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N a population that is subdivided into more or less isolated strains, the total I genetic variance (uT2) of a character that depends on multiple alleles at 
multiple loci with additive effects within and among the loci, can easily be 
analyzed into the variance of strain means (am2) and the average variance 
within strains (uW2) in terms of the inbreeding coefficient F, and the variance, 
uO2 = 2tj( 1 - q ) ,  expected under panmixia with the same mean gene fre- 
quency, (WRIGHT 1951). 

These simple relations hold whether the strains are completely isolated and 
drifting toward fixation in the absence of mutation or selection, or whether a 
steady state has been reached in which the tendency toward fixation is balanced 
by a certain amount of cross breeding, mutation or selection (acting alike on 
both sexes). 

It should be noted that if the coefficient F is used for the purpose for which 
it was originally introduced, the description of population structure, it cannot 
take cognizance of rates of mutation or selection since these are specific for 
each locus. In this sense, F is related to heterozygosis, variability, correlation 
between relatives, etc., in only those respects in which the effects of recurrent 
mutation and selection are negligible. It is also desirable, however, to use F 
statistics that relate to specific loci and these must, of course, take account of 
the effects of all factors. The sort of use should be clear from the context. 
In either case, F can be defined as the proportional approach toward homo- 
zygosis from the situation under panmixia at the same gene frequency. The 
present discussion will be restricted to coefficients pertaining to disomic loci, 
and as random mating will always be assumed within strains, the only F 
coefficients considered are those of individuals relative to the total population. 

*Part of the cost of the accompanying mathematical formulae has been paid by the 

1 This investigation was aided by a grant from the Wallace C. and Clara A. Abbott 
GALTON and MENDEL MEMORIAL FUND. 

Memorial Fund of The University of Chicago. 
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If there is dominance in any degree, it is still possible to express the total 
variance in terms of a function of F and gene frequency, or statistics derived 
from these. Letting n, and uT2 be the grand average and variance of the total 
population, mo and uO2 those of a panmictic population with the same allelic 
frequencies and ml and or2 those of a random array of completely fixed strains 
(WRIGHT 1951) 

(4) m = = ( l - F ) m , + F m ,  
(5) OT' = (1-F) c: + F crl* + F(1-F) (ma-",' 

The analysis of uT2 into inter- and intra-strain components cannot, however, 
be made in these terms, if there is any degree of dominance. There are diverse 
possibilities with the same gene frequency and the same value of F, depending 
on the nature of the distribution of gene frequencies among the strains. 

ALAN ROBERTSON (1952) has recently carried through the analysis in the 
important case of completely isolated strains of given size, tending toward 
fixation without interference from mutation or selection. The distribution of 
gene frequencies here takes a succession of forms depending wholly on the 
successive inbreeding coefficients, the theoretical values of which can easily be 
determined. The mathematical formulae for the distribution of gene frequen- 
cies are not indeed known, but as ROBERTSON shows, it is only necessary to 
find the law of change of the first four moments. This he has done by means of 
matrix algebra. 

ROBERTSON shows that there is an almost qualitative difference ftom the 
results where dominance is lacking. Thus there is a considerable reduction in 
the total variance as inbreeding increases in case the gene frequency of the 
recessive allele is sufficiently high and a very considerable increase in the vari- 
ance within strains with iricreasing F, up to a certain point, in the case in 
which the gene frequency of the recessive is sufficiently low. 

SUBDIVIDED POPULATIONS I N  A STEADY STATE 

It may be of interest to make a comparison with the results from a very 
different situation, that in which a steady state has been reached in a popula- 
tion divided into partially isolated strains, the tendency toward fixation being 
balan'ced by occasional cross breeding. This case is of primary importance in 
the theory that evolution consists ordinarily ot second order shifts in such 
states of balance. The analysis is simpler since the form of the distribution of 
gene frequencies is known in this case. 

Gene frequency is represented by q with distribution, +(q) among strains, 
characterized by mean ?j, variance up2 and higher moments. The strains are 
assumed to be alike in effective size ( N )  and other conditibns: The distribu- 
tion +(q) is properly discontinuous, with values at steps of 1/(2N) in q. The 
integrals below may be considered as Stieltjes integrals applicable to step 
functions as well as continuous ones. The results are theoretidally exact if 
+(q) is an exbct discontinuous distribution but are merely clbse approxima- 
tions if continuous. Practically, of course, the irregulaiities in shk and in other 
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respects in actual cases make both merely approximate models. The following 
four equations are merely definitions, that for F being here based on propr- 
tional approach to hnmozygosis. 

(6) $(q)dq = 1 

(8 )  
(9) 2/0'q(l-q)$ (q)dq = 2 i ( 1 - 3 ( 1 - F )  

(7) I,'q$(q)dq =i ,; (q -GI2$ (q)dq = cqi 

From these 

(10) $4 (q)dq = ij' + uq2 = ij2 + T ( l - q ) F  

The mode of analysis may be illustrated most simply by the case of no domi- 
nance, with character values 0, Q and Za assigned to genotypes aa, Aa and AA 
respectively. For a strain with zygotic array [ (1 - q)a + qAI2, the character 
mean, m, is 2qa and the variance of the character, or2, is 2q( 1 - q)a2. For the 
total population, we are led at once to the results already referred to (in appli- 
cation here, however, merely to a pair of alleles). It is sometimes convenient 
to use p for (1 - q) for brevity. 

(1 1) 

(12) 
(13) ama = I , ' (~ - i i i ) ' $ (q )dq=4uZI , 'q2~(q)dq- i i i a  = 4 P q F u *  

(14) 

Consider now the case of complete dominance, letting q be the frequency 
of the recessive allele in a strain and a the differential effect of aa. For the 
mean and variance in the phenotypic array [ (1 - q2)A- + q2m] in a strain we 
have m = @a, ow2 = q2( 1 - q2)a*. In the total population 

iFi = I,' m$(q)dq = 2 a  J'; q$(q)dq = 2 q U  - 
mw2 = J,LcW'$(q)dq= 2az$;q(l-q)$(q)dqz 2FG(l-F)U* 

mT* == + mm2 = 2 F j ( l + F ) a '  

(15) i?i q'$(q)dq = (q' + P q F ) a  

(16) c w '  =a'[J;q'+(q)dq- Id q'$(q)dq] 
- 

(17) e m '  = u2 C q.4  (q)dq - E' 

(18) Cy* = aa2 q't$(q)dq - ii? = [S2 + PqF] [l - a' + ri;qF)] U' 

Thus the total variance can be evaluated in terms of q, F and a irrespective 
of the form of +(q). The value agrees with that obtained by substituting 
mo = q2a, uo2 = ?i2( 1 -q2)a2, ml = (L and uI2 = q( 1 - q)a2 in the more general 
formula cited earlier. In this case it reduces to iii(a - Z). but this is not true 
in general. 

Apportionment of this total variance into 2 and om2 requires evaluation 
of Jo1q*4(q)dq. ROBERTSON, as noted, found the law of change of this quantity 
under the cumulative effect of accidents of sampling among strains of a given 
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size. To deal with a population in a steady state it is necessary to find the 
formula of +(q) under the postulated conditions. 

If a gene frequency is subject to systematic change at the rate Aq per 
generation, and to random fluctuations (6q) including the effects of inbreed- 
ing, the resultant probability distribution has the formula 

(19) 
This can be derived as solution of the FOCKER-PLANCK equation of physics 

for the case of a steady state (cf. KOLMOGOROFF 1935; WRIGHT 1945; MALI% 
COT 1948). The present author (1938) derived it independently from the con- 
dition that mean and variance remain unchanged. This is not a complete proof 
but, as noted several times since, this mode of demonstration can be extended 
to cover the conditions that all moments remain unchanged. This form of the 
demonstration is given in the appendix. 

Letting m represent the effective amount of replacement of each strain by 
immigrants representative of the total, the systematic tendency toward change 
of gene frequency is Aq = - m (q - q). The sampling variance of 2N gametes 
in the array [ (1 - q)A + quIbN is U; = q(  1 - q)/2N. Substitution in the gen- 
eral equation for +(q) leads to a Beta distribution, a formula originally derived 
for this case by still another method (WRIGHT 1931). 

(20) +(q) = p - 1 ( 1  - q ) a ( l - a - l ,  a = 4" 
- r (a) 

r(a$ r[a ( l -  q)I 

The monientd about zero can be easily evaluated by use of the formulae 

Thus a = (1 - F)/F 

F e: l/(a + 1) = 1/(4Nm + 1) 
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(27) 

From (16), (17), (23), and (27) 

(28) = (ii' +FGF)  [ 1 - +-- : , " , , e + 3 ] u a  

1 (29) Q,' = fia +FqF) - fi' + PqF) U' 
1 + F  

(30) cfa = fi' + FTF)[ l  - (ii' + F5F)Ia' (~(18))  

Table 1 shows values of a,* for various values of a and F letting U =  1. 
These apply to the case treated by ROBERTSON as well as to the steady state 
treated here, or to any other case of coruplete doiiiinance of one of a pair of 
alleles. Table 2 shows the corresponding value of 2, applicable only to a 
steady state in which the inbreeding effect is balanced by a linear systematic 
process (and dominance of one of the pair of alleles is complete). Table 3 
shows the ratio of intra-strain variance tinder unimpeded inbreeding, as calcu- 
lated by ROBERTSOX'S formula, to the values in table 2. ROBERTSON'S formula 
is as follows in the teriiiinology of this paper. 

(31) F= F e  [(4;)(1 - F) - (1 - 2$(1 - F)' + ((3 - P<)1- F)']az 

Table 3 brings out the point that there is not very much difference in the 
results in the two cases. The values of 2 differ by less than 2 percent for all 
values of q if F is as small as .10 and for values of q in a diagonal across the 
table from about q = .SO for small F to q = .10 for very large F. Intra-strain 
variance is, however, some 10 percent greater for small q, and F in the neigh- 
borhood of .SO, in the case of progressive fixation, than in that of a steady state 
and the reverse is true for large q, and F in the neighborhood of .70. The 
reason is that for a given variance of gene frequencies and hence F, the distri- 
bution is more compact (platykurtic) where deviations from tend to be re- 
duced in proportion to their magnitude by crossbreeding (steady state) than 
where unimpeded. The variance of the character is maximum in strains in 
which q = .707. In a total population with low and intermediate F, the pro- 
portion of the strains with gene frequencies that yield a high variance may be 
expected to be greater in the less compact distribution. The opposite situation 
holds where S is high and F rather high. 
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TABLE 1 
The variance (UT') of a total population cbaracterized by inbreeding coefficient F 
in the case of a dominant-recessive pair of alleles tuitb unit difference in grade. 

F 

0 .lo .20 .30 .40 -50 .60 .70 .80 .90 1.00 

-05 .0025 e0072 -0119 -0165 .0210 ,0256 -0300 -0345 ,0338 ,0432 -0475 
-10 -0099 -0186 -0272 .0356 -0439 .0520 -0533 -0677 SO753 -0827 -0900 
-20 -0384 -0529 -0668 .0803 -0932 a1056 -1175 -1289 -1398 -1501 ,1600 
-30 A819 -0957 -1146 e1296 -1437 ,1570 -1693 e1808 -1914 -2012 -2100 
.40 ,1344 .1501 .I647 .1782 .I905 ,2016 .2116 -2204 -2281 .2346 ,2400 
S O  ,1875 .I994 .2100 .2194 ,2275 .2344 .2400 ,2444 .2475 .2494 .2500 
-60 .2304 ,2365 ,2415 .2454 .2481 ,2496 .2500 .2492 .2473 .2442 2400 
-70 ,2499 .2499 ,2490 ,2472 ,2445 .2410 .2365 .2312 .2250 .2180 .2100 
-80 -2304 e2257 ,2204 -2147 -2084 ,2016 ,1943 -1865 ,1782 -1693 .I600 
-90 -1539 -1482 -1424 .1364 -1303 ,1240 -1176 a1109 -1041 -0971 -0900 
.95 .0880 -0841 .0803 .0763 .0723 .0683 .0642 -0601 .0560 .OS18 .0475 
1.00 0 0 0 0 0 0 0 0 0 0 0 

The decrease in total variance with increased F where the recessive allele 
is relatively abundant, referred to earlier, is shown in table 1. This holds for 
q > ($?( 1 - F) + FZ - F)/2( 1 - F )  and thus for q > .707 if F is close to 0, 
and for q > S O  if F is close to 1. 

The increase in average intra-strain variance with increased F, where the 
recessive allele is relatively rare and F not too large (shown in table Z), 
depends largely on the increase in the mean with increase in F. There is no 
increase in mean in the absence of dominance, but a very pronounced one in 
the case of dominance and small 6. For very small ij, the intra-strain variance 
approaches qF( 1 - F )  (1 + 4F)/( 1 + F) (1 + 2F)  in the case of steady state, 

TABLE 2 
The average variance (@,,') within partially isolated subdivisions of a pqulation 

in which a steady state (constant F )  has been reclched between the tendency toward 
/&ation due to inbreeding and the opposed effect oj occasiuzal oossbreeding, for 
the same cbarartn a s  in table 1. The variance of the means of the subdivisions is 
the difference between corresponding entries in table 1 and 2. 

- 

F (steady stare) 

? 
. Q5 
.10 
.20 
* 30 
.40 
* 50 
.60 
.70 
.80 
e90 
.95 

1 .oo 

- 

- 

~~ 

0 

.0025 

.W99 

.0384 

.OS19 
-1344 
.1875 
.2304 
,2499 
2304 
-1539 
,0880 

0 

.10 .20 

.0068 
-01 74 
,0483 
.OB85 
1325 
.1734 
-2032 
.2122 
-1896 
-1234 
.0697 

0 

.0100 

.0226 

.0538 

.Os98 

.1260 

.1571 
,1772 
.1793 
,1562 
.0994 
.0556 

0 

.30 

.0120 

.0254 
.0554 
.0869 
.1162 
,1395 
.1Y4 
.1502 
.1279 
.0797 
.0442 

0 

.40 

,0128 
.0262 
.0539 
.0806 
1039 
.1208 
.1285 
-1238 
1033 
.0632 
.0348 
0 

.50 

.0126 

.0252 

.0496 

.0717 

.0896 

.lo16 
-1056 
.0997 
.0816- 
-0492 
.0268 

0 

.60 

.0114 
,0221 
.0430 
,0605 

.0818 

.0834 

.0773 

.0622 
-0369 
.0200 

0 

e0738 

- 

-70 

.0095 

.0185 

.0345 

.0475 

.0567 

.0617 

.0618 
-0563 
.M47 
.0261 
,0141 

0 - 

80 .90 1.00 

.0069 
,0133 
.0244 
.0329 
.0386 
.0413 
.0408 
,0366 
.0286 
.0165 
.0088 

0 

.0037 0 

.0071 0 

.0128 0 
-0170 0 
,0197 0 
.0208 0 
.0202 0 
-0179 0 
-0138 0 
.0079 0 
-0042 0 

0 0  
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TABLE 3 

The ratio of the average variance within completely isolated strains with unim- 
peded progress towafd complete fixation, measured by successive values of  F 
(ROBERTSON'S case) to  the average variance within strains under conditions whicb 
yield the same values of F in steady states (of table 2). 

F 

.05 

.10 
.20 
.30 
.40 

.60 

.70 

.80 

.90 

.95 

50 

- 

- 

0 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

.10 

1.01 5 
1.012 
1.007 
1.004 
1.002 
1 .ooo 
-998 
.996 
,994 
.993 
*992 

.20 

1.042 
1.034 
1.022 
1.012 
1.004 
.997 
.991 
.986 
-981 
.977 
.975 

.30 .40 

1.069 1.087 
1.056 1.072 
1.036 1.046 
1.019 1.024 
1.005 1.005 
.993 -988 
.983 .973 
.973 .960 
.964 .948 
.957 .936 
.953 .931 

.50 

1.095 
1.079 
1.050 
1.025 
1.003 
.983 
.965 
.948 
.933 
,919 
-912 

.60 
1.092 
1.076 
1.048 
1.022 
.999 
,977 
.957 
.939 
.922 
,906 
.a99 

.70 .80 "90 

1.076 
1.063 
1.038 
1.014 
.333 
.972 
.953 
,935 
.918 
.902 
-894 

1.049 
1.039 
1.020 
1.002 
,984 
.967 
.951 
-936 
.921 
.907 
.WO 

1.010 
1.004 
.994 
.984 
.973 
.963 
.954 
,944 
.935 
.926 
,921 

with maximum at .46 which agrees with ROBERTSON'S result for progressive 
inbreeding, although his formula q[  (4,'s) (1  - F) - (1  - F ) 3  + (1/5) (1  - F)6] 
is quite different in appearance. The largest value of q at which there is an 
increase in uW2 with increase in F is .41 (=j/m in both cases, since in 
both, uW2 approaches 7jz( 1 - q2) + F E (  1 - 6q2) for very small F. 

- 
- 

PROGRESSIVE INBREEDING : LIMITING CASE 

While the form of the distribution of gene frequencies continually changes 
in the case considered by ROBERTSON, it approaches an almost rectangular dis- 
tribution, 4 (q )  = 1 between the limits 0 and 1, as F increases. The proportion 
of the strains that are heterallelic continually decreases at the rate 1/(2N) 
per generation as new strains drift into fixation at q = 0 or q = 1 (WRIGHT 
1931). Let x and y be the proportional frequencies at q = 0 and q = 1, respec- 
tively, at a given time, leaving 1 - x - y  as the proportion still unfixed. The 
values of x and y must always be such that the mean gene frequency 6 is 
constant and the second moment about zero is related to F by the formula, 
p i  = q2 + p q F  

(32) 
for q =  0 

for q = 1 
&q)= 1 - x - y  for O < q < l  I: 

The first and second moments about zero are as follows: 

(33) 

(34) 

PI'= y + (1 - x - y) I,'& = y + (1 - x - y)/2 =: 

CLz" y + (1 - X  - U) &'$dq= y + (1 - x - y)/3 = 7' + F<F 
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From these 

X = p - 3 p ? ( l - F )  
1 - x - y = 6 F.q (1 - F) 

Y q - 3Fq (1 - F) 

- 
E P - (9/5)p<(l- F )  

I (35) 

(36) Thus II:=Y+(l-X-y)~q'dq=~+(l-x-~)/5 

- 
(37) uw' E pa' -. C L l  = (4/5)p?(l - F) 

This is the first term of the general expression arrived at by ROBERTSON by 
his wholly different mode of attack, and is the limiting value as F increases. I t  is 
4 percent smaller than the corresponding limiting value, 7 = (5/6)Pq( 1 - F) 
which the formula for the steady state takes when F is very close to 1. 

OTHER COMPLICATIONS 

The effects of incomplete dominance and overdominance in a system of 
partially isolated strains in a steady state can be analyzed similarly by use of 
the first four moments of + ( q ) .  The formulae are in general more cumber- 
some than with complete dominance. 

Recurrent mutation can be introduced into the concept of F without 
difficulty since its effect on gene frequency is like that of immigration. 
Letting U and v be the rates of mutation from and to the gene in question 
Aq = v (  1 - q )  - uq - m(q -q) .  It  is merely necessary to let a = 4N( m + U  + v )  
to arrive at the same formulae as before in terms of ti and F. 

The introduction of selection into the concept is more difficult since selection 
tend,s to produce changes in gene frequency that are quadratic even with no 
dominance, and cubic with dominance in any degree, without considering the 
complications from the fact that selection operates on the genotype as a whole 
rather than on the separate loci. The formulae for +(q) became unintegrable 
except by empirical means even in the simplest cases. If the state of balance is 
such that the standard deviation of +(q)  is small, an approximation can be 
obtained by using the best linear expression for Aq in the neighborhood of {. 

SUMMARY 

The variance of a character, dependent on a completely recessive gene, in a 
population with partially isolated strains in which the tendency toward fixation 
due to inbreeding is balanced at a certain level of inbreeding by occasional 
cross breeding, is analyzed into the variance of strain means and the variance 
within strains. The formulae are in terms of gene frequency, inbreeding coeffi- 
cient and gene effect. 

The results are compared with those obtained by ROBERTSON in the case of 
subdivision into completely isolated strains that are tending toward fixation. 
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APPENDIX.  
The conditions for a steady state with respect to the distribution of gene frequencies 

can be represented by a series of equations representing the persistence unchanged of 
each moment, after the occurrence of a systematic change and a random change. All 
moments obviously exist because of the finite range, 0 to 1. If all remain unchanged, 
the frequency curve does not change. The equation representing persistence of the n'th 
moment is as follows. The frequencies of q and 8q are represented by f(q)  and f(8q) 
respectively. 

1 1 - 9  I 

X X [ ( q - 3 + ( h q + ~ p ) l n f ( ~ q ) f ( q ) =  X (q-;i)"f(q) 

Expanding the left hand member in powers of (q-Q) and (Aq+ aq), we note that the 
first term cancels the right hand member. Moreover, the following must hold for the 
random deviations: Zaqf(Q) =o, Z(8q)*f(8q) = Q ~ ~ * ,  Z:z[Sq(q-q)f(Sq)f(q)] =O, 

Unless 4691 is of the order of Aq or greater, the latter dominates so much that the 
distribution IS practically restricted to the equilibrium value of q. The case of interest 
is that in which terms in (Aq)'. (Sq)', (Aq) (bq)' and higher powers may be treated 
as  negligible. With this assumption the equations reduce to the following. 

(39) 

q - 0  sq - -q q - 0  
(38) 

ZZ [ W q f  (8s) f (4) ] = 0. 

1 
n - 1  

(q -3" - 'Aqf(q) +- 2 I (q - 3" - -sqa Kq)I = 0 
9 - 0  2 q - 0  

It is convenient at this point to substitute integration for summation, and #(q)dq 
ior f(q), and represent Aq #(q)dq by dX(q) 
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Equating the two expressions for [ ~ ( q )  - x ( l ) ]  of (45) and (a), we get the desired 
formula in which the constant C is such that fo'@(q)dq=l. 

(49) 
'This is the general formula for the distribution of a gene frequency when a steady 

state has been reached. 


