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STABLISHING the existence of linkage between genes at  two loci is a E distinct problem from estimating map-distance once genes are known to 
be linked. This paper considers two questions that concern linkage detection 
in organisms with genetically analyzable tetrads. First, what criterion is best 
for establishing linkage when tetrad segregations are analyzedl? And second, 
what are the advantages of tetrads compared to random single strands for indi- 
cating linkage? 

CHOICE O F  A VALID AND EFFICIENT CRITERION FOR LINKAGE 

DETECTION WITH TETRADS 

In  classical single-strand analysis, linkage between two genes is *indicated 
when the ratio of recombination to non-recombination gametes is significantly 
less than equality. For organisms (chiefly lower plants) where all four prod- 
ucts of a single meiosis can be recovered, similar criteria have been adopted for 
detecting linkage. Ratios of whole tetrads have rarely been used, but segre- 
gants collected as tetrads have instead been treated as populations of single 
strands (e.g., POMPER and BURKHOLDER 1949) or of half tetrads (e.g., 
WHITEHOUSE 1942) for purposes of determining if recombination : non-re- 
combination numbers differ significantly from the 1 : 1 ratio expected with 
independent segregation. (By half tetrad is meant specifically a pair of comple- 
mentary products, A B  + ab or A b  + aB,  originating from the same tetrad. j 
When segregants that have been obtained as tetrads are treated in this way, 
two types of error may result. Linkage may either be indicated spuriously 
where none exists, or linkage may remain concealed that would become appar- 
ent if the data were treated more critically. 

A dihybrid zygote ( A a B b ) ,  from gametes A B  and ab, can produce any of 
three possible tetrad types : parental ditype ( A B  + AB + ab + ab j ,  non-parental 
ditype ( A b  + A b  + aB t aB)  and tetratype ( A B  + A b  + aB + a b ) .  Observed 
numbers of these classes are the basic data of tetrad analysis. Parental ditype 
(PD) and non-parental ditype (NPD)  tetrads are equally probable if genes 
are unlinked, and it will be shown that a significant departure from equality of 
these two classes is both a reliable and an efficient criterion for establishing 
linkage when tetrads are used. The advantages of ditype tetrad numbers will 
be discussed in connection with examples in table 1, where alternative methods 
are used to  examine data from a variety of tetrad segregations. 

Non-independence of composzent parts of tetrads in testing departures f r o m  
random. segregation. It  is not correct to assume that the two half tetrads from 
a single meiotic segregation are independent with respect to their recombinant 
GENETICS 38: 187 March 1953. 
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or parental composition, either for linked or unlinked genes. To  use actual 
numbers of half tetrads may therefore be to increase the population size arbi- 
trarily above its proper value, with the result that excessive significance is 
attributed to deviations. This is a serious objection to using component tetrad 
parts for linkage detection. 

The null hypothesis, independent segregation, predicts equal numbers of 
parental and non-parental ditype tetrads, but sets no limits to the proportion 
of tetratypes. Establishment of non-independence thus depends solely upon 
ditype tetrads, where the constitution of any portion defines the whole tetrad. 
For efficiency in detecting linkage, comparisons should be limited to ditype 
segregations. Sister halves from ditypes are identical, and may not be treated 
as statistically independent units. On the other hand, efficiency might be- ig- 
nored, and the uninformative tetratypes included for analysis. Here also sister 
half tetrads may not be considered independent, because in crosses where 
ditype segregations are in excess over tetratypes a positive correlation exists 
between sister halves, and where tetratypes predominate, a negative correlation 
obtains. 

The error from using actual numbers of half tetrads is most apparent when 
tetratype (T) segregations are infrequent or absent. In example 1, table 1, with 
40 PD : 30 N P D  : 0 T tetrads, the correct population size is 70, not 140, and in 
70 segregations of independent genes, the probability of obtaining the observed 
ratio is clearly that of 40: 30 occurring when 35 : 35 is expected, not 80: 60 
against an expected 70 : 70. 

Observed numbers of parental and recombination single strands can validly 
be used for testing the null hypothesis of independent segregation where each 
strand originates from a separate meiosis, a situation approximated in classical 
methods with higher plants and animals. Half-tetrad numbers would be suita- 
ble units for comparison if each represented a separate segregation, as do the 
two strands recovered in attached-X Drosophila females, Habrobracon im- 
paternate daughters or  Bombyx mosaics from binucleate eggs. But where a 
sample of segregants consists of a series of whole tetrads, raw numbers of half 
(or quarter) tetrads are not valid for significance tests. 

Half-tetrad ratios might perhaps be used if the numbers were first reduced 
so as not to attribute false significance to deviations. Such an adjustment was 
made by dividing actual half-tetrad numbers by two before computing the 
probabilities given in column 6 of table 1. Nothing is gained by computing 
adjusted half-tetrad ratios in this way, since they are less sensitive for detect- 
ing linkage, and more laborious to  obtain, than ditype tetrad ratios. 

Loss of sensitivity due to including tetratype segregations. A second major 
objection to using half- or  quarter-tetrad numbers for linkage detection is that 
segregants from tetratype tetrads are then included, and these are irrelevant 
for establishing linkage. Ditype ratios are able to  provide a more efficient and 
sensitive criterion of non-independence than half-tetrad or quarter-tetrad 
ratios because irrelevant segregations are excluded. 

Unlinked genes may produce tetratypes in any proportion whatever, from 
zero to 100% of the total population (see WHITEHOUSE 1949, p. 231). The 
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frequency of tetratypes may be zero if two genes are at centromeres on differ- 
ent chromosomes (examples 1-3, table I ) .  At the other extreme, all segrega- 
tions could result in tetratypes if one gene were at a centromere and another, 
unlinked, gene were separated from its centromere by an interval within which 
a single exchange always occurred, a condition approached in examples 6 and 7. 
No evidence for linkage is gained, therefore, by including data from tetratype 
segregations (as is done if half tetrads or single strands are used from the 
whole population of tetrads), and inclusion of numerous tetratypes ma) even 
conceal a significant departure from randomness that is app;frent from the 
ratio of ditype tetrads (examples 8 ff.). 

Failure of tetratype segregations to contribute evidence for linkage does not 
imply that they are unnecessary for other purposes. Tetratype frequencies are 
indeed essential for such operations as determining the intensity of linkage 
once its existence has been established, and it is important that all segregations, 
including tetratypes, be included when tetrad data are collected and published. 

In particularly favorable cases tetratype frequencies may make it possible to establish 
from two-point segregations that genes are not linked, e. g , where the two ditype classes 
are numerous and equally frequent, but tetratypes are rare (examples 1-4, table 1 ;  
WHITEHOUSE 1949, p. 232). A very rigid criterion for non-linkage would be a significant 
deviation in excess of l N P D :  2T. This is the maximum ratio attainable for linked 
genes, barring chromatid interference, but would be realized only in the rare case where 
all exchanges occurred as doubles. A more practical test would be a significant deviation 
in excess of l N P D :  4T, which is the maximum ordinarily expected for genes distantly 
spaced in the same linkage group. 

Application of ditype tetrad ratios to linkage detection. ,4 variety of segre- 
gations have been gathered in table 1 and examined fgr evidence of linkage, 
using ditype tetrad ratios as a criterion. The results (column 4) stand in con- 
trast to probabilities obtained when half-tetrad numbers are used (column 5) .  
In examples 1-5 deviations of ditype tetrad numbers from I : 1 are less signifi- 
cant than those of half tetrads. The low probability values in column 5 are not 
applicable for linkage detection because sister half tetradls are not independent 
of one another, and use of these probabilities might lead one to accept linkage 
with false confidence. If the hall-tetrad numbers are divided by two, so as to 
reduce the population from its inflated size, the new P-values (column 6) 
agree with those from ditype tetrads. 

Examples 8-16 show, in contrast, how linkage may be overlooked if half 
tetrads rather than ditype tetrads are used as a criterion. (Linkage has in fact 
not previously been recognized in several of these cases, although ditype ratios 
indlicate that it is highly probable.) The lesser significance of the half-tetrad 
deviations is due to including data from tetratype tetrads, which contribute 
parental and non-parental halves in equal numbers. 

These applications Support the contention that ditype tetrad numbers are 
generally more reliable and more efficient than half-tetrad numbers for indi- 
cating linkage. RIZET and ENGELMANN (1949, pp. 242, 257) have clearly 
recognized the role of ditype tetrads in linkage detection, and CATCHESIDE 
(1951, p. 25), following LINDEGREN (1933), has also noted that these two 
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tetrad classes provide a useful criterion of non-independence, but has unfortu- 
nately restricted his comparison to tetrads in which genes at both loci have 
segregated at the first meiotic division. 

In practice, ditype numbers are extremely simple and convenient to use for 
determining the probability of linkage. Table 2 lists the lowest numerical ratios 
that deviate in one direction from 1 : 1 sufficiently to attain each of three confi- 
dence levels. These are the smallest PD : NPD ratios capable of providing 

TABLE 2 
Smallest numericaI ratios showing significant deviation 

i n  one direction /mm 1 :  1 .  
__-___ - ____________ -~ 

Ratios attaining signifi- 
cance level (one-sided) 

Ratios attaining signifi- 
cance level (one-sided) 

numbers numbers 
5% 2 1/2% 1% 5% 2 1/2% 1% 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

5:O 
6 : O  
7:O 
7 :  1 
8: 1 
9: 1 
9 : 2  

10:2 
1 0 : 3  
11:3 
12:3  
12:4  
13:4  
13 : 5 
14: 5 
15 :5  
1 5 : 6  
16: 6 
16 :7  
17:7  
18: 7 
18: 8 
1 9 : 8  

.... 
6 : O  
7 : O  
8 : O  
8: 1 
9 : l  

10: 1 
10:2  
1 1 : 2  
12.: 2 
12:3 
13:3 
13:4  
14:4 
15 : 4  
15:5  
16:5  
17 : 5 
17:6  
18 : 6 
18: 7 
17: 7 
20:7  

.... 

.... 
7:O 
8 : O  
9 : O  

10 : 0 
10:  1 
11: 1 
12:  1 
1 2 :  2 
13 :2  
14: 2 
14 : 3 
15:3 
15:4 
16 :4  
17:4 
17: 5 
18: 5 
19: 5 
19 : 6 
20: 6 
20:7 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1 9 : 9  
20 :9  
20: 10 
21 : 10 
22 : 10 
22: 11 
23: 11 
23 : 12 
24: 12 
24: 13 
25 : 13 
26: 13  
26 :.14 
27: 14 
27: 15 
28: 15 
28: 16 
29: 16 
30: 16 
30:  17 
31: 17 
31: 18 
32: 18 

20: 8 
21 :8  
21:9  
22 : 9 
22: 10 
23: 10 
24 : 10 
24: 11 

,25 : 11 
25: 12 
26: 12 
27: 12 
27: 13 
28: 13 
28: 14 
29: 14 
29: 15 
30:  15 
31: 15 
31: 16 
32: 16 
32:  17 
33: 17 

21:7  
22:7 
2 2 : 8  
23:8  
2 3 : 9  
24:9 
25 :9  
25: 10 
26: 10 
26: 11 
27: 11 
28: 11 
2 8 :  12 
29: 12 
29: 13 
30:  13 
31: 13 
31: 14 
32: 14 
32:15 
33: 15 
34: 15 
34 : 16 

significant indications of linkage. The values in table 2, obtained by using 
WARWICK’S (1932) tables, can be determined with equal accuracy from bi- 
nomial probability paper ( MOSTELLER and TUKEY 1949), which is also useful 
for handling numbers beyond 50. 

UTILITY O F  RANDOM SINGLE STRANDS VERSUS TETRADS 

FOR ESTABLISHING LINKAGE 

W e  have till now been concerned with the single problem, how best to detect 
linkage when segregants have been collected as tetrads. A second, distinct 
question can now be examined. Are tetrads preferable to random isolates for 
revealing linkage ? Comparative efficiencies and reliabilities will be important 
for the choice, as will the prospect of obtaining other types of information from 
the same data used to establish linkage. 
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Cowtparatizie eficiencies for  linkage detection. Tetrads are less efficient than 
random strands for estimating linkage intensity ( MATHER and BEALE 1942 ; 
PAPAZIAN 1952), but efficiencies of the two for detecting linkage have evi- 
dently never been compared. Table 3 gives the smallest numbers of tetrads and 
of random single strands likely to reveal linkage over various distances, for 
hypothetical models with complete interference (examples 6-9) and with none 
(2-5), and for cases where the frequencies of segregation types are known 
from genetic (10-19) or froin cytological (20, 21) data. (Calculations for 
table 3 are described in an appendix.) These examples indicate that linkage 
can ordinarily be detected more efficiently with random single strands than 
with tetrads, i.e., that the amount of information per strand is greater for 
strands collected singly. 

Three factors appear to be important in determining the relative efficiencies 
of tetrads compared to random isolates. ( a )  T h e  non-independence of constitu- 
ent parts o f  tetrads. About four times as many strands must usually be exam- 
ined when tetrads are analyzed as when strands are collected at random, in 
order to reveal linkage over short distances (table 3, examples 1, 2,  6, 16). 
(b)  T h e  interval length between markers. Information per strand decreases 
from a maximum at short distances to zero for long intervals, both for random 
isolates and tetrads. The advantage of random strands over tetrads accordingly 
diminishes with distance (examples 2-5, 6-9, 10-11) until linkage can no 
longer be detected by either method across an interval where one or  more 
exchanges occur in every bivalent (example 21). (c)  The intensity and pat- 
tern of interference. Efficiencies of the two methods may be affected differ- 
entially by interference, so that tetrads can sometimes achieve or exceed the 
efficiency of random strands in the case of long intervals having a predomi- 
nance of tetratype segregations (examples 9, IS). 

In  practice, the choice between tetrads and random strands will not depend 
solely on theoretical efficiencies (information per strand), but also on how 
laborious it is to collect strandjs by the two methods. In most organisms (liver- 
worts are a possible exception) less work is required to obtain four strands at  
random than to isolate the four strands that compose a tetrad. The superior 
theoretical efficiency of random isolates relative to tetrads may, thus be 
amplified by the greater ease with which random products can be obtained 
experimentally. 

Sources of error in linkage detection. Differential viability or  false identifi- 
cation could, lead to serious errors either with tetrads or with single strands. 
Selection may operate either between individual segregants or between tetradis. 
While tetrad analysis sometimes makes it possible to identify a missing product 
by inference, and thus to decrease errors due to differential survival of par- 
ticular segregant types, selection may also operate among tetrads against par- 
ticular segregation classes that fail to produce complete complements of prog- 
eny. Such inter-tetrad selection might result, for example, from rejecting 
Neurospora asci having fewer than eight, or fewer than six, normal spores, and 
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could produce PD:  N P D  tetrad ratios that were more seriously in error than 
random-strand ratios from the same cross. 

\.Z7hole tetrads seem less likely to be misclassifiedl than single strands, but 
misidentification (or irregular segregation) could distort tetrad ratios if the 
constitution of incomplete tetrads is deduced by filling in missing products. 

Otlzer feafztres of tetrads that may infILtcizce a choice of methods. Since ran- 
dom strands are usually more efficient than tetrads for linkage detection, and 
are perhaps no more subject to systematic errors, they would probably be 
preferredl to  tetrads if establishment of linkage were an isolated aim. But 
considlerations other than accuracy and efficiency for detecting linkage may 
influence the choice. 

Tetrads possess a number of advantages over random strands. Tetrad analy- 
sis is important for studying chromatid interference and for mapping centro- 
meres ( LIKDEGREN 1933 ; WHITEHOUSE 1942 ; PAPAZIAN 1952). If a inarker 
is available that regularly segregates with the centromere on one chromosome, 
the position of tbe centromere on any other chromosome can be mapped, even 
with unordered tetrads (e.g., KNAPP 1936). Efficiency is gained in mapping 
when the centromere distance of a gene is known so that tests can be made for 
linkage with specific markers that have similar centromere distances. 

Tetrad analysis may indicate that particular variants result from crossing- 
over within a compound locus rather than from point mutation (PAPAZIAN 
19.51), even though the locus is not bridged with markers. (This is the sim- 
plest hypothesis where two reciprocally different new ‘’ alleles ” appear as 
members of one tetrad.) 

Tetrads show directly that crossing-over occurs between chromatids at the 
four-strand stage of meiosis, and segregation ratios in tetrads, being absolute 
rather than statistical, provide the most direct possible demonstration of the 
Mendelian basis of an inherited difference, as was recently pointed out by 
Quintanilha (cited in GUSTAFSSON 19.51 ). Conversely, tetrads furnish direct 
evidence of extrachromosonial inheritance ( CHEN et al. 19.50). Aberrations or 
lethal niutations ma) be revealed that are undetectable with single strands 
( KNAPP 1937). Tetrads also make it possible to correct map-distance esti- 
mates for the occurrence of those double crossovers that do not result in re- 
combination of the markers bounding an interval ( PERKINS 1949). 
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SUMMARY 

%’hen complete tetrads are analyzed, the most satisfactory criterion of 
departures from random segregation is a significant dieviation froin equality 
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of parental and non-parental d,itype tetrads. Treatment of tetrqd data as though 
the component half tetrads or  single strands were independent is not valid for 
purpdses of linkage detection, and may either obscure the existence of linkage, 
or  indicate linkage spuriously where none obtains. 

Linkage can ordinarily be detected more efficiently with random single 
strands than with tetrads. Nevertheless, tetrads may sometimes be preferred 
because of their superiority for purposes other than linkage detection. 

APPENDIX : CALCULATIONS FOR TABLE 3 

Distribution of exchanges among bivalents. Relative proportions of PD,  N P D  and T 
segregations (column 4) are obtained directly only when tetrads are analyzed (examples 
10-16), but can be computed if the proportions are known of bivalents having different 
numbers of exchanges, i. e., bivalents of different rank (WEINSTEIN 1936). Relative 
frequencies of different ranks can be estimated from chiasma counts (examples 20, 21), 
or from multiple-point single-strand crossover data ( MATHER 1933 ; WEINSTEIN 1936 ; 
LUDWIG 1938; examples 17-19). They are also known for complete interference (ex- 
amples &9) where all exchanges occur as singles, and for zero interference (examples 
2-5) where exchanges would be distributed among the bivalents at random, and prob- 
abilities for occurrence of bivalents of increasing rank are given by the successive terms 
of a Poisson series. 

Calculation of tetrad proportions if the distribution of exchange frequencies is k n o m .  
The probability t, that a bivalent of rank r will segregate as a tetratype can be obtained 
from chromosome diagrams, or by use of the progression t,= (2/3) [ l-  (- 1/2)'] 
adapted from *Mather (1935). For r > 0, each ditype has a probability of occurrence 
d, = (1 - tr)/2, but for linked genes, all segregations are parental ditypes when r = 0. 
If one knows the probabilities of occurrence of bivalents of different rank, P,, these 
equations give the corresponding probabilities of obtaining each of the 3 segregation 
types-PD, N P D  or T-so thdt appropriate probabilities for individual ranks can be 
multiplied, and contributions from bivalents of all ranks then summed, to obtain overall 
probabilities for occurrence of each tetrad type in a specified cr.oss. The probability 

of tetratypes, t CT= z P,t., the probability of N P D  tetrads = d 2 Prdr, and the proba- 

bility of P D  tetrads = d + Po. Column 4 values in examples 2-9 and 17-21 were obtained 
in this way. 

Smallest numbers of  random strands 1ikeLy to indicate linkage (Column 5 ) .  The prob- 
abilities of obtaining parental strands from PD, N P D  and T segregations are 1, 0 and 0.5 
respectively, whence ratios of parental : recombinant strands can be calculated from 
tetrad ratios. It is desired to obtain, for column 5, the smallest number of random isolates 
expected to indicate linkage in at  least 50% of tests. The smallest R : P numbers likely 
(P 'r 0.5 for.attainment if segregations are as in column 4) to  show a significant 
deviation from 1 : 1 (P 5 0.05, one-sided) can readily be determined graphically, using 
MOSTELLER and TUKEY'S ( 1949) binomial probability paper, and determining the paired 
count whose apex falls between and beyond the intersection of the R :  P split and a line 
paralleling the 50 : 50 split a t  8.4 mm distance. 

N P D  : P D  
ratios from column 4 are used directly to plot a split on binomial probability paper, and 
the smallest paired count is determined as described above. 

Once minimum ditype num- 
bers have been specified, the total number of tetrads that must be analyzed to provide 
enough ditypes depends in turn upon the tetratype proportions. Again, binomial prob- 
ability paper can be used, plotting the tetratype : ditype split and determining the paired 

m m 

r = o  r = 1  

Smallest nzlmbers of ditype tetrads likely to indicate linkage (Column 6). 

Smallest total number of tetrads required (Column 7 ) .  
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count nearest the point where this split intersects a horizonal line passing through the 
minimum ditype number. 

Since information per strand is inversely propor- 
tional to the number of strands required, the relative efficiency of random strands : tetrads 
is expressed as the proportion : (total strands required as tetrads)/(total strands re- 
quired as random) .  Graphical and arithmetic errors are small compared to the differences 
in efficiency. 

The unexpected appearance of relative efficiencies exceeding four (examples 6, 16) 
is due to the fact that calculations are based on the smallest numbers of random strands 
and of tetrads that are likely ( P  2 0.5) to  provide significant evidence of linkage. 
Relative efficiencies would attain but not exceed four if the comparison had been based 
on the mean numbers required to reveal linkage, rather than on the smallest numbers 
likely to do so. In general, results from the two measures of efficiency would differ but 
little. Conclusions drawn from table 3 would be the same uhichever criterion was used. 

Relative eficierzcies (Column 8 ) .  
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