Skip to main content
. 2025 May 6;13:1590962. doi: 10.3389/fbioe.2025.1590962

TABLE 3.

Performance comparison of KneeXNet with state-of-the-art methods on the test set and an independent dataset.

Method Test set Independent dataset
Abnormality ACL tear Meniscal tear Abnormality ACL tear Meniscal tear
SVM 0.872 ± 0.013 0.841 ± 0.016 0.836 ± 0.015 0.865 ± 0.014 0.833 ± 0.017 0.828 ± 0.016
RF 0.885 ± 0.011 0.857 ± 0.014 0.849 ± 0.013 0.878 ± 0.012 0.849 ± 0.015 0.841 ± 0.014
GBM 0.901 ± 0.010 0.873 ± 0.012 0.865 ± 0.011 0.894 ± 0.011 0.865 ± 0.013 0.857 ± 0.012
2D CNN 0.923 ± 0.008 0.896 ± 0.010 0.889 ± 0.009 0.916 ± 0.009 0.888 ± 0.011 0.881 ± 0.010
3D CNN 0.937 ± 0.007 0.912 ± 0.009 0.905 ± 0.008 0.930 ± 0.008 0.904 ± 0.010 0.897 ± 0.009
Transformer 0.948 ± 0.006 0.925 ± 0.007 0.919 ± 0.007 0.941 ± 0.007 0.917 ± 0.008 0.911 ± 0.008
SENet 0.956 ± 0.005 0.934 ± 0.006 0.928 ± 0.006 0.949 ± 0.006 0.926 ± 0.007 0.920 ± 0.007
KneeXNet 0.985 ± 0.003 a,b 0.972 ± 0.004 a,b 0.968 ± 0.004 a,b 0.978 ± 0.004 a,b 0.964 ± 0.005 a,b 0.960 ± 0.005 a,b
Additional evaluation metrics for KneeXNet
Accuracy 0.968 ± 0.004 0.951 ± 0.005 0.946 ± 0.006 0.960 ± 0.005 0.942 ± 0.006 0.937 ± 0.007
Precision 0.972 ± 0.005 0.958 ± 0.006 0.953 ± 0.006 0.964 ± 0.006 0.949 ± 0.007 0.944 ± 0.007
Recall 0.979 ± 0.004 0.965 ± 0.005 0.961 ± 0.005 0.971 ± 0.005 0.956 ± 0.006 0.952 ± 0.006
F1 score 0.975 ± 0.004 0.961 ± 0.005 0.957 ± 0.005 0.967 ± 0.005 0.952 ± 0.006 0.948 ± 0.006
Specificity 0.933 ± 0.008 0.918 ± 0.009 0.914 ± 0.010 0.920 ± 0.009 0.905 ± 0.010 0.901 ± 0.011
P-values for KneeXNet vs. best competing method (SENet)
p=0.0003 p=0.0007 p=0.0008 p=0.0011 p=0.0018 p=0.0022

Statistical significance test results:

a

Significantly better than all traditional ML methods (SVM, RF, GBM) with p<0.001

b

Significantly better than all deep learning methods (2D CNN, 3D CNN, transformer, SENet) with p<0.01

The bold values represent the best-performing results for each respective metric or category.