  9,  this  statis- 
tic  gives an estimate of 0, so increases with 8. Signifi- 
cance levels and power are determined using the per- 
mutation procedure described below. 

Fisher’s exact  test: For  discrete data, MAISTE and 
WEIR  (1995) found that Fisher’s  exact  test FET  is the 
most  powerful  Hardy-Weinberg  test. The exact  test uses 
the conditional probability of genotype counts nq  given 
allelic counts nj. Under the Hardy-Weinberg  hypothesis 
this conditional probability is 

where n is the sample  size, His the number of heterozy- 
gotes in the sample, and  the product in the denomina- 
tor is over  all  genotypes.  Because the statistic is  evalu- 
ated over  datasets obtained by permuting alleles  (see 

below), it is  necessary to  keep  track  only of  genotype 
counts and the test  statistic is written as TmT: 

2H 
(2n)!II,(nq!) ‘ 

This  statistic  decreases  as 8 increases. 
In the present study,  fragments  were  placed into dis- 

crete bins that were defined arbitrarily  to  be of equal 
width b to  provide  a  comparison  with the constant h 
used  in  tests  based on the kernel approach. Significance 
levels and power are determined using the permutation 
procedure described below. 

Numerical  procedure: We  have employed  simulation 
to  evaluate our procedures, and we used four different 
fragment length distributions.  These four distributions 
were as follows: (1) uniform  over the range  500-8000 
bp, (2) normal with a  mean of 4250 bp and a standard 
deviation  of  1875 bp, 95% of  which  lies  in the range 
500-8000 bp, (3) normal with  mean  of  6450 bp and a 
standard deviation of  2775 bp, 95% of  which  lies  in the 
range  900-12,000 bp and (4) an equal mixture of  two 
normals (one with mean 1000 bp and standard devia- 
tion 500 bp and the other with  mean  4700 bp and 
standard deviation  1875 bp), -90% of  which  lies on 
the range  500-8000  bp. The range  500 - 8000 bp 
was chosen  because  it is close to the range commonly 
observed  for  loci  D2S44,  D10S28 and D5S110. Data  sim- 
ulated  from the normal  distributions were discarded if 
they  lay outside  specified  ranges:  500-8000 for (2) and 
(4), and 900-12,000 for (3). This was done to  keep the 
observations  within  a predefined grid. 

To simulate  genotypes, we chose the first  fragment 
length from one of the four distributions, and then 
with  probability 8 made the second  fragment  identical 
to the first.  With  probability 1 - 8, the second fragment 
length was chosen independently from the same  distri- 
bution  as the first.  When 8 = 0 there is independence 
between fragment length pairs  within  individuals  in the 
simulated data. In all  cases, we used  a  sample  size  of n 
= 100  individuals. 

For  each  allelic distribution, data were simulated with 
four different 8 values: 8 = 0, 0.01,  0.05,  0.1. The 8 = 
0 cases correspond to the null  hypothesis,  while the 8 
> 0 cases depart from  Hardy-Weinberg  equilibrium. 
For  each of these  simulations the test  statistics TCa and 
THD were  evaluated  at three different bandwidths h = 
100,250,500. Since the kernel  density function fn( x, y) 
and the expected  genotypic  density f , ( x ) f , ( y )  are sym- 
metric, we performed the numerical integrations for 
the test  statistics Tca and THD on half of the grid off 
the diagonal, as well  as at  grid  points on the diagonal 
x = y. For  Fisher’s  exact  test,  binwidths  were  assigned 
three different possible  values: b = 100,  250,  500.  Note 
that b is  also a smoothing parameter and is the discrete 
analogue  to the smoothing parameter h used  in the 
kernel  density  estimation. We evaluated the intraclass 
correlation T I C  at  each  bandwidth  as a check on the 

T m  = 
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stability  of the simulations; this statistic is not affected 

For each test, the significance level was calculated as 
the  proportion of times a new set of n genotype counts, 
formed by permuting all 2n alleles, gives a more ex- 
treme test statistic (GUO and THOMPSON  1992; WEIR 
1996). For any set of parameter values,  power was deter- 
mined as the  proportion of simulated data sets that  had 
significance  levels  less than CY = 0.05. In  the cases  of 8 
= 0 (the null hypothesis) we expect the power of  all 
tests to  be -5%. As 8 increases, the power  of the test 
should increase. It is  less clear how the  different band- 
widths/binwidths and  the different marginal distribu- 
tions should affect the power of the tests. 

The detailed steps in power calculations were  as  fol- 
lows: 

1. A data  set of 2% = 200 fragment lengths ( n  = 100 
genotypes) was simulated according to one of the 
combinations of parameter values. 

2. All four test statistics TCcs, Tm, TIC, TmT were  calcu- 
lated (for each value  of h for  the first three,  or each 
value of b for  the fourth). 

3. All 2n fragment lengths were then  permuted  to form 
a new set of n genotypes. 

4. The test statistics Tees, Tm, Tfc, TmTwere then evalu- 
ated on the  permuted genotypes. 

5. Steps three  and  four  are  repeated I times to give an 
empirical distribution under  the null hypothesis for 
each test statistic. 

6. The proportion of the  Ipermuted values that  are as 
extreme or  more  extreme  than  the value from the 
original data is computed. If this proportion ( p  
value) is  less than or equal to 0.05, the null hypothe- 
sis  is rejected. 

7. Steps one through six are replicated 0 times. The 
proportion of the 0 times that  the hypothesis is re- 
jected provides an estimate of power. 

A discussion  of the values for  inner  and  outer  loop 
numbers Iand 0 was given by ODEN (1991). If the test 
is to be applied to one set of real data,  then sufficient 
permutations  are  needed to provide a good estimate of 
the significance level and  the power. From binomial 

a 95% confidence interval for p is f i  5 
0.96 f i (  1 - ! ) / I ,  where f i  is the observed proportion of 
permutations giving a test  statistic  as extreme or more 
extreme  than  that for the  data. The interval is widest 
when p = 0.5, and  then has  width of  0.01 each side of 
fi  when I = 10,000. ODEN  pointed out that I need  not 
be so large in power studies because of  all the  additional 
information provided by the 0 outer loops. Provided 
there is low bias  in estimating p,  the variance of p is 
determined primarily by 0. We set I = 159, so that  the 
hypothesis would be rejected when the test  statistic from 
the  data was among  the most extreme  eight of the 159 
+ 1 = 160 values. The power  of a test is estimated as 
the  proportion of the 0 outer loops in which rejection 

bY Jl'. 
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occurred. We set 0 = 1350. We took dB( 1 - B ) / O  as 
an estimate of the  standard deviation  of the estimated 
power 8. This estimate will provide accurate estimates 
of  power to the first decimal place. As power differences 
were large, this was determined  to  be  adequate. 

We compared tests  with  McNemar  tests: the  four out- 
comes of reject or not-reject for two tests can be re- 
garded as the cells  of a 2 x 2 contingency table and a 
chi-square test performed. If a, b are  the  numbers of 
times the two tests disagree (the first  test rejects and the 
second does  not reject in a replicates, and the reverse 
happens in b cases), the test statistic is M = ( a  - b)'/ 
( a  + 6) and is distributed chi-square with one degree 
offreedom when the tests have equal performance. 

RESULTS 

We show  power  values in Tables 1 and 2. Power is 
highly dependent  on  the bandwidth for all methods. 
This result is consistent with the theory of BLETH 
(1993). Similarly, binwidth has a substantial effect on 
the power  of Fisher's exact test. Interestingly, choosing 
the bandwidth based on automatic procedures will not 
always lead to the most  powerful  test. When conducting 
tests for Hardy-Weinberg equilibrium, therefore, we 
should not only be aware  of the effect of binwidth/ 
bandwidth on the power  of the tests but also realize 
that we can choose a binning strategy to maximize the 
power of detecting  departures from Hardy-Weinberg. 
Adding a consideration of power to the choice of band- 
widths  has  also been suggested by BLYTH (1993). 

The effect of the 8 parameter on the power is also 
substantial, and  there is  low power for  detecting 6 < 
0.05. This is consistent with the findings of MAISTE and 
WEIR (1995). Increasing the  range of the  data seems to 
increase the power for certain bandwidths, as was found 
by MCINTYRE (1996) (this thesis contains results for the 
parameter sets not shown  in Tables 1 and 2, and a copy 
may be obtained from the author). This is expected 
from work  of BICKEL and ROSENBLATT (1973) showing 
that  the mean and variance of the test statistic depends 
on both the  range of the  data and the bandwidth. 

We used analyses  of variance to test for effects  of the 
factors h, 8, marginal distribution and range on  the 
power of the tests. Although the empirical powers are 
not normally distributed, we consider that analysis of 
variance will provide an indication of the impact of the 
four factors. For all  tests, the  parameters h and 8 had 
a highly significant effect on the power and so did  the 
interaction between h and 8. However, the allelic distri- 
bution  and  range of data seemed to have no significant 
impact on power. 

The McNemar  tests indicated that tests  based on TK.E 
and THD are significantly different and Tccq was also 
more powerful than T I C .  

A comparison between Tm7. and TCcs is not directly 
possible. Although the binwidth for  the histogram and 
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TABLE 1 

Power of  tests for fragment lengtbs distributed udifarmly OVCT the range 500-8000 bp 

e h , b  ccs HD  IC FET 
0.00 100  0.050  (0.006)  0.044  (0.006)  0.055  (0.006)  0.063  (0.007) 

250  0.062  (0.007) 0.044  (0.006) 0.067  (0.007) 0.051 (0.006) 
500  0.047  (0.006) 0.041  (0.005) 0.039  (0.005) 0.040 (0.005) 

250 0.070 (0.007) 0.047  (0.006) 0.066 (0.007) 0.068 (0.007) 
500 0.059 (0.006) 0.035  (0.005) 0.040 (0.005) 0.061  (0.007) 

0.05 100 0.217  (0.011) 0.097 (0.008) 0.086 (0.008) 0.748  (0.012) 
250 0.141 (0.010) 0.069 (0.007) 0.109  (0.009) 0.330 (0.013) 
500 0.109 (0.009) 0.059 (0.006) 0.106 (0.008) 0.182  (0.011) 

0.10 100 0.564  (0.014) 0.287  (0.012) 0.192  (0.011) 0.991  (0.003) 
250 0.328 (0.013) 0.154 (0.010) 0.199 (0.011) 0.765  (0.012) 
500 0.239 (0.012) 0.119 (0.009) 0.190 (0.011) 0.492 (0.014) 

0.01 100  0.071  (0.007)  0.042  (0.006)  0.057  (0.006)  0.191  (0.011) 

SD  is indicated in parentheses. 
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the bandwidth for the kernel estimate are parameters 
that have the same  effect, the kernel is based  directly 
on the data points, while the histogram is based on the 
bins. It has been suggested that h is equivalent  to the 
binwidth (SCOTT 1979). If the h parameter for the ker- 
nel estimate is taken  to be exactly equal to the binwidth 
b and the simulation  results are compared for this  sce- 
nario, Tm is almost twice as powerful as Tca in  all 
cases. It has  also been suggested that h for the kernel 
estimator is equivalent  to  half the binwidth h = b / 2  for 
the histogram ( SILVERMAN 1993), If this  were the case, 
a comparison of the simulation  results shows that TmT 
still  seems  to be more powerful in most  cases, although 
the difference in powers  between Tm and Tca is much 
less extreme when  this  comparison is made. Therefore, 
it is perhaps more correct to say that the power for Tm 
and the power for Tca are affected by the smoothing 
parameter and the smaller the value  of the parameter, 
the higher the power. 

For the alternative  hypothesis in Equation  9, TIC in- 

creases  with 8, whereas Tees increases with @. For the 
alternatives with disequilibrium but uncorrelated fi-ag- 
ment lengths,  however, the IC  test  is not appropriate. 

CONCLUSION 

VNTR data are highly  polymorphic, and this  large 
amount of  variation  makes  analyses  of data from  these 
loci both difficult and complex. The usually  simple task 
of defining alleles is no longer straightforward. 

While  discretizing the data certainly  gives  allelic and 
genotypic  frequency  estimations, the method of  discret- 
ization  can  profoundly  impact the actual  frequency  esti- 
mates (WEIR 1993).  Continuous approaches to  fre- 
quency  estimation for VNTR data have been proposed 
by AITKEN (1995), BERRY (1991), BUCKLETON et al. 
(1991),EvEmelal. ( 1 9 9 3 ) , H A R ~ ~ ~ ~ ~ e t a l .  (1994)and 
MORRIS et al. (1989). A good  discussion of using a kernel 
approach to  estimate  frequencies of genotypes was 
given  by EVETT et al. (1993), under the assumption of 

TABLE 2 
Power of  tests  for  fragment lengths distributed normally over the range 500-8000 bp 

e h, b ccs HD IC E T  

0.00 100 0.061  (0.007) 0.046 (0.006) 0.046  (0.006) 0.064 (0.007) 

0.01  100 0.082 (0.008) 0.048 (0.006) 0.066 (0.007) 0.164 (0.010) 

250  0.059 (0.006) 0.041 (0.005) 0.048 (0.006) 
500 

0.036 (0.005) 
0.049  (0.006)  0.043  (0.006)  0.057  (0.006)  0.043  (0.006) 

250  0.070  (0.007)  0.051  (0.006)  0.055  (0.006)  0.064  (0.007) 
500 0.049  (0.006)  0.043  (0.006)  0.058  (0.006)  0.043  (0.006) 

0.05  100  0.216  (0.011)  0.113  (0.009)  0.106 (0.008) 0.710 (0.012) 
250  0.181  (0.011)  0.076  (0.007)  0.109 (0.008) 0.298 (0.012) 
500 0.110  (0.009)  0.061  (0.007) 0.101  (0.008) 0.187  (0.011) 

0.10  100  0.492  (0.014)  0.284  (0.012)  0.211  (0.011)  0.970  (0.005) 
250  0.374  (0.013)  0.179  (0.010) 
500 

0.195  (0.011) 
0.288  (0.012) 

0.696  (0.013) 
0.156 (0.010) 0.200 (0.011) 0.445  (0.014) 

SD is indicated in parentheses. 
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independence of  alleles  within a locus.  Likewise, HART- 
MANN et al. (1994) developed a kernel approach to the 
estimation of allele  frequencies. 

Allele and genotypic  frequency  estimates are crucial 
for attaching weight  to  evidence of matching DNA pro- 
files   EVE^ et al. 1993; AITKEN 1995). Almost  all meth- 
ods for assessing  weight  have  assumed  Hardy-Weinberg 
equilibrium. TO date the discussion  of  Hardy-Weinberg 
independence has  been  limited  to the case  where 
VNTR data are discretized and then tested, or where 
independence has been  addressed via intraclw correla- 
tions.  This  article  describes one way of estimating  allelic 
and genotypic  densities and performing tests for Hardy- 
Weinberg  equilibrium  based on a continuous ap- 
proach. 

We used  kernel  density  estimation  to  estimate  allelic 
and genotypic  frequencies.  This  has many  advantages, 
including being easily understood and implemented. 
More importantly, the mean integrated squared error, 
MISE,  of the univariate  kernel  estimator approaches 
zero  faster  than the MISE for the histogram  estimator. 
The asymptotic properties of the kernel are thus better 
than those for the histogram. We  also  believe the kernel 
estimator  to be  visually more pleasing, and in the bivari- 
ate case  to  be easier  to interpret than the bivariate  histo- 
gram. The real  utility for the kernel  estimator, in this 
context, seems  to  be  in  facilitating the estimation of 
genotypic and allelic  densities.  Since binning strategies 
are avoided, the kernel  estimator  alleviates  concerns 
about the placement of an individual into an incorrect 
bin. The choice of an appropriate binwidth or band- 
width  can  be  explored  as  an  optimization  problem 
where the MISE  is minimized and the power  of the test 
maximized. 

The performance of  Hardy-Weinberg  tests  based on 
the continuous kernel  estimator Tees and THD are af- 
fected by the choice of the smoothing parameter and 
the coefficient 8, as is Fisher’s  exact  test. TCa is more 
powerful than THD. While  exact correspondence be- 
tween  binwidth and bandwidth is not clear, the results 
show that, at best, Tcm has  equal power  to T m ,  and 
Tm is not as  powerful as TCm. With the fast  computation 
methods of GUO and THOMPSON (1992) and Z A m N  et 
al. (1995), TmT is much less computer intensive than 
either Tccs or T,. This  seems  to  indicate  that there is 
no compelling  reason  to use T c ~  over TmT in  terms of 
power of the test  against the alternatives  considered 
here. For  alternatives  where there is dependence but 
no correlation, TIC should not be  used and in  fact  is 
not as  powerful  as either Tcm or TET. In  practice, of 
course, the nature of  any actual departure from  Hardy- 
Weinberg is not known. 

We have  clearly demonstrated the impact of the pa- 
rameter h on testing for Hardy-Weinberg  equilibrium. 
The smaller values of h lead to higher power for all 
tests,  but do not change the bias/variance  relationship 
between the estimates and h. Additionally, there are 

limits on the size  of the bandwidth that is appropriate 
for the data at hand to  avoid under- or oversmoothing. 
Traditional “plug in” estimators  can be  used as a start- 
ing point for determining the reasonable  range of h. 
Then if testing for independence of fragment lengths 
is the objective, a smaller  bandwidth  should  be  used 
keeping in mind the bias and variance  of the estimates. 
If the main  goal  is to  provide  an  accurate  estimate  of 
continuous genotypic and allelic  densities, then h 
should  be  varied  over the informative  range  to  gain 
as  much  insight into the behavior of the variables as 
possible. 
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