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RELIABLE estimates of the length of the chromosome of bacteriophage T4 
are now available owing to improvements in physical methods, especially 

autoradiography (CAIRNS 1961 ) and electron microscopy ( KLEINSCHMIDT, LANG, 
JACHERTS and ZAHN 1962). At the same time, studies of conditional lethal mu- 
tants (BENZER 1955; EPSTEIN, BOLLE, STEINBERG, KELLENBERGER, BOY DE LA 

TOUR, CHEVALLEY, EDGAR, SUSMAN, DENHARDT, and LIELAUSIS 1963) have pro- 
vided a detailed description of the linkage map of this phage. If these two develop- 
ments could lead to the establishment of a quantitative relationship between 
the chromosome and the genetic map of T4, estimates of the physical size of the 
operational genetic units, the recon and cistron (BENZER 1957), could then be 
made. 

A necessary step in this direction is the construction of a genetic linkage map 
in which distances between markers are really distances, i.e., like physical dis- 
tances, are endowed with the property of additivity. In principle, observed re- 
combinant frequencies in a linkage system may be additive per se if (a)  there is 
complete positive interference (recombinant frequencies of all magnitudes will 
be additive) or (b) the recombinant frequencies measured are sufficiently small 
(whatever the interference relations, multiple exchanges will occur with negli- 
gible frequencies in any elementary map interval). The first condition does not 
apply to T4. Although the second condition is in principle realizable in T4, 
because of the phenomena of negative interference (NI) (DOERMANN and HILL 
1953; VISCONTI and DELBRUCK 1953) and high negative interference (HNI) 
(CHASE and DOERMANN 1958; EDGAR and STEINBERG 1958), additivity in T4 is 
observed only for extremely small map intervals (Figure 1).  Thus the construc- 
tion of a map based on such small intervals would require an extraordinary 
density of markers. 

These considerations led us to attempt the construction of a mapping function 
for T4, which permits the conversion of recombinant frequencies to distances 
that are additive. The purpose of this paper is to examine the suitability of 
various mapping functions for T4 and to present and describe the construction 
of a genetic map of T4 based on one of these functions. In addition we shall 
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FIGURE 1 .-A graphical representation of the degree of additivity of observed recombination 
values in T4. For a number of different marker pairs, the recombinant frequency observed in a 
standard cross (STEINBERG and EDGAR 1962) is plotted against the sum of the recombinant fre- 
quencies of the elementary intervals between them. Note that additivity of recombinant frequen- 
cies (R’s) is observed only for  R values less than 5 x 10-3. For a description of the data used in 
preparing this figure, see Table 1. 

discuss the question of correspondence between the genetic map and the chromo- 
some of T4. 

PROCEDURES: T H E  EQUATIONS 

Two classes of equations were examined for their usefulness as mapping func- 
tions. (1) “Conceptual” equations were constructed which derive from various 
detailed theories of the mechanism of phage recombination. These were selected, 
not because of the possible validity of the theories, but because they were devel- 
oped to account for phage recombination and thus would most likely have suit- 
able features. (2) “Sterile” equations were constructed which were mathemati- 
cally simple, yet embody the general feature of the “conceptual” equations, i.e. 
they were designed as “analogues” of the “conceptual” equations. 

The conceptual equations: We adopted the basic framework of the VISCONTI- 
DELBRUCK mating theory VISCONTI and DELBRUCK 1953; STEINBERG and 
STAHL 1958) as modified for circular maps by STAHL and STEINBERG 1964 (see 
companion paper). Of the two models presented by the latter authors, we selected 
the “open circle model”; not only do recent experiments ( STREISINGER, personal 
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communication; THOMAS and RUBENSTEIN 1964; Foss and STAHL 1963) favor 
this model over the other one presented by STAHL and STEINBERG, but the open 
circle model was also more easily modified algebraically to encompass the phe- 
nomenon of HNI. Three models for HNI were investigated, each within the 
open-circle mating framework. We shall call the three HNI models respectively 
the Modified Bernstein, the Switch and the Exponential Switch. 

(a) The Modified Bernstein Model: BERNSTEIN ( 1962) presented an algebraic 
model for HNI which we have adapted for our purposes. In its adapted form the 
assumptions underlying the model are these: ( 1  ) A single mating may involve 
either one or two exchanges. The two kinds of matings occur with frequencies a: 
and I -a:  respectively. ( 8 % )  In  those matings with two exchanges, the distances 
between the two exchanges are exponentially distributed. The mean of the dis- 
tance-distribution is K .  It follows (for a chromosome of unit length) that the 
probability of recombination per mating for two loci separated by a distance D is 

p D  = a D f 2  ( 1-a: )  K ( l -e+’IK).  
(b) The Switch Model: We suppose that a single mating act proceeds according 

to the following rules: ( 1 )  Two chromosomes synapse along a fixed length K.  
( 2 )  Crossovers then occur within such a “switch region”. The crossovers are 
Poisson-distributed among switch regions with a mean number x of crossovers 
per switch region. 

Now, for a chromosome of unit length, 
1 1 +-23 

D - - ( D - K )  (1 -E’” )  4- K ( I - - )  when D > K ,  p - 2  2x  
and 

- 2 0 2 :  - 
1-e ti 

202  

-2DI  - 
) when D < K .  p B = x  (K-D) (1-e I( ) + D  (I-- 1 

- 
K 

(c) The Exponential Switch Model: We suppose that a mating has the follow- 
ing properties: ( 1  ) Two chromosomes synapse in one region. The lengths of those 
synapsed regions are exponentially distributed with K being the mean length. 
( 2 )  The mean number of crossovers per switch region is x; among switch regions 
of a specified length crossovers are Poisson-distributed; the mean number of 
crossovers among regions of a specified length is proportional to that length. 

Now, taking a chromosome of unit length, these assumptions give us 

Each of the three HNI models was used in the Stahl-Steinberg open-circle 
mating theory in each of two of its forms- 

( 1 )  R = 0.45 [ ( I - D )  ( I - C m p D )  + D ( I - C m P , - D )  ] 

These two functions differ only in that the second recognizes the existence of a 
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“spread in maturation” (DOERMANN 1953; VISCONTI and DELBRUCK 1953) and 
is, therefore, an average of the first function between limits m, and m?. 

The sterile functions: Three sterile functions were examined; we shall call 
them Functions 1,2, and 3. 

The following “circ~larized’~ polynomial (symmetric about D = 0.5) was 
tested: 
# l .  R =  T + A (0.5-0)’ + B (0.5-D)4 + C (0.5-D)‘j Q (0.5-D)’ 

The following two conditions were imposed: R = 0 at D = 0; and R = 0.42 at 
D = 0.5. (0.42 was the maximum recombination value observed by DOERMANN 
and HILL (1953) ; see STAHL and STEINBERG 1964.) 

#2. R = AD/(D+B)  4- CD/(D+E) 
#3. R = 1 / ( A + B / d B  + C/O) 
In these last two functions, which are not circular, D must be identified with the 
shorter of the two distances between a pair of loci. 

Functions 2 and 3 below were suggested by DR. C. NI. STEINBERG. 

PROCEDURES: DETERMINING PARAMETERS 

The various equations just described all express R (recombinant frequency) 
as a function of D (fraction of the total map length). The functions 
have three independently variable parameters when written in the first form, 
and four when written in the second, to which numerical values must be assigned. 
The “sterile” functions have respectively three, four, and three such parameters. 
With each function we searched for sets of parameter values which would best 
convert observed recombinant frequencies to additive distances. Electronic com- 
puters were used in the search for suitable sets of parameter values. The design 
of the computer program was as follows: 

1. One of the functions was selected. 
2. About five numerical values for each of the parameters (giving 625 combinations for the 

four-parameter cases) were selected. The values were taken such as to extend over the broadest 
“reasonable” ranges. 

3. The computers selected one set of values and solved the equation for D = 0.5 If R fell 
outside of the range 0.42-0.45 that solution was rejected and a new parameter combination was 
tried. (This step was omitted for equation 1 since the condition that R = 0.42 at D = 0.5 was 
already imposed.) Thus, we considered only functions in line with experimental findings, which 
give a maximum recombination frequency of between 0.42-0.45. (Since the map is circular, R 
is maximum at D = 0.5, half-way round the circle). 

4. When a parameter combination was found with a suitable value for R at D = 0.5, the 
computer solved for R at each of the many D-values. The values of D ranged from to 0.5 
in steps increasing geometrically by v‘z 

5.  The computer was presented with five matrices of observed recombination values. These 
matrices are described in Table 1. 

6. For each of the experimentally determined R values, the computer determined D by linear 
interpolation between the nearest calculated points on each side. 

7. For each interval, the machine calculated the absolute value of the difference between the 
D value and the sum of the D values (20) of all the elementary intervals out of which it is 
composed. This difference was then divided by the D value of the interval. By way of illustration, 
consider five loci for which R values have been measured in all possible combinations, i.e., 
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I R9 I 

The computer calculated the following: 

I D , - ( D Z + D ~ + D ~ )  1 ,  I D~ - ( D ~  + D ,  + D,  + D,)  I 
D, D,  

These values are measures of the degree of deviation of the D values from additivity. The 
“best” set of parameters is that set for which the average value of D-2D is minimal. I I  

It should be noted from the foregoing that in this method of determining “goodness,” some 
data are used more than others. For instance, in the example above, R, was used three times while 
R, was used four times and R, was used only once. 

8. The computer then repeated steps 3 to 7. 
9. For each of the ten parameter combinatians giving the best additivities the machine printed 

out the average value of D-XD as well as the R and D values used in its machinations. 
IT1 

10. On the basis of the information obtained, a second, more restrictive set of parameters was 

TABLE 1 

A summary description of the matrices of mapping data used in Figures 1 lo 3 and 
by the computer in the tests of additiuiity 

Number of 
nonelementary Range of 

intervals recombination 

Symbol Type of elementary points in of elementary 
Number of ( =No. of percentages 

Figures 1-3 mutant intervals Figures 1-3) intervals 

0 rl lA a 24 0.05-0.25 

A rIIA 16 35 0.29-1.2 

Reconibination 
percentage 
of largest 

nonelementary 
interval Source of data 

1.1 LIELAUSIS and 

5.7 EDGAR, FEYNMAN, KLEIN, 
HARTWELL, unpublished 

LIELAUSIS and STEINBEKG 
1962 

0 rllB 13 30 0.24-0.9 1 4.3 EDGAR et al, 1962 

v IS, intragenic 
crosses 6 15 0.49-1.6 3.7 BERNSTEIN, DENHARDT, 

and EDGAR 1964 
U ts, intergenic 

crosses 16 44 4.5-7.5 35.0 EDGAR and LIELAUSIS 
1964 and unpublished 

The matrices were chosen for their possession of the following properties: (1) Each matrix spans a large distance. ( 2 )  
all of the elementary intervals and most at least, of the possible nonelementary intervals had been measured. (3j the 
matrices overlap (with one exception) anh among themselves span most of the scale of observable recombination’ perrent- 
ages; (41 no txvo of the five matrices contain any crosses in common; (5) all markers in the matrices have low, finite 
reversion rates. 
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offered to the computer, and steps 3 to 9 were repeated. The entire procedure was reiterated until 
no substantial improvement appeared likely. 

RESULTS 

Before presenting the results of the computer calculations, we must make two 
qualifying comments. Although the results presented below are the best fits 
which we found, in all cases fits almost as good were obtained with appreciably 
different combinations of parameter values. Furthermore, since the parameter 
values tested are but a sample of all those possible, there is no guarantee that the 
“best fits” which we found are, in fact, the best fits obtainable with the functions 
employed. 

TABLE 2 
“Best” parameter values and the degree of additivity of map distances obtained with 

the functions tested 

Average deviation Function Parameter values 

Modified Bernstein 
(3 parameter) m = 26 0.249 

K = 2.0 x 10-3 
(Y = 0.3 

Modified Bernstein 
(4  parameter) m, = 8; m, = 45 0.25 1 

K = 1.8 x 10-3 
(Y = 0.3 

Switch (3 parameter) 

Switch (4  parameter) 

Exponential Switch 
(3 parameter) 

Exponential Switch 
(4  parameter) 

Function 1 

Function 2 

Function 3 

m = 32 
K = 6 . 6 X  le3 
2 = 3  

m, = 9; m2 = 20 
K = 1.4 x 1 0 - 2  
2 = 3  

m = 30 
K = 6.7 x 10-3 
x = 2.5 

m ,  = 10; m ,  = 55 

2 = 2  

A = - 3  

K = 6.5 x 10-3 

B = 6  
C = 3 6  

A = 3.0 X 
B =2 .o x 10-3 
C = 0.55; E = 0.16 

A = 0.60 
B = 1.10 
C = 0.05 

0.30 

0.250 

0.250 

0.250 

0.319 

0.247 

0.247 

Of the functions tested, only Function 1 gave an average deviation from additivity which was conspicuously inferior. 
The average deviations obtained may be compared with 0.508, the average deviation from additivity of the observed 
recombiiuition frequencies to which the functions are fitted. 
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In Table 2 are presented the “best” parameter values, along with the average 
deviations from additivity, for each of the functions tested. The sets of crosses 
used to test the functions are those for which the R VS ER relationships are given 
in Figure 1. All the functions except Function 1 achieved essentially equally 
good fits. The success of the fitting procedure may be judged from the plots of 
D vs ZD for two of the functions (Figures 2 and 3 ) .  Those functions for which 
good fits were obtained achieved their almost equally good fits in slightly different 
manners. For each “good” function the average deviation from additivity for 
each of the five sets of crosses separately is shown in Table 3. The fits are satis- 
factory with a large part of the residual deviation reflecting experimental vari- 
ability in the determination of R values (see EDGAR 1958). 

AS pointed out in the companion paper, the circularity of the T 4  map permits 
an extension of the additivity test. The experimentally determined R values for 
sets of adjacent regions circumscribing the map can be (graphically) converted 
to D values. The degree to which the sum of the derived D values approaches 
unity is a measure of the “goodness” of a particular mapping function. For each 
of the functions which gave good fits to the previous additivity test, the results 

I d4 ZD lo-* Io-‘ 
FIGURE 2.-Degree of additivity of map distances obtained by application of the &parameter 

Switch Function. For a description of the data used in preparing this figure, see Table 1 .  
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lo-‘ 

lo-2 

D - 

169 

FIGURE 3.-Degree of additivity of map distance obtained by application of the 4-parameter 
Exponential Switch Function. For a description of the data used in preparing this figure, see 
Table 1 .  

of such “circular additivity” tests are given in Table 4. Not only is the logic of 
the circular additivity test semi-independent of the additivity tests used to select 
parameter values, but the data used are almost entirely independent as well. For 
these reasons, we find the fits to circular additivity most gratifying. 

DISCUSSION 

Results of the fitting operation: Among the conceptual equations, the addition 
of a parameter to account for spread in maturation did not result in improved 
additivity. This might be a consequence of the fact that most of the data used to 
test the functions involved short intervals, for which the averaged function is 
approximately the same as the function evaluated at an average value of m. (In 
the case of the Modified Bernstein functions, a slightly better additivity was 
obtained with the three parameter equation than with the averaged, four param- 
eter, equation. This is an example of the limitation of the trial-and-error aspect 
of our search for “best” parameter values.) 

In contrast to the conceptual functions which ignore maturation spread, a 
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TABLE 3 

Average deviations f rom additivity of the  separate sets of mapping data for  each of 
the ‘‘good” functions 

Data set. 
Symbol i n  Figures 1 to 3: 
No. of points: 

Close rll 

0 
e4 

rllA 

35 
n 

rllB 

a 
Close rs Loose ts 

0 
44 

v 
15 

Modified Bernstein 
(3 parameter) 
Modified Bernstein 
(4 parameter) 
Switch (3 parameter) 
Switch (4 parameter) 
Exponential Switch 
(3 parameter) 
Exponential Switch 
(4 parameter) 
Function 2 
Function 3 
Uncorrected data 

0.130 

0.130 
0.130 
0.130 

0.130 

0.130 
0.136 
0.174 
0.132 

0.228 

0.233 
0.236 
0.235 

0.237 

0.227 
0.230 
0.200 
0.435 

0.372 

0.366 
0.370 
0.369 

0.367 

0.369 
0.318 
0.299 
0.464 

0.224 0.257 

0.218 0.263 
0.222 0.255 
0.218 0.258 

0.21 8 0.256 

0.221 0.264 
0.193 0.292 
0.201 0.306 
0.369 0.846 

The average deviations from additivity for the observed R values are given in the last line. Number of points is the 

nnmber of individual tesk of ID; 1 (or IF-! for the uncorrected data) upon which the average deiiations are 

based; it is the same as the number of entries of the corresponding symbol in Figures 1 to 3 

TABLE 4 

Summary  of circular additivity tests 

-\yerage deviation 
1,arge is Amber from unity - Small is 

Number of intervals 48 19 39 

Modified Bernstein (3 parameter) 1.213 1.137 1.326 0.225 
Modified Bernstein (4 parameter) 1.165 1.198 1.395 0.253 

Switch (4 parameter) 1.335 1.247 1.467 0.346 
Exponential Switch (3 parameter) 0.7990 0.741 1 0.8658 -0.198 

Function 2 1.399 1.474 1.669 0.514 
Function 3 1.408 1.699 1.873 0.660 

Switch (3 parameter) 0.6384 0.5966 0.6933 -0.357 

Exponential Switch (4 parameter) 0.825 1 0.7730 0.8999 -0.167 

The tests in the first two column5 are based on selected crosses involving pairs of temperature-sensitire mutants (EDGAR 
and LIEI.AUSIS 1964 and unpublished). The first column has used the smallest intervals for which R values hare been 
reliably determined. The intervals in the second column are on the average about 21/,.times (in D units1 as large as 
those in the first; only a few entries are common to both columns. ?’he tests in the h r d  column are based on crosses 
involving pairs of amber mutants (EPSTEIN et al.,  unpublished). The last column gives the average dei-iation from unity 
of the three sets of data. Values close to zero are “good” values. 

function which did not account for HNI (the open circle mating theory of STAHL 
and STEINBERG 1964, Equation 6 of companion paper) was examined along with 
the functions described here and proved to be highly inadequate. A deviation 
from additivity of 0.408 was the best found. 

Although the sterile functions fared slightly better on their linear additivity 
tests than did the conceptual ones, the latter functions did better on the circular 
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TABLE 5 

Estimates of total map length 

Function Total man leneth (Dercentl’ 

Modified Bernstein (3 parameter) 
Modified Bernstein (4 parameter) 
Switch ( 3  parameter) 
Switch (4 parameter) 
Exponential Switch (3 parameter) 
Exponential Switch (4 parameter) 
Function 2 
Function 3 

2,030 
2,050 
4,370 
2,070 
3,420 
2,970 
1,850 
1,880 

~ ~ ~ ~ ~ 

* Map lengths were obtained by graphically determining the R ~ a l u e s  at D z l 0 - j  and multiplying those values by loG. 

ones. Thus, there appears to be little to choose among the various functions 
examined. 

Estimates of total map lengths: Each of the functions provides an estimate in 
recombination units of the total map length for T4. The estimates are obtained 
by extrapolating the linear region of each function to D equal one. They corre- 
spond to the map distances of classical genetics in that the units refer to recombi- 
nation units obtained at distances sufficiently short that the values themselves 
manifest additivity. These estimates are presented in Table 5 ;  they range from 
slightly less than 2,000 map units to slightly more than 4,000 map units. A com- 
parison of Tables 4 and 5 reveals that there is a correlation between degree of 
deviation from circular additivity and total map length. These properties are 
plotted against each other in Figure 4. We conclude from that plot that our best 
estimate of the total map length of T4, as derived from the data employed is 
2,500 map units. 

Comparisons of map lengths and chromosome dimensions: The original pur- 
pose of determining a mapping function for T4 was for its use in correlating 

I,.500 2.000 3P00 4 m  s m h o o o  lpo0 
TOTAL YAP LENGTH IN R O  WITS 

FIGURE 4.-The correlation between fit to circular additivity and total map length for the 
eight “good” mapping functions. It appears that somewhere there is a function which would fit 
the circular additivity test perfectly and would yield a total map length close to 2500 percent. 
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FIGURE 5.-A map of T4D. Gene numbering follows that given by EPSTFJN et al. (1963) and 
EDGAR, DENHARDT and EPSTEIN 1964, and includes additional genes. The map was constructed 
using recombination data presented in previous publications (EDGAR and LIELAUSIS 1964; EDGAR, 
DENHARDT and EPSTEIN 1964) and unpublished. R values were converted to D values using the 
4-parameter Switch Function. The elemental D values were proportionately adjusted such that 
BD=1, then converted to degrees of arc for map construction. Filled areas indicate minimal 
lengths for genes. Dotted areas indicate location of genes for which no intragenic mapping data 
are available. The inner circle indicates the relative locations of standard markers as determined 
by EDGAR, DENHARDT and EPSTEIN 1964. 

genetical and physical lengths. (We remind the reader that we are concerned 
not with the degree of (or lack of) mathematical elegance of either our functions 
or our fitting procedure but only with the usefulness of the result of constructing 
a T4 linkage map in which distances are additive.) Although the mapping func- 
tions we have found give adequate additivity relations for the data used for their 
solution, we do not know if such relations are uniform over the genome. Further, 
we have at present no way of determining if at every point on the genome there 
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0 

- 

FIGURE 6.-The +-parameter Switch Function evaluated at the “best” values for its parameters. 
D is distance on a map of unit length; R is observed frequency of recombinants; “Nucleotide 
Pairs” is the number of nucleotide pairs corresponding to D under the assumptions that the total 
nucleotide-pair content of T4 is 2 x 105 and that there is a strict proportionality between map 
distances and physical distances. 

is a constant correspondence between physical and genetic lengths. However, 
one observation can be made concerning the degree to which the use of our 
mapping functions might have any validity at all. The T4-evoked lysozyme is 
one polypeptide containing about 150 amino acids ( TSUGITA, TERZAGHI, and 
STREISINGER, personal communication; and see DREYER 1959). It seems likely, 
assuming a coding ratio of three nucleotide pairs per amino acid, (see CRICK, 
BARNETT, BRENNER, and WATTS-TOBIN 1961 ) that the e cistron, which deter- 
mines the structure of lysozyme, contains about 450 nucleotide pairs. This corre- 
sponds to 2.25 X of the length of the entire chromosome. For a given map- 
ping function, this assumed “D” value can be converted to an R value and com- 
pared with the R value experimentally determined. STREISINGER and NEWTON 
(personal communication) have observed 3 percent recombination between the 
outermost markers of the e cistron. For each of the mapping functions which 
gives a total map length greater than 2,000 and less than 3,000 map units the 
predicted R value is compared in Table 6 with the observed value. We observe 
that there is a pleasant correspondence between map distance as measured by 
our best mapping functions and physical distance as measured by another line 
of inquiry. 

A map for T4: Figure 5 is a map of T4 constructed with the aid of the four- 
parameter Switch Function (Figure 6).  

We are grateful to MR. JAMES Lo who substituted for one of us (J.S.) as computer operator 
in the final stages of this work. DR. C. M. STEINBERG not only responded to our call for sterile 
functions, but was most constructive in his criticism of our manuscript as well. 
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TABLE 6 

Comparison of T 4  map with T4 chromosome 

Function 

Recombination frequencr for 
most distant e mutants: R d u e  
corresponding to D=2.15 X l P 3  

Modified Bernstein (3 parameter) 3.2% 
Modified Bernstein (4 parameter) 3.1% 
Switch (4  parameter) 2.9% 
Exponential Switch (4 parameter) 3.9% 
Corresponding observed recombination frequency 3% 

SUMMARY 

Mapping functions for T4 have been constructed and fitted to data. They indi- 
cate a total map length of about 2,500 recombination units and suggest a pleasing 
degree of correspondence between map distances and physical distances. 
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