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MONG factors that may produce random fluctuation of gene frequencies A in natural populations, random sampling of gametes and random fluctua- 
tion of selection intensities may be especially important in relation to evolution. 
On the process of " random drift " that will be realized in finite populations 
due to the random sampling of gametes in reproduction, not only precise 
mathematical studies have been carried out (WRIGHT 1931, 1945 ; FISHER 
1930 ; HALDANE 1939 ; FELLER 1950) but also several model experiments have 
been undertaken (cf. HOUSE 1953). Since 1931, WRIGHT has repeatedly 
emphasized the evolutionary significance of random drift in a natural popula- 
tion which is subdivided into many partially isolated sub-groups. His theory 
is now accepted by many evolutionists such as HALDANE (1949), MULLER 
(1949), DOBZHANSKY (1951) and others. 

On the other hand, no special attention seems to have been paid to the 
random fluctuation of gene frequencies due to the random fluctuation in the 
selection intensities until FISHER and FORD ( 1947) emphasized its prevalence 
in natural populations and challenged the theory of Wright by denying any 
significance of random drift due to small population number in evolution. This 
led to a polemic (cf. WRIGHT 1948; FISHER and FORD 1950; WRIGHT 1951). 
Experimental studies on natural populations have been carried out by the 
school of FISHER and FORD (e.g., SHEPPARD 1951 ; DOWDESWELL and FORD 
1952) and by LAMOTTE (1952). 

In spite of these, no mathematical investigations seem to have been worked 
up on the process of change due to the random fluctuation of selection intensi- 
ties, except a short article reported by the present author (KIMURA 1952a), 
though WRIGHT (1948) gave a distribution of gene frequencies in steady state 
for a special case. 

In his report, the present author proved, using a method of transformation 
and approximation, that the process can be regarded as a deformed Gaussian 
process. In the present paper, a pair of alleles lacking dominance will be 
assumed. The process of change of their frequencies when their selection coeffi- 
cients fluctuate fortuitously from generation to generation around a mean value 
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0 is simplest for mathematical treatment. Investigation of this process is a 
main subject of this paper. The process of change which will be found in termi- 
nal portions of the frequency distribution curve is especially important in this 
connection, so that a precise analysis of it will be undertaken. Through this 
analysis the reader will be led to new concepts of “ quasi-fixation ” and “ quasi- 
loss ’’ of an allele. Comparison of this process with that of random drift due 
to small population number is another important subject in the present report. 
Though there are many theoretical studies on the process of random drift, they 
are usually restricted to the state that will be realized after a sufficient number 
of generations. In that state the distribution curve assumes a fixed form and 
the probabilities of all heterallelic classes decrease at a constant rate of 1/2N, 
with fixation and loss of the gene occurring at the same rate. 

Hence more extensive studies may be needed to make such a comparison. 
In the present paper an asymptotic solution for the process of random drift 
due to small population number will be presented for the first time. 

PROCESS OF CHANGE OF FREQUENCIES OF ALLELES WHICH ARE NEUTRAL 

ON THE AVERAGE AND LACKING DOMINANCE 

Consider a very large randomly mating population and assume a pair of 
alleles A and A’. If x is the relative frequency of the gene A in the population 
and s is the selection coefficient of A, the rate of change of the gene frequency 
due to selection is approximately 

sx = sx(1 - x )  

per generation, when s is small and there is no dominance. If there is random 
fluctuation in the selection intensity, s and therefore 6x are random variables, 
and a certain irregularity is expected in the process of change in gene fre- 
quency from generation to generation. When the rate of change is small, this 
process may be safely treated as a continuous Markov process. 

If +(x,t)dx is the probability that the gene frequency lies between x and 
x + dx in the t-th generation, it can be proved that +(x,t)  satisfies the partial 
differential equation, 

where M8x and Vax represent respectively the mean and the variance of ax. 
This equation which is known by mathematicians as “ Kolmogorov’s forward 
differential equation ” is usually called “ Fokker-Planck equation ” by physi- 
cists, though this type of equation was already used by LORD RAYLEIGH (cited 
from FUSHIMI 1941). However, we are indebted principally to SEWALL 
WRIGHT (1945) for the application of this equation to the problem of popula- 
tion genetics. 

A meaning of this equation can easily be understood by noting that the left 
hand side of this equation represents the rate of change of the relative proba- 
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bility of any class per generation and this can be decomposed into two parts 
as represented by two terms in the right; namely the part due to the random 
fluctuation (first term) and the one due to the directed change (second term). 

If the gene A is selectively neutral on the average such that the mean value 
of its selection coefficient over very long periods is zero, 

Max = 0 and Vax = V,x2( 1 - x ) ~  

where V, is the variance of s. In this case equation (1) is written in the form : 

This is a partial differential equation with singularities at the boundaries, 
so that no arbitrary conditions can be imposed there. But as will be seen in 
the following operations a continuous stochastic process satisfying the equation 
(2) is uniquely determined if an initial condition 4(x,O) is given. 

As was demonstrated in the previous report (KIMURA 1952a), if the gene 
frequency x is transformed into a variate ( by the relation : 

1 changes continuously from -ca to +cn as x changes from 0 to 1 and the dis- 
tribution of 6 becomes approximately normal ; that is, the process of change 
of 1 is approximately represented by a Gaussian process. 

To solve the equation (2) ,  the same transformation turns out to be very 
useful : Putting 

and 

we obtain the heat conduction equation, 

It is already established that this equation has an unique solutiorf which is 
continuous over -CO to t c o  when t 20 and which reduces to u(6,O) when 
t = O .  
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Therefore, if the initial distribution of gene frequencies +(x,O) is given, 
the unique solution which satisfies (2) and is continuous between 0 and 1 is 

If the initial condition is not a continuous distribution +(x,O), but is a given 
gene frequency XO, the relative probability that the gene frequency in the t-th 
generation will be between x and x + dx is given by the formula : 

The process of change of the distribution curve with generations is illus- 
trated in figure 1 assuming that the initial gene frequency in the population is 
50%. In this figure the variance of selection coefficient is 0.0483. This is a 
value which WRIGHT (1948) obtained for the medionigra gene in an isolated 
colony of Punuxk dominuru (FISHER and FORD 1947), assuming that ob- 
served variance of change in gene frequency per year were due wholly to 
fluctuations in selection. As will be seen in the 4igure the distribution curve is 
unimodal before the 28th generation after which it becomes bimodal. In the 
100th generation gene frequencies that give maximum probability (corre- 
sponding to peaks) are approximately 0.0007 and 0.9993, where the height 
of the curve (+mar) is about 11.37. This is 28.7 times higher than the height 
at the valley (about 0.397) in the middle part of the distribution. So the dis- 
tribution curve looks like an U-shaped curve. The more precise form of the 
terminal part of the distribution curve where the gene frequency is very small 
is illustrated in figure 2. 

With passage of time, the distribution curve becomes nearly U-shaped. The 
process of change is rather rapid and in the 1000th generation, the peaks of 
the distribution curve become so high, the gene frequencies corresponding to 
them become so close to the two termini of the distribution and the valley be- 
comes so deep that it is practically impossible to illustrate the distribution curve 
in figure 1. More generally, if the initial gene frequency is SO%, the distribu- 
tion curve is unimodal if the number of generations is less than 4/(3V,) but 
becomes bimodal if it exceeds this value. 

The mean of the distribution is always 
1 

Jx+(x,t)dx = ~ 0 ,  ( 6 )  
0 

But the variance, 
1 

Vt =s( X - Xo) 2+(X,t)dx, 
0 
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FIGURE 1.-A graph illustrating the process of the change in the distribution of gene 
frequencies with random fluctuation in the selection intensities. In this illusration it is 
assumed that the gene is selectively neutral when averaged over a very long period, that 
there is no dominance, that the initial gene frquncy of the population is 0.5 and that 
the variance of the selection coefficient is 0.0483. (Abscissa : gene frequency. Ordinate : 
relative probability.) 
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FIGURE 2.-A terminal portion of the distribution curve in the 100th generation where 
the gene frequency is very low. In this illustration it is assumed that the variance of the 
selection coefficient is 0.0483 and the initial gene frequency in the population is 0.5. 
The gene frequency that gives a maximum value in the distribution curve (Xmaxl) is 
approximately 0.0007 and corresponding height ($J~.=~) of the curve is about 11.37. A 
denotes the probability that the frequency of the gene is smaller than X m a x l .  This is 
about 0.007 in this case. c is an arbitrarily chosen gene frequency which is larger 
than this value. B stands for the probability that the gene frequency in a population is 
larger than x ~ . . ~  but smaller than e. If we put c as 0.015, B is approximately 0.098. 
B becomes at the limit of t +  CQ. (Abscissa: gene frequency. Ordinate: relative 
probability.) 



286 MOT00  KIMURA 

increases in successive generations and for large t it is represented asymptoti- 
cally by the formula 

Therefore its final rate of approach to the limiting value is very close to Vs/s 
per generation. 

CHANGE I N  T H E  TERMINAL PARTS OF T H E  DISTRIBUTION 

AND T H E  PROCESS OF QUASI-FIXATION 

As shown above, classes with the highest prol)ability shift toward the termi- 
nals indefinitely with time so that the distribution curve appears to he U- 
shaped. But it is not a true U-shaped curve, since its value at' either terminal 
is always 0. So it will be important to investigate how the distribution curve 
will continue to change after a sufficient number of generations, with special 
reference to its terminal parts. 

First let us fix our attention to the terminal portion of the distribution where 
the frequency of the gene A is very low (see figure 2). 

The gene frequency xnlnx, that gives maximum relative probability 
is asyniptotically 

While the corresponding relative probability i s  

The gene frequency that gives the maximum value in the distribution curve 
will approach indefinitely to one terminal point (0), elevating indefinitely the 
corresponding height of the distribution curve. 

Let A be the probability that the gene frequency in the population is lower 
than xmaXl. To calculate this, we will start from a more general relation: The 
probability that the gene frequency in the population falls between two as- 
signed values a and b is 
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where 

and 

Using this relation it can be easily shown that 

A = Pr 10 < x < xmax,I 

That is, this probability vanishes at the limit ; t * 00. 
On the other hand, Let B stand for the probability that the gene frequency 

in the population is larger than xmllXl but smaller than c, where L is an ar- 
bitrarily chosen gene frequency larger than xmuxl. Using the relation (lo), 

B =  cv 

1 - -12 
e dX 

Therefore, for any L, however small, B can be brought arbitrarily close to 
1 - xo by taking t sufficiently large such that 

This may be made more clear by the following relation : 
V,t >> - log L. 
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This shows that after a sufficient number of generations U approaches to 
1 - xo with the rate of V,/8 per generation. Figure 2 illustrates the terminal 
portion of the distribution curve when V, = 0.0483 and xo = 0.5. 

Similar relations hold for the other terminal portion of the distribution 
where the frequency of the gene is very close to 1: If xmax2 stands for the 
gene frequency giving the maximum value in the distribution curve and +max2 

stands for the corresponding relative probability, 

and 

as t + 00. The probability A’ that the frequency of the gene exceeds xmax2 
vanishes as t approaches infinity ; 

On the other hand, even if c’( > 0) is taken however small, the probability B’ 
that the gene frequency of the population will fall between 1 -e’ and xmaXz 
approaches to xo with the rate of V,/8 per generation at the liniit of t +- 00 ; 

The gene frequency giving the niininiuni of this pseudo-U-shaped distribu- 
tion curve (xmin) approaches 5 at t-eo even if  the initial gene frequency 
is not 50% : 

x, log - 
1 1 ’x. 
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The corresponding relative probability +,,,in vanishes at the limit: 

-V,t - 4 

That is, the valley in the distribution curve deepens until the bottom reaches 
the abscissa. 

As will be seen from the relation ; 

the random fluctuation of selection intensities by itself cannot lead to the coni- 
plete fixation or loss, in the strict sense, of the gene contrary to the case of 
random drift due to sniall population number, But as has been shown through 
(8) - (18), there is a strong tendency that the gene frequency will move 
toward either terminus with increasing time. In other words, after a sufficient 
number of generations almost all populations will be in such a situation that 
the gene is either almost fixed in the population or almost lost from it. To dis- 
tinguish this from the fixation or loss in the case of small effective population 
number, the terms “ quasi-fixation ” and “ quasi-loss ” are proposed. As will 
be seen from (12) and (16), their rate can be taken as VJS. 

III the long run, this process of quasi-fixation or -loss will be checked by the 
opposing mutation pressure. 

In this state of statistical equilibrium, if the mutation rates of the gene A 
to and from its allele A’ are U and v respectively, the frequency distribution 
of A in the population is given by the formula: 

1 
where C is a constant chosen such that J+(x)dx = 1. WRIGHT (1948) derived 

essentially the same formula assuming migration (p. 292). 
0 



290 MOTTO KIMURA 

COMPARISON WITH T H E  PROCESS O F  RANDOM DRIFT DUE 

TO SMALL POPULATION NUMBER 

In a finite population, owing to random sampling of gametes in reproduc- 
tion, there occurs random fluctuation of the gene frequency from generation 
to generation. This process, as is well known, will finally lead to the complete 
fixation or loss of the gene if such factors as mutation, migration and selection 
are absent. 

If N is the effective number of reproducing individuals in the population and 
p is the initial gene frequency the nth moment of distribution about zero in the 
t-th generation is given by the following formula if the order of t is not smaller 
than N (cf. KIMURA 1952b) : 

(n - 4)(n - 3)(n - 2)(n - 1) 

(n + 1Xn + 2)(n + 3)(n + 4) 
- 9pq (14pq' - 7pq + P - q) (1 - A4)' 

+ 0 ((1 - As)tl,  (21) 

where q = 1 - p. From this we can derive the probability that the gene will 
have become fixed in the population by the t-th generation: 

f t  ( 1) p 3 P q (  I - AI) - Spq( p - 9 )  ( 1 - ha) - 7pq(- Spq + 1 ) ( 1 - A:+) 
- 9 ~ (  14W2 - 7pq + p-q)  (1 -ha)'+ O( (1  - (22) 

The corresponding probability of complete loss is : 

f t (O) q - 3 ~ 4 (  1  XI)^ + SW(p-9)  (1  7 ~ ( -  SR + 1) (1  
+ 9 ~ (  14m2 - 7W t p - q).( 1 -AI)' + O{ (1 - ( t  + 00 ). (23) 

In these formulae 

10 15 -, A, = - 1 3 6 
A i  = -, A, = -, A, = -, A, 2N'"" 2N 2N 2N 2N 

In general A ' s  are given by the formula; 

i(i + 1) 
A i =  - (i = 1, 2,. . .). 

4N 
The frequency of the gene in this case may take any one of a series of dis- 
continuous values : 

1 2  1 , ..., 1 - - 
2" 

0,-  - 
2" 2N 
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Usually, however, the number of reproducing individuals ( N )  in a population 
is so large that practically the gene frequency ( x )  can be treated as a continu- 
ous variable with good approximation. Variance of the rate of change in gene 
frequency due to the random sampling of gametes is 

x(1 - x) - 
v s x  - 7. 

Therefore if +(x,t)  is the relative probability that the frequency of the gene 
in the population will take any value between x and x +dx(O < x < 1) in 
the t-th generation, +(x,t) satisfies the following partial differential equation : 

d 4  1 dZ 
a t  4N d x a  
-=  -- -{x(l -x)+I, 

which is easily derivable from equation (1).  To solve this, if we put 
+ccXi(x)e-xit ( i  = 1,2,3,  . . .), 

we obtain the ordinary differential equation ; 

d 'Xi dX i 

dxa dx 
x(1 -x)  - + (2 - 4x) - - (2 - 4NX i)X; = 0, 

where Ai corresponds to the eigen value of equation (24). Noting 
i(i + 1)/4N, this becomes 

dXi (1 - i)(i + 2)xi = 0. 
d 'Xi 

x( l  - x )  7 + (2 - 4x) - - 
dx dx 

(24) 

This type of equation is known as Gauss's differential equation and (25) is 
satisfied by the following hypergeometric series : 

Xi = F ( l -  i, i + 2, 2, X)  

(1 - i)(i + 2) (1 - iX2 - i ) - ( i  + 2)(i + 3) 
= 1 +  X+ X I  

1 a.2 1 . 2  - 2 .3  

(1 - i)(2 - i)(3 - i )* ( i  + 2Xi + 3)(i + 4) , + Y -  .. 
1 * 2 . 3  2.3.4 

(1 - iX2 - i)(3 - i)(4 - i) * (i + 2)(i + 3)(i + 4)(i + 5 )  + X' 
1 - 2 - 3 4  * 2 . 3 . 4 - 5  

+ .. (i - 1, 2, 3, . . . )  

Therefore the asymptotic solution of (24) for large t is; 
+(x,t) = Cle-xlt+C2(l - 2 x ) e - x ~ ~ + C 3 ( 1 - 5 ~ + 5 x ~ ) e - ~ a ~  

+ C4( 1 - 9x + 21x2 - 14~S)e -L~  + O(e-V). (26)  



292 M O T 0 0  KIMURA 

To determine the constants C1, C2, Cat . . . we can use the relation that the 
n-th moment of distribution obtained by this formula, 

1 

Jx"+ (x,t 1 dx, 
0 

must be equal to 

since the homallelic classes are excluded from the distribution curve to be 
given by (24). Thus we obtain the following values : 

CI = 6 pq,Cz = - 30 pq(p - q) ,  C1= 84 pq(- 5 pq + I ) ,  

- 1" f t  ( 1 ), 

c4 = - 180 pq( 14 pq2- 7 pq + p - q) .  

How the distribution curve represented by (26) changes with generations 
is illustrated in figure 3, assuming that the initial gene frequency p is 0.1. As 
may be seen from this figure, the curve becomes gradually flat until finally 
every heterallelic class has equal probability and falls with the rate of 1/2N 
per generation. In this final stage, the fixation of the gene proceeds at the 
same rate, the correct value of which was first obtained by WRIGHT to be 
1/2N (see WRIGHT 1931) by using a different method of calculation. This 
rate is usually known as the rate of fixation due to random sampling of 
gametes. 

that the alleles A and A' coexist in the population in the 
t-th generation can be obtained from (26) : 

The probability 

1 G -- 
= b p q e  '"+ 14pq ( - 5 p q + l ) e  ( t -+  m), (27) 

Contrary to what was shown in (19) either complete fixation or loss of alleles 
is expected in this case and at vanishes at the liiiiit of t + CO. 

Variance of the distribution in the t-th generation is from (22), (23) and 
(26)9 

1 

namely the variance approaches its limiting value pq at the rate 1/2N per 
generation. 

As has been demonstrated above, the process of change due to random 
fluctuation of selection intensity is quite different from that due to the random 
sampling of gametes. Therefore comparison of their effects must be made 
from various angles as WRIGHT (1948) did in analyzing the data of medio- 
nigra gene in Panaxia. 
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FIGURE 3.-Graphs showing the process of change of the frequency distribution curve 
due to the random drift in small populations. In this illustration it is assumed that the 
initial gene frequency in the population is 0.1. It  will be seen that the distribution curve 
becomes more and more flat as the number of generations increases. (Abscissa : gene 
frequency in the population. Ordinate : relative probability. t : time in generation. N : effec- 
tive population size.) 
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Thus, if we consider the process of change which will be realized after a 
sufficient number of generations, the rate of quasi-fixation, V,/8, may be com- 
pared with the rate of fixation due to random sampling, 1/2N, for the same 
purpose. Suppose V, is known to be 0.0483 as in figure 1, the equivalent N is 
calculated to be about 83 by using a equivalence relation ; 

though the applicability of this formula is rather restricted. 
SO far we have treated the two factors separately. But in nature not only 

these two factors but also systematic factors may work concurrently. The pres- 
ent writer (1951) reported briefly on the distribution of gene frequencies for 
such case. The more precise account will app;ar elsewhere, but the main 
conclusion derived from the analysis of the distribution curve is not difficult 
to present here: The effect produced by the random fluctuation in natural 
selection is relatively unimportant for small populations. But in large popula- 
tions it has a remarkable effect in such ways that in the case of no dominance 
the distribution curve is modified markedly in the parts where the frequency 
of either allele is low and in the case of complete dominance in a part where 
the frequency of the recessive gene lies inside a certain range of higher fre- 
quencies. Also the product NV, is an important quantity. To estimate not only 
the distribution of population size ( N )  in nature but also the variability (V,) 
of selection intensity for important loci may be an important task left for the 
future experiments. 
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SUM MARY 

When there are random fluctuations in selection intensity, the process of 
change in gene frequency in a population is represented by a stochastic process. 
In this paper an analysis of this process is presented for a gene lacking domi- 
nance and selectively neutral on the average. Especially interesting is the 
process of change that can be observed in the terminal portions of the dis- 
tribution curve. Contrary to the case of random drift in small populations, if 
the population is very large, complete fixation or loss of an allele, in the strict 
sense, will not be realized. But there exists a strong tendency toward the state 
of almost fixation or almost loss. That is, if we allow a sufficient number of 
generations a situation will almost surely be realized in which the allele is 
either almost fixed in the population or almost lost from it. To distinguish this 
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from the fixetion or loss in the case oi random drift in small populations, terms 
" quasi-fixation ') and " quasi-loss ) )  were proposed. Their rate per generation 
can be taken as V,/8, where V, is the variance of the selection coefficient. com- 
parison of this process with that of random drift in small populations is an- 
other important subject in the present paper. In spite of many studies on the 
process of the drift very little is known about the process of the change before 
the fixation and loss of an allele proceeds at the constant rate of 1/2N. In 
this paper an asymptotic solution for this process is presented for the first time. 
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