Table 3. The mean performance of different fusion strategies based on the ResNet18 model in the validation set.
| Model | ACC | AUC | F1 | SEN | SPE | BACC | P |
|---|---|---|---|---|---|---|---|
| Late fusion | 0.770±0.040 | 0.724±0.078 | 0.649±0.095 | 0.571±0.182 | 0.900±0.070 | 0.736±0.063 | 0.144 |
| Score fusion | 0.770±0.045 | 0.733±0.066 | 0.662±0.111 | 0.621±0.229 | 0.870±0.107 | 0.746±0.072 | 0.255 |
| Our model | 0.820±0.024 | 0.795±0.068 | 0.760±0.050 | 0.746±0.121 | 0.869±0.044 | 0.808±0.040 | – |
Data are presented as mean ± SD. ACC, accuracy; AUC, area under the curve; BACC, balanced accuracy; F1, F1-score; SD, standard deviation; SEN, sensitivity; SPE, specificity.