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TREISINGER, EDGAR, and HARRAR DENHARDT (1964) have shown that the 
genetic map of T4 is topologically equivalent to a circle. That is, any small 

region of the genome yields a conventional linear map, but the map as a whole 
has no ends. Thus, the possibility of genetically “silent” regions at the ends of 
the map is excluded, and estimates of the total map length of T4 can be unbiased 
estimates rather than minimal estimates. The purpose of this paper is to extend 
the theory of formal phage genetics to cover the case of circular maps while 
a companion paper (STAHL, EDGAR. and STEINBERG 1964) addresses itself more 
specifically to the problem of obtaining an estimate of total map length. 

Before embarking upon algebra and arithmetic, it behooves us to state in 
nonmathematical terms what we intend to do. First, we will remain within the 
framework of the so-called “mating theories.” Mating theories presume that 
recombination occurs during discrete, successive interactions (“matings”) be- 
tween or among entire (monoploid) phage genomes. The assumptions that the 
interactions are discrete and that there are no intermediates in the recombina- 
tional process other than entire phage genomes are the features of the mating 
theories which make the recombinational process easy to visualize and mathe- 
matically tractable. Whether or not there is any other justification for  mating 
theories is moot. Second, as in previous treatments of mating theories (VISCONTI 
and DELBRUCK 1953; STEINBERG and STAHL 1958), we will make no attempt to 
account for high negative interference (CHASE and DOERMANN 1958; EDGAR and 
STEINBERG 1958) or heterozygosis ( HERSHEY and CHASE 195 1 ) . 

Now the most straightforward interpretation of the circular genetic map is 
that the phage chromosome is a circle, at least at the time of mating. This 
interpretation of the circular map is also easy to treat within the above ground 
rules. We need only specify the probability of exchange as a function of distance 
for a single mating and then combine this with our previous results to obtain 
a mapping function. A mating between two circular chromosomes is limited to 
an even number of exchanges if only entire genomes are to emerge. 

(If matings are by groups, the restrictions for a circular map are that each 
genome in the mating group must indulge in an even number of exchanges and 
that the spatial pattern of exchanges must be such as to effect a return to the 
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original genome. We shall argue later that the number of exchange events per 
mating is small. The combined requirements of a small number of exchanges per 
mating and obligate return to the original genome robs the notion of group 
mating of most of its original meaning (STEINBERG and STAHL 1958; HERSHEY 
1958). Our presentation here, therefore, will confine itself to a consideration of 
pairwise mating.) 

Further reflection shows that the requirement for an even number of qx- 
changes by itself leads to circularity of the map. In fact, if we assume that the 
chromosome is structurally a rod but nevertheless requires an even number of 
exchanges, we obtain formally identical results. We will refer to the above 
models as the “closed circle” and “rod,” respectively. 

While we cannot explicitly account for heterozygosis in our mating models, 
recent experiments with heterozygotes ( STREISINGER, personal communication) 
have led to another interpretation of the circular genetic map. This interpreta- 
tion, which we call .the “open circle” model, postulates that the phage chromo- 
some is structurally a rod, but the sequence of genes is not the same in all mem- 
bers of a population of chromosomes. One arrives at a circular map by requiring 
that the gene sequences within a population of chromosomes are all circular 
permutations of one another. One can construct such a population of permuted 
rods by making one randomly placed break in each member of a population of 
circles. The open circle model leads to results which are formally distinct from 
the closed circle-rod model. 

After deriving mapping functions for the above models, we estimate numerical 
values for the parameters which appear in these functions. The models are then 
tested against previously published data with the conclusion that each of the 
two models provides a fairly adequate description of the basic observations of a 
phage cross. 

DEVELOPMENT OF THE FUNCTIONS 

Generalized mating theory: In this paper we employ the symbolism of HER- 
SHEY (1958) and the generalized approach of STEINBERG and STAHL (1958). 

The frequency of recombinants in the mating pool (and among phages with- 
drawn at any instant from the mating pool) is described by 

(1) R = 2czbflf2 ( I -e-mp) (HERSHEY 1958) 

where cz and b are the frequencies of the two parental phages, f l  is the “finite 
input” factor of LENNOX, LEVINTHAL, and SMITH (1953), f 2  is a measure of the 
degree to which the population is panmictic, m is the number of matings per 
lineage, and p is the probability per (heterozygous) mating of recombining a 
given pair of markers. 

The frequency of recombinants among mature phage will be 

(HERSHEY 1958) 

where ml and m2 are the average number of rounds of mating for the first and 
last particles to mature respectively. 
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Mating theory for closed circles and rods: We define a distance d on a chromo- 
some of unit length as follows: (a) Closed circles: d = the shorter of the two 
circumferential distances between two markers. (b) Rods: d = the distance be- 
tween two markers. 

In  each of the models, the requirement for recombination in a mating act 
is that the paired exchanges be so disposed that an odd number of exchanges 
occur both in the distance d and in the distance 1 - d .  Therefore, p ,  the prob- 
ability of recombination for two markers separated by distance d will be a func- 
tion of d and 1 - d.  

If the matings involve exactly one pair of exchanges (which assumption seems 
justifiable for T4) (see below) , then 
(3) p = 2 d ( l  - d )  
if the exchange events are randomly disposed on the genome. 

(4) 
and 

Substitution of equations (3) into equations (1 ) and (2) yields 
R = 2abflf2 (1 - e-2”d(14) 1 

( 5 )  
Muting theory for open circles: We shall develop one model for mating between 

open circles. We suppose that the population of genomes is composed of two 
classes. In one class the distance between two markers is d;  in the other class the 
distance is 1 - d .  If we assume that each “circle” is “open” at a randomly chosen 
point, the two classes will be represented with frequencies of (1 - d )  and d 
respectively. 

For each class we suppose that exchanges in elementary acts occur with strict 
positive interference-recombination probabilities are proportional to distance. 
This assumption minimizes the number of exchanges per lineage (see below). 
The observed negative interference which characterizes the progeny from a 
phage cross (see VISCONTI and DELBRUCK 1953) is supposed to arise in this model 
from finite input, spread in maturation, and from the circularity of the map. 

Thus, the open-circle mapping function is composed of two terms correspond- 
ing to two classes of particles occuring with frequencies d and ( 1  - d )  respec- 
tively. The p’s for the two terms are respectively 1 - d and d, so that 
(6) R = 2abf1f2 [ d ( l  -e-m(l-d) ) + (1 - d )  (1 -e-md)]  
and 

-m2 ( 1 4 )  -m, ( 1 4 )  -m,d -m,d 

11 e - e  
(m, - m1)d 

)+ (1-d) (1 + e - e  
(m, - m1) (1 - d )  

(7 )  @=%bf,f, [d (1 + 

ESTIMATION O F  PARAMETERS 

The variables U and b are adjusted at in standard equal-input crosses. As 
pointed out by HERSHEY (1958), panmixia must hold for T-even phage, so we 
take f 2  = 1. A value of 0.9 for f l  is appropriate for crosses involving high multi- 
plicities of each parent (LENNOX, LEVINTHAL, and SMITH 1953). 
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In order to evaluate ml i t  is necessary to identify a pair of markers for which 
d is known. The data of DOERMANN and HILL (1953, Table 2) suggest that the 
closely linked triplet tuq3, m41, and tuq5 is opposite the closely linked pair rqi and 
r51. The R values observed in the six appropriate crosses involving these markers 
are among the nine largest 8 values observed by DOERMANN and HILL (1953). 
We assume that the distance d between the triplet and the pair = %. At m = ml 
and d = % equations (4) and (6) both reduce to R,,, = 0.45 (1 - e-W2).  

Premature lysis experiments by DOERMANN (1953) employing the marker 
pair r4i-tu43 (for which we have presumed d = %) show that among the first 
particles to appear the recombinant frequency is 0.32. Therefore, m, = 2.5. The 
only parameter remaining to be determined is m2. Two methods for its estimation 
are available- (1 ) the factor of increase in 8 for close markers from early to 
normal lysis and (2) the value of &,,. 

for close 
markers from early to normal lysis. This result sets m2 = 7.5 (or % = 5 where 
%= (ml + n2)/2) for the closed circle-rod model. For the open circle model 
m, = 9.5 (% = 6).  

The average recombinant frequency of the six appropriate crosses involving 
markers for which d = % is (0.455 + 0.436 + 0.432 4- 0.41 7 4- 0.413 4- 0.393)/6 
= 0.424 = E,,, (DOERMANN and HILL 1953). This result sets m2 = 12.5 (m= 
7.5) for both models. The discrepancy between the two estimates is not serious. 

We have examined the two mapping functions (equations (5) and (7) ) at each 
of the estimated m2 values. 

Data of DOERMANN (1953, Table 4) show a twofold increase in 

PROPERTIES O F  THE FUNCTIONS 

(a) Graphs of the functions: Figures 1 to 4 show plots of E v s  d for the two 
models at the estimated values for ml and m2. 

(b) Exchanges per lineage: In the closed circle model we have assumed two 
exchanges per mating so that the average number of exchanges per lineage is 
2 (G) . The open circle model assumes one exchange per mating. In addition one 
“event” per lineage determines the opening point of the circle. This event “un- 
links” markers on either side of it and thus acts like an exchange point so that 
the total number of “exchanges” per lineage is about (m 4- 1) .  The total ex- 
changes range from 7 (for open circles at ; = 6) to 15 (for closed circles at 
m = 7.5). Examination of other properties of the two mapping functions indi- 
cates that the actual total number of exchanges probably lies within this range 
(see Circular additivity test, below). 

(c) Rnlax: An m value of 7.5 was selected for both models in order to fit the 
experimental Rm,, value of 0.424. At m= 5 for the closed- and 6 for the open- 
circle functions we get 0.403 and 0.414 respectively for R,,,. It seems probable 
that all of these values are within the range of experimental uncertainty in the 
data of DOERMANN and HILL (1953). 
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FIGURES l-4.-The curves are plots of z versus d as described by equations (4) and (6). R 
values from laboratories of A. H. DOERMANN and R. S. EDGAR were converted to d values by use 
of the curves. The d values for adjacent regions were then added together (d ,  + d,) and plotted 
versus the d value for the outside markers. Sets of points which share a common estimate of d 
are connected by a vertical line. The straight line of unit slope is the expectation for additivity 
of d values. Reading from left to right, the first three points in each figure are from EDGAR 
(1958) and EDGAR (personal communication). The next 11 points are from DOERMANN and HILL 
(1953); they involve crosses within “linkage groups I1 and III.” The remaining points are from 
DOERMANN and HILL (1953) and involve crosses of r4? with markers in “linkage groups 11 and 
111,” crosses of tu,, with markers in “linkage group 111,” and crosses of tu,, with markers in 
“linkage group 11.” FIGURE 1.-Open circle model evaluated at m, = 2.5; m, 1 9.5 ( m  = 6) .  
FIGURE 2.-CIosed circle model evaluated at m, = 2.5; m, = 7.5 ( m  = 5 ) .  FIGURE 3.-Open 
circle model evaluated at m, = 2.5; nz2 = 12.5 ( m  = 7 .5 ) .  FIGURE 4.-Closed circle model 
evaluated at m ,  = 2.5; m2 = 12.5 (m = 7.5) .  

- 
- 

- 

- 



536 F. W. STAHL AND C. M. STEINBERG 

(d) Drift in recombination frequency: The increase in recombination fre- 
quency from early to normal lysis (with close markers) observed by DOERMANN 
was 22. The models tested here predict drift factors ranging from 22 to 32 and 
appear to be within reasonable limits of uncertainty. 

(e) Total map length: The total map lengths for each model can be determined 
by extrapolation to d = 1 of the approximate solution for R at small values of d. 
These solutions are for closed circles R= 0.45d(2&), and for open circles 
R = 0.45d(m+ 1 - e%); E z .45d(m + 1). The values obtained range from 
315 to 675. 

These values are to be considered illustrative rather than definitive. In the 
companion paper, map-length estimates are presented which are more meaning- 
ful (because they acknowledge high negative interference) and more accurate 
(because they are based on more extensive data.) 

values are converted to d values with the aid of the plots 
in Figures 14. These d values are tested for additivity in all possible pairwise 
combinations. The test cannot be applied to regions with large Evalues since 
in that range small errors in the estimate of lead to large errors in the estimate 
of d .  These errors result in a high degree of scatter in all the plots of d, -I- d, VS 

d (Figures 1-4). An examination of these plots makes it appear unlikely that any 
of the sets of assumptions can be rejected at present by application of this addi- 
tivity test. 

(g) Circular additiuity test: The circularity of the T4 map permits an exten- 
sion of the additivity test to large values of d.  The values for a set of adjacent 
regions circumscribing the map can be (graphically) converted to d values. The 
derived d values should sum to one if a mapping function is a good one. The 
genetic regions listed below have been used in this test. The E values are from 
DOERMANN and HILL (1953). 

- 

( f )  Additivity test: 

tu,, - rq7 = 25.0 
r47 - r48 E = 37.7 
r48 - tu,, = 32.9 
tu,, - tu,, = 32.6 
tu,, - tud1 5 = 36.9 

The summed d values range from 0.61 (closed circles at n= 7.5) to 1.06 (open 
circles at %= 6 ) .  In Table 1, the properties described above are summarized for 
the two functions. 

SUMMARY 

The population framework of VISCONTI and DELBRUCK (1953) for recombina- 
tion in bacteriophage can be adjusted to accommodate the recent finding of a 
circular linkage map in T4. Two models for the origin of the circularity were 
considered; neither can be ruled out by the published linkage data which we 
used to test the models. 



THEORY OF CIRCULAR MAPS 53 7 

TABLE 1 

Comparison of the properties of the two models at the selected values 
for m. In all cases, m, = 2.5 
- 

Closed circle and rod 

n i x 2  

Open circle 
- - - 

m = i . i  m=6 m=7.5 
- 

- 
Rma, 0.403 0.424 0.414 0.424 
Rise in recombinant 

frequency for 
close markers 2x 32 22 2.42 

2 d i n  circular 
additivity test 0.93 0.61 1.06 0.90 

Total map length 460 675 315 383 

Total average number of 
“exchanges” per lineage 10 15 7 8.5 

The authors are deeply indebted to DK. G. STREISINGER and M R S .  H. Foss; many of the ideas 
embodied here originated with them. DR. R. S. EDGAR tried to keep us honest. 

APPENDIX: T H E  FORMALISM O F  3-FACTOR CROSSES INVOLVING CIRCULAR MAPS 

The theory of VISCONTI and DELBRUCK described the frequencies of the eight possible geno- 
types arising in a three-factor cross as a function of linkage distances and number of rounds of 
mating. That theory was generalized by STEINBERG and STAHL (1958) to which the reader wish- 
ing to use this appendix is referred. 

Consider loci 1, 2, and 3 and distances on the chromosome of unit length of d,, d,, and d, as 
shown in the diagram. “Descent,” “conversion,” “mating” and all symbols are used exactly as 
defined by STEINBERG and STAHL (1958). 

2 

Closed circles and rods: If we impose the condition of painvise mating with only two ex- 
changes per mating, we can write the following relations between c’s (“conversion probabilities”) 
and the d values: c1=2dld,; c,=2d,d,; c3=2d,d,. For a Poisson distribution of mating acts 
among lineages, then, 
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and 
b i j k  = aij?Po,, + ai..a.jkPl,, + a.j.ai.kPol0 +a..kaij.Pool+ ~ i . . ~ . j . ~ . . k ~ ~ - ~ o o o - ~ l o o - ~ o l o - ~ o o l ~ ~  

Open circles: We consider the case of painvise mating with one exchange per mating as 
defined earlier. Three classes of particles exist according to the sector of the circle in which the 
genome is open. The relations between the c's and d's for each class of particles must be written 
separately. For instance, for the fraction (d,) of the particles open in sector 1: c,=d,; c2=d2; 
c,=O. For a Poisson distribution of mating acts among lineages, then, 

Po,, = d , e m ( d , + d J  + d,C" ,+d , )  + d3cw+4+d,, 

Polo = d,c% (I-e-%) + d2@% (l-e-%) 
P,,, = d ,d% (I-c%) + d3e% ( l--eimdi) 

Pool = d 2 e - 4  (I-&%) - d 3 r %  (l-e-mdz) 

and, as usual, 
'ijk aijk'ooo + ~ i . . a . j k P 1 0 ,  + a.j.ai.kPo10 +a,.kaij .Po01 + ~ i . . ~ . ~ . ~ . . ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
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