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I N  the first paper in this series (LEWONTIN 1964) I discussed the consequences 
of linkage in populations subject to natural selection when there is heterosis 

(higher fitness of heterozygote than of homozygotes). There is a great deal of 
theoretical and experimental evidence concerning the existence of heterosis at 
the level of single loci (so-called ouerdominance) , but it seems to be as yet un- 
determined whether such overdominance is widespread or only of academic 
interest . 

On the other hand, there can be no doubt at all that “optimizing selection” 
must be an extremely common and important biological phenomenon. By “opti- 
mizing selection” I mean that in a continuum of possible phenotypes, there is 
some intermediate value which has the greatest selective advantage and that 
deviations on either side of this intermediate phenotype are less fit on the average. 
It is a commonplace that there is a relatively narrow range of optimal size for an 
animal and although there is considerable genetic variation for size in both 
directions in a population of say, Drosophila, the population tends to remain at 
an intermediate phenotypic level. Even a component of fitness like fecundity 
can be increased over its normal value by artificial selection (KOJIMA and KELLE- 
HER 1963) so that correlation with other fitness components somehow holds 
fecundity at an intermediate value in natural populations. 

Even though the widespread existence of “optimizing selection” cannot be 
questioned, what is still not thoroughly understood is the extent to which such 
selection can maintain genetic variation in a population. FISHER (1 930) first 
alluded to an optimum selection scheme later more fully developed by MATHER 
(1941 ) . FISHER’S scheme was that there were two factors A ,  a and €3, b such that 
“ A  is advantageous in the presence of B but disadvantageous in the presence of 
b, and that B is advantageous in the presence of A but disadvantageous in the 
presence of a.” Couched, as this description is, in terms of gene advantages rather 
than diploid genotypic fitnesses, it is not unambiguous in its interpretation and 
as it stands is neither a sufficient nor necessary description of the kind of two 
factor interaction necessary for stable equilibrium of gene frequencies and for 
linkage effects of a permanent sort. In the first careful treatment of a two factor 
polymorphism, KIMURA (1956) showed, in fact, that in order for the system 
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described by FISHER to be stable, at least one of the factor pairs would have to be 
unconditionally heterotic. 

FISHER went further and considered an explicitly optimum model in his dis- 
cussion of metrical characters. Here he assumed that the mean of the population 
was the optimum and that at a single locus the fitness of a genotype fell off with 
its squared deviation from the mean. FISHER then went on to show that such a 
system does not lead to a stable equilibrium but that the gene frequencies might 
be balanced by recurrent mutation and thus account for the observed genetic 
variability for metric characters. The absolute instability of this model of FISHER’S 
arises because fitness falls off with deviation from the population mean and not 
from a fixed optimum phenotype. 

Another treatment of linkage and optimizing selection and one that in some 
part grew out of FISHER’S earlier suggestion was that of MATHER (1941). 
MATHER’S suggestion of “internal” and “relational balance” amounts to a model 
in which an intermediate phenotype is most fit for a character determined by a 
large number of loci of similar small action, “polygenes”. At each of these loci 
there are plus and minus modifiers of the phenotype and no epistasis is assumed 
on the primary phenotypic scale. In  general MATHER does not specify how fitness 
falls off with deviation from the optimum phenotype and the only numerical 
case he presents of the model (on page 186 of his 1941 paper) does not lead to a 
stable equilibrium of gene frequencies. Like FISHER, MATHER predicts the buildup 
of linked repulsion complexes of genes as a result of the optimizing selection, 
but the models explicitly discussed are not stable. BODMER and PARSONS (1962) 
present several models based upon the relational balance theory of MATHER, 
models that do lead to the predictions made by MATHER. However, all such 
models have, in addition to the optimality of intermediate phenotypes, an assump- 
tion of superior heterozygote fitness not obviously related to the phenotypic score. 
Thus, it is assumed by BODMER and PARSONS that the double heterozygote Aa Bb 
is more fit than the so called “balanced homozygotes” AA bb and aa BB. More 
recently PARSONS (1963) tried to relax this assumption of heterozygote superi- 
ority but the stability, in fact, disappears with the heterosis. In this connection 
the point made by KIMURA (1956) must be reiterated, that interaction and link- 
age alone cannot maintain stable gene frequency equilibria and linkage com- 
plexes. There must be some heterosis of fitness as well. Thus the balance models 
of BODMER and PARSONS can be subsumed under the general rule that epistatic 
deviations of any kind will lead to the buildup of stable linked complexes when 
recombination is restricted, provided that each locus shows marginal over- 
dominance for fitness at equilibrium (KOJIMA 1959a). 

WRIGHT (1935) considered a quadratic deviation model in which the fitness 
of a phenotype falls off as the square of the deviation of that phenotype from 
some optimum. WRIGHT showed that if  the genes controlling the phenotype have 
either complete dominance or complete additivity, there could be no stable 
equilibrium of gene frequencies. Eventually all genes controlling the character 
would be fixed. Essentially the same conclusion was reached by ROBERTSON 
(1956) for a greater variety of optimum models. Like WRIGHT, ROBERTSON 
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examined only those cases in which phenotype was determined by additive or 
completely dominant genes. ROBERTSON’S optimum models included selection at 
the population mean, selection at an intermediate fixed value and selection pro- 
portional to an exponential function of the squared deviation from the optimum. 
Again, no stable equilibria of gene frequencies was predicted. These two studies, 
then, seemed to rule out optimizing selection as a force mpintaining genetic 
variation. 

A discovery of importance in this matter was made by KOJIMA (1959b). He 
found that there can be stable gene frequency equilibria with WRIGHT’S quad- 
ratic deviation model for more than one locus. The key point is that although 
complete dominance and complete additivity do not lead to stability, partial 
dominance can lead to such stability provided the degree of dominance falls 
within a range dependent upon the value of the optimum. This discovery of 
KOJIMA then revived the optimum model as a possible source of genetic variation. 

In none of the cases discussed by these three last authors has the question of 
linkage arisen. In  fact, linkage is likely to play an important role in optimizing 
selection because optimum models generate a very large amount of epistasis on 
the fitness scale, much larger than other kinds of selection, and it has been shown 
by LEWONTIN and KOJIMA ( 1960) BODMER and PARSONS (1962) and LEWONTIN 
(1964) that large amounts of epistasis lead to large linkage effects. In  fact as this 
paper will show, even when no permanent stable equilibrium of gene frequencies 
is predicted in an optimum model with free recombination, restriction of recombi- 
nation may result in nearly permanent maintenance of genetic variation. 

The plan of this paper is to examine a number of different optimum models 
including WRIGHT’S quadratic deviation model to see in what way restriction of 
recombination affects the genetic structure of the population. 

The Quadratic Deviations Model Without Linkage 
Suppose that there are a number of loci controlling some partial phenotype of 

an  organism. We assume that each of these loci has two alleles Bj and bj and that 
the phenotypic effects, Si of the three zygotic types are: 

B j B j  Bib j  bibi 
ai hjai  -ai 

When h = 1 there is complete dominance of Bi, and when h = 0 there is no 
dominance of either allele. Then in a random mating population the contribution 
of the jth locus to the mean phenotype is 
(1) P .  3 = a .  3 q 3  .z -k 2qjPjaihj - ajPj2 

of the population, S is simply 
If the loci are additive in their effect on the phenotype, the phenotypic mean 

n 
(2) S = x P j  

We further suppose that the fitness %‘any individual declines as the square 
of the individual’s deviation from some optimum phenotype, 0. That is. 

where K is an arbitrary constant. 
(3) W i = K -  ( S i - 6 ) ’  
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Then the mean fitness of the population, w, is given by 
(4) W = K -  [ ( S - O ) 2 + V ]  
where V ,  the total genotypic variance on the phenotype scale is 

?I 

V = 2 [qj2aj2 + 2pjqj hj‘aj’ + pj2aj2 - Pj’] 
j=i 

( 5 )  
when all the loci are in linkage equilibrium. 

for this model provided the following three conditions are met: 
KOJIMA (1959) showed that stable equilibria of the gene frequencies, qj exist 

for all i, and j .  When written in extenso these derivatives are: 

(7a) -- d w  - -2[aj’(hj’-I) ( l-%j) + 2aj{l+hj (1-2qj)) (S-Pj-G) ] 
dqi 

Condition 6a simply defines the value of qj at equilibrium and is equivalent 
io requiring that the additive genetic variance of fitness is zero. Condition 6b is 
a requirement for marginal heterosis at each locus at equilibrium and condition 
6c is a requirement on the so called “additive by additive” epistasis. It should be 
noted that this epistasis is on the fitness scale and not on the primary phenotypic 
scale which is assumed to be additive between loci. This epistasis arises from the 
relation between phenotype and fitness expressed in equation 3.  Moreover, no 
matter how many loci are involved in the character there is only the two-locus 
epistatic interaction expressed in equation 7c. No other kinds of epistasis are 
generated by the quadratic optimum model. 

By considerable numerical computation using relations 6a-6c KOJIMA was able 
to map out the possible stable equilibrium situations for two loci on the assump- 
tion that the values of a and h are equal for both loci. The result of those compu- 
tations is shown in Figure 1, modified from KOJIMA’S paper to generalize his 
results for any number of loci. Along the ordinate are values of the optimum, 0, 
scaled in units of a. Along the abscissa are the various values of dominance, h. 
The shaded region represents the combinations of 6 and h that will lead to stable 
intermediate frequencies of q1 and qa such that both loci are segregating. Outside 
this area there is no stable equilibrium except the trivial ones of one or both loci 
fixed. We will return to this point later. 

Two points not brought out by KOJIMA need to be made for our investigation. 
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FIGURE 1 .-A generalization of KOJIMA'S requirements for  stability of the quadratic optimum 
mode. The ordinate is the value of the optimum 0 scaled in units of gene effect, a. The abscissa 
is the dominance h. The shaded areas are the regions of stability for successively larger numbers 
of loci. The dashed lines enclose the region of necessary stability. 

First, for a fixed value of h, the equilibrium gene frequencies get closer and 
closer to unity as O is increased. At the upper boundary of the shaded region 
those frequencies reach unity. At the lower boundary the gene frequencies are 
closer to .50 but do not reach it and are in fact bounded at much higher frequen- 
cies than one half. For example at h = .8 when the area has its maximum down- 
ward extension, q = .73 far both loci. Thus equilibrium frequencies are strongly 
biased toward high values. Second, the shaded region is bounded by a larger 
region between the two dashed parallel lines, forming a band of width a. This 
band is a necessary condition on for stability for each value of h. This necessary 
condition is given by Equations 6a and 6b and simply requires overdominance 
at each locus at equilibrium. The smaller shaded area gives the necessary and 
sufficient condition for stability and is smaller because of the extra requirement 
on 0 imposed by Equation 6c specifying the amount of epistasis between the loci. 
For the purposes of our present discussion we need only consider the weaker 
condition given by the parallel dotted lines, since it will be quite strong enough 
to make the point being aimed at. 

Figure 1 shows a series of such bands enclosed by parallel lines and within 
each band a shaded area. Each successive band represents the requirements for 
stable equilibrium of successively larger numbers of loci, each with an additive 
effect a and a dominance h. The proof of this relationship is given in Appendix I 
of this paper. What the figure shows is that to maintain successively larger num- 
bers of loci in stable equilibrium, the optimum phenotype must be successively 
a larger and larger proportion of the extreme phenotype. In fact Figure 1 shows. 
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that to maintain n loci in an unfixed state where all loci are of equal additive 
effect, a, requires that the optimum phenotype fall somewhere between na and 
(n--3/2)a. That is, the absolute difference between optimum and extreme cannot 
be greater than 3/2 a. Thus, to maintain, say, ten loci in stable unfixed equilib- 
rium would require that the optimum phenotype be within 15 percent of the 
extreme possible for these ten loci. 

This may be looked at in another way. Suppose 20 loci each with an additive 
effect of 3 and a dominance of .5 are segregating. The maximum phenotype due 
to segregating loci is then 60. If the optimum phenotype is 28, all 20 loci cannot 
be kept in equilibrium. Loci will be fixed one by one until the maximum effect 
of segregating loci is less than 30 and this will happen when ten loci are segre- 
gating. The ten fixed loci will have been fixed half at the plus allele and half at 
the minus allele so that the mean phenotype is not changed. 

The unfixed loci will be maintained in stable equilibrium at gene frequencies 
very close to unity. However, this is not the only possible stable configuration. 
If one of the loci should become fixed by chance at the plus allele, the system 
decays one step to the next lower stability band. That is because any loci fixed at 
the plus allele can be regarded as scale shifts in Figure 1,  shifting both the pheno- 
types and the value of the optimum, but preserving the difference between them. 
Each time a locus is fixed the remaining loci equilibriate at gene frequencies 
closer to .50 with the result that each successive random fixation becomes less 
likely. The number of loci segregating at equilibrium will be a function of recur- 
rent mutation rates and population size and will increase with an increase in 
both of these factors (KIMURA and CROW 1964). The fewer loci that are main- 
tained at equilibrium the farther the gene frequency at each locus is from unity 
for a given position inside the shaded area. For example with a = 1, h = .8 and 
optimum one less than the number of loci, two loci can be maintained each at a 
frequency of .771 while 100 loci will be maintained each at a frequency of .982. 
Thus, the more loci maintained at equilibrium, the smaller the genetic variance 
per locus. The interesting question then arises as to how the total genetic variance 
on the phenotypic scale changes as the number of identical loci increases. That is, 
how much genetic variance can be maintained in a population by quadratic opti- 
mum selection? 

TABLE 1 

Equilibrium gene frequency and genetic uariance of a character for  which h = .8, a = I and 0 
= (n - I )  when different numbers of genes are segregating 

n q az/locus Total o2 

1 
2 
5 

10 
100 

CO 

.500 

.771 

.868 

.911 

.982 
-1 

.660 

.I93 
,072 
.036 
.003 
-0 

.660 

.386 

.362 

.358 

.259 

.180 
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Table 1 shows the calculations based on equations 1 and 5 of the phenotypic 
variance maintained at equilibrium for different numbers of loci when a = 1, 
h = .8 and 6 = (n -1 ) .  

The table shows that the variance per locus goes down more quickly than the 
number of loci goes up so that the total variance actually decreases with increas- 
ing number of loci. This remarkable result then enables us to predict that as more 
loci concerned with the character are fixed by chance, with fewer and fewer loci 
segregating at equilibrium, the phenotypic variance for the character will actually 
increase, reaching a maximum when only a single locus is still segregating with 
a gene frequency close to .50. 

The minimum variance as the number of loci grows indefinitely large is 
l f h  l imV=a2(1-h) 

n+ CO 

where aE is the absolute difference between the optimum for an n-locus system 
and (n-1)a.  This is a constant irrespective of n since the various bands, as al- 
ready pointed out, are rigid translations. Thus, for the case we have been con- 
sidering where h = .8, a = 1 and o= (n -1 ) ,  the value of E is 0 and 

as shown in Table 1. The proof of expression 8 is given in Appendix 11. 
When we turn to the maximum variance that can be maintained as the result 

of a single segregating locus, we can use the usual expression for equilibrium at 
a single locus 

(9) 

Substituting ( 3 )  into (9) and using the scale of a, ah and --a for the phenotype 
we get 

_ -  + x  Q=--+ 1 0 - 
2 a(l--hz) +2hO 2 

(10) 

Moreover, the total phenotypic variance from ( 5 )  and ( I O )  is 

V = (- - ex2) a* [ 1 4- - - 2xh (2-xh) ] 1 hz 
2 2 (11) 

For x and h of the same sign, which is the only case of interest to us, the maxi- 
mum value of ( 1  1 ) occurs when the optimum is exactly halfway between the 
two homozygotes (x  = 0) and the variance is simply 

v=-  a? (I+-) h2 
2 2 

whose maximum value tends to .75 az as h tends to unity. For -d = 0 to result in 
a stable equilibrium, h must be less than unity. Thus the maximum variance 
that can be maintained by genes selected in a quadratic optimum selection system 
is three quarters of the squared gene effect. This occurs when the optimum is 
intermediate between the two homozygotes at a single locus and when the degree 
of dominance is nearly but not quite unity. Without any dominance ( h  = 0), 
the variance is half the squared gene effect. 
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Our conclusion must be, then, that selection based upon the squared deviations 
from an optimum cannot maintain much variance for a character although i t  
may maintain large numbers of loci segregating. However, when large numbers 
of loci are segregating each is maintained so close to fixation that random events 
are sure to reduce the number of segregating loci to very few where the net 
selection per locus becomes more substantial. 

Stable equilibria are also possible when h > 1 (overdominance) and for such 
cases the necessary condition for equilibrium is simply 

O >  (n--)a+- 1 ha 
2 2 

For such overdominant cases the closer the optimum is to its lower limit, given 
by (13), the closer the equilibrium gene frequencies are to fixation. This is the 
opposite of the cases of partial dominance where optima close to the lower allow- 
able limit gave gene frequencies farthest from fixation. The reason is that for 
overdominant cases, large optima are always closer to the heterozygote than the 
homozygotes, and always closer to the larger homozygote. However, the larger 
the optimum the more nearly equal are the relative deviations of the two homo- 
zygotes and therefore the more nearly alike their fitnesses. 

The Effect of Linkage on the Quadratic Model 

To test whether linkage makes a substantial difference to the conclusions of 
the previous section I have examined a number of %locus and 5-locus quadratic 
deviation cases numerically. The numerical methods are the same as those used 
in the first paper of this series, that is the method of genetic operators using a 
digital computer. 

Tables 2a and 2b give the pertinent parameters for two 2-locus models. At the 
top of each table are given the values of a, h and 6, the assumption being that the 
two loci are identical in their action. In the body of each table are given the 
fitnesses of the nine genotypes calculated from the parameters and from relation 
(3) above. For Model I, K = 334.0 and for Model 11, K = 494. The fitnesses are 
then adjusted to make the maximum fitness unity. These models satisfy the 
necessary and sufficient conditions for gene frequency equilibrium given in 
Figure 1. When a = 6 and h = .6, the optimum must lie between 5.5 and 10.8 
and Models I and I1 have been chosen to lie just within this interval. These cases 

TABLE 2 

Parameters and fitnesses for Models I and II 

a. Model I - b. Model I1 - 
a=6 h=O.6 O=G a=6 h=0.6 0=10 

A A  Aa aa A A  Aa aa 

BB .8960 .965 1 3960 .9923 1.0000 .7979 
Bb .9651 1.0000 ,7919 1 .oooo .98& .6889 
bb ,8960 ,7919 ,0301 .7979 .6889 ,0203 
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were chosen to cover extremes of stable gene frequency possible with the quad- 
ratic optimum model and also different selection intensities. In  neither case are 
the selection intensities very great at equilibrium since the most frequent geno- 
types, by far, are the double homozygote AABB and the two single heterozygotes 
whose fitnesses are nearly the same. 

The results for these models are shown in Tables 3 and 4. The tables give the 
recombination fraction R, the four gametic frequencies, the gene frequencies, p ,  
which are the same for both loci, the linkage disequilibrium parameter D’, and 
the mean fitness of the population w. D’ is defined in LEWONTIN (1964) as the 
linkage disequilibrium relative to the maximum possible value, given the gene 
frequencies. For Model I there are considerable changes in gene frequencies and 
gametic frequencies with changing recombination, the chief difference appearing 
between complete linkage ( R  = 0) and about 20 percent recombination. The 
differences in gametic frequencies are quite profound. Linkage increases the 
repulsion gametes A b  and aB until they become 80 percent of the gamete pool 
at R = 0 while for free recombination they represent only 35 percent of the pool. 
This corresponds to the magnitude and sign of the relative linkage disequilibrium 
parameter, D’, which is consistently negative indicating an excess of repulsion 
linkages. Unlike the heterotic models examined in the first paper of this series 
( LEWONTIN 1964) there are no complementary equilibria with an excess of 
coupling linkages. As will become apparent in the course of this paper, optimum 
models are characterized by an excess of repulsion gametes. The second point 
worth noticing about the linkage disequilibrium is that it exists even at R = .50. 
This reflects the second characteristics of optimum models, that even when loci 
are additive on the primary phenotypic scale, very large amounts of epistasis are 
generated on the fitness scale because fitness is not monotonic with gene dose. 
The large epistasis results in linkage effects even with free recombination. 

TABLE 3 

Stable equilibria for Model I ,  with different amounts of recombination 

.oo 

.01 

.02 

.03 

.05 

.07 

.10 

.I5 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

,19913 
,30506 
,36381 
,40313 
,45275 
,48238 
.50913 
,53288 
,54575 
.55400 
,55950 
,56350 
,56650 
.5 6900 
,57050 

.WO43 
,341 88 
,30850 
.e8600 
,25738 
,24025 
,22471 
,21090 
,20340 
,19867 
,19547 
,19314 
,19139 
,18997 
,18898 

,40043 
.34188 
,30850 
.28600 
,25738 
.24025 
,22471 
.21090 
.20340 
.I9867 
,19547 
.19314 
,191 39 
,18997 
,18898 

.00001 

.01118 

.01919 
,02487 
,03250 
.03712 
.04144 
,04632 
,04744 
.04866 
.04956 
,05022 
,05672 
.05106 
,05153 

,59956 -1.0000 
.64694 --.91038 
,67231 -.82129 
.68913 -.74265 
,71013 -.61327 
,72263 -.51746 
,73384 -.41501 
,74378 --.30968 
,74915 -.24600 
.75267 -.20483 

,75664 -.I5213 
,75789 -.I3477 

,75497 -.19121 

,75897 -.I2101 
,75948 -.11098 

,95138 
,94814 
,94546 
.9434.5 
,94065 
.93885 
.93710 
,93557 
,93467 
,93416 
.93376 
.93349 
,93328 
.93310 
.93295 

5.846 70 
6.81564 
7.30789 
7.62661 
8.00729 
8.22940 
8.42475 
8.594.95 
8.68589 
8.74475 
8.78303 
8.81086 
8.83166 
8.84954 
8.85796 

17.54.65 
17.9847 
17.8294 
17.5641 
17.1 108 
16.7698 
16.4406 
16.0963 
15.9160 
15.7663 
15.6847 
15.6191 
15.5717 
15.5301 
15.5231 
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The third important and interesting effect of linkage is shown in the last three 
columns of Table 3.  As for heterotic models, the effect of tightening the linkage 
is to increase the mean fitness, v, of the population. This increase is small how- 
ever, about 2 percent, although in terms of genetic load it represents a decrease 
of 26 percent. It is the composition of the mean fitness that changes in an inter- 
esting way. Expression (4) shows that the loss of fitness is due to two components: 
the squared deviation of the population mean phenotype from the optimum, 
(S-0) 2; and the deviations of individuals from the population mean represented 
by the phenotypic variance, V.  As the last two columns of Table 3 show linkage 
has two opposite effects of fitness. The tighter the linkage, the closer the popula- 
tion mean to the optimum, 6. This has the effect of making fitness higher for close 
linkage. However, the tighter the linkage, the greater the within population 
variance (with the exception of R = 0) and this has the effect of lowering the 
population fitness. The net effect of the two is a slight increase in fitness with 
increasing tightness of the linkage. 

Table 4, giving the results for Model I1 shows results that are in all respects 
parallel to those of Model I except that the differences are very much smaller. 
D', however, is about as large in Model I1 as in Model I although the absolute 
linkage disequilibrium is less. This shows that even when selective differences are 
small, optimum models generate epistatic deviations that are large in comparison 
to additive deviations so that relatively severe linkage disequilibria result. 

The third quadratic optimum model to be considered is a 5-locus model in 
which the assumptions are the same as for the 2-locus models. We assume five 
identical loci determining phenotype additively between loci. The additive effect, 
a = 6, the dominance h = .8 and the optimum, = 24. This satisfies the require- 
ments for stable equilibria given in Figure 1, since the optimum falls in the 
shaded region. It is, as a matter of fact, the extension of the two locus case with 
a = 6, h = .8 and 0 = 6 discussed earlier. that is, 0 = (n-1 ) . Table 5 shows 
the fitnesses of the different genotypes based upon these parameters. Because all 
loci are identical only the number of loci homozygous 00, heterozygous 01 and 

- -  

TABLE 4 

Stable equilibria for Model I I  with different amounts of recombination 

R 

.oo 

.01 

.02 

.03 

.05 

.IO 

.20 

.30 

.40 

.50 

g11 

.93382 

.93642 

.93778 
,93863 
.93965 
,94065 
.94138 
.94163 
,94180 
.94185 

g10 

.03310 
,03166 
,03090 
.03043 
.02987 
.02932 
.OB92 
,02878 
.02869 
.02866 

go1 

.03310 
,03166 
,03090 
,03043 
.02987 
.02932 
,02892 
.02878 
,02869 
.OB66 

g, 

.ooooo 
,00026 
,00042 
.00051 
.00061 
.WO71 
.WO78 
.WO81 
.00082 
.OOO83 

p = r  D' 

.96692 -1 .OOOOO 

.96808 -.70130 

.96868 --.57088 

.96906 --.47008 

.96952 --.34444 

.96997 -.20697 

.97030 -.I1337 
,97041 --.Of3853 
,97049 -.05742 
.97051 --.04599 

- 
W 

.99285 

.99281 

.99279 
,99277 
9277 
,99277 
.99225 
.99225 
.99225 
.99225 

- 
P 

11.6667 
11.6789 
11.6853 
11.6892 
11.6941) 
11.6988 
11.7022 
11.7033 
11.7042 
11.7044 

V 

.9521 
,9313 
,9198 
.9166 
,9004 
.8841 
,8825 
.8788 
,8757 
,8750 
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TABLE 5 

Fitnesses for Model Ill. All loci are identical and for each a = 6, h = .8 and 6 = 24 

Number of loci with genotype 

1/1 1 /o 
0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
1 0 
1 1 
1 2 
1 3 
1 4 
2 0 
2 1 
2 2 
2 3 
3 0 
3 1 
3 2 
4 0 
4 1 
5 0 

o i n  Fitness 

5 ,98800 
4 .99232 
3 ,99568 
2 .99808 
1 ,99952 
0 1 .ooooo 
4 ,98800 
3 .98272 
2 .97648 
1 ,96928 
0 .96112 
3 .89200 
2 ,87712 
1 36128 
0 ,84448 
2 .70000 
1 ,67552 
0 ,65008 
1 ,41200 
0 ,37792 
0 .02%00 

homozygous 00, but not the identity of the loci, need be considered. A homozy- 
gote 00 then has a phenotype of 6, a heterozygote 01 a score of 4.8 and a homo- 
zygote 11 a score of -6. 

Table 6 is a sample of the results of this model showing equilibrium gametic 
frequencies, gene frequencies, linkage disequilibruium parameters, variances, 
and mean fitnesses for selected recombination values. The gametes are given in 
their binary form, 00000 being a gamete with all five loci represented by the allele 
with a positive effect on the phenotype and 11 11 1 stands for a gamete with all 
five loci represented by the allele with a negative effect on the phenotype. Only 
the gametes with reasonably high frequencies are given in Table 7 and it will be 
noticed that these are the 16 gametic types with a majority of 0 alleles. Gametes 
with three or more I alleles never exceed a frequency of .OO172, at the loosest 
linkage shown and they all decrease to zero at the tightest linkage. The linkage 
disequilibrium parameters in the table represent all possible situations, given the 
fact that the chromosome is left-right symmetrical. Thus, DI2 = D’,5 and DI3 = 
D’,,, etc. The same symmetry applies to gene q1 q5, q3 = q3. The last column 
gives the results to be expected if all the loci were at linkage equilibrium, although 
even a recombination fraction of .50 departs slightly from such an equilibrium 
situation. 

As Table 6 shows, there is very little effect of linkage for recombination greater 
than .05. As usual, fitness increases with tighter and tighter linkage, but the 
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TABLE 7 

Fitnesses for Models IV, V and VI. See text for methods of 
determining t h s e  fitnesses 

Number of loci with genotype Fitnesses 

1 /1  o/1 o/o Model IV Model V Model VI 

0 0 5 0.0 ,0679 .i754 
0 1 4 0.0 ,1105 ,2670 
0 2 3 0.0 .I612 .3693 
0 3 2 0.0 ,2114 .4654 
0 4 1 1 .o .2487 .5342 
0 5 0 1 .o ,2624 .5594 
1 0 4 0.0 .I612 .3693 
1 1 3 0.0 ,2114 ,4654 
1 2 2 1 .o ,2487 5342 
1 3 1 1.0 .2624 ,5594 
1 4 0 1 .o ,2487 5342 
2 0 3 1 .o .2487 .5342 
2 1 2 1 .o ,2624 5594 
2 2 1 1 .o ,2487 ,5342 
2 3 0 0.0 .2114 .654  
3 0 2 1 .o ,2487 ,5342 
3 1 1 0.0 .2114 ,4654 
3 2 0 0.0 ,1612 .3693 
4 0 1 0.0 ,1612 .3693 
4 1 0 0.0 .I 105 ,2670 
5 0 0 0.0 ,0679 .1754 

K -c 1.0 k l . 0  zk 2.3 
H2 1 .o 0.2 0.2 

effect is extremely small since the population at equilibrium is very close to 
perfect fitness for all recombination values. As in the previous cases, tight linkage 
brings the population mean closer to the optimum which accounts in part for the 
increase in fitness. The changes in gametic and gene frequencies are also reflected 
strongly in the changes in phenotypic variance. As for the 2-locus models, the 
phenotypic variance increases steadily with tightening of linkage except for com- 
plete linkage where all extreme gametic types are completely absent with a con- 
comitant loss of phenotypic variance. The general increase in phenotypic variance 
with tighter linkage is in part due to the changing of gene frequencies toward 
more intermediate values. 

The general picture that emerges from treating 5-locus cases such as Model I11 
is that all effects of linkage are the same as in cases of fewer loci but the magni- 
tude of the effects is smaller. This dilution of effects with increasing numbers of 
loci in the quadratic optimum model is caused by the much higher equilibrium 
fitness possible with many loci. In addition the gene frequencies at each locus are 
much closer to fixation at equilibrium and the genetic variance per locus is much 
smaller as shown in Table 1. Thus, the amount of phenotypic variance that can 
be maintained in a population is strictly limited although tight linkage can in- 
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crease this variance. Thus, tight linkage increases the equilibrium phenotypic 
variance for the 2-locus case by a maximum of 16 percent over the free recombi- 
nation case, while for the 5-locus model this increase is 24 percent. This variance 
and the intermediate gene frequencies are maintained at a relatively low level 
of genetic load. 

Double Truncation Models 

In  the first part of this paper I have shown that truly stable equilibria are 
difficult to maintain with large numbers of loci with a quadratic deviations model. 
Moreover, the amount of genetic variance maintained at these equilibria is not 
great. ROBERTSON (1956) has shown that some other types of optimum model 
are even worse in this respect in that they predict no stable intermediate equi- 
libria. While linkage does increase the variance maintained at equilibrium in the 
quadratic deviations model, it does not change the situation materially. It would 
seem, then, that selection for an intermediate optimum is not likely to account for 
very much genetic variation in populations. This is not the case however. In this 
section I will examine the rate of approach to fixation of gems for optimum 
models that do not lead to true stable equilibria. As it will turn out linkage may 
cause the retention of large amounts of potential genetic variability for extremely 
long periods although not forever. 

The models used to investigate this problem are of the following nature. Five 
loci determine the genetic score, the loci being all identical in effect, the effects 
at the various loci adding to each other (no epistasis). At each locus the three 
genotypes 11, 01 and 00 have the effects a, ah  and -a on the phenotypic score. 
The actual phenotype corresponding to any genotype is assumed to be normally 
distributed with a mean equal to the genetic score and a variance arising from 
environmental differences and segregation of genes at other loci than those under 
investigation. Selection operates by rejecting completely all individuals falling 
outside the limits Ka and allowing as parents of the next generation all indi- 
viduals inside these limits. Because each genotype has a normal distribution of 
phenotypes around its genotypic mean, it is easy with a table of the normal 
distribution to find the probability that an individual of a given genotype will 
fall inside the limits i: Ka. This probability is, by definition, the fitness or adap- 
tive value of the genotype. If all genotypes have the same environmental variance 
then clearly the closer the genotypic mean is to zero, the center of the acceptance 
region, the greater the fitness. When genotypes have different variance, however, 
the situation may be more complex. These relationships are shown in Figure 2. 

The first three double truncation models to be considered are those given in 
Table 7 as Models, IV, V and VI. 

For each model the table gives the truncation limits, K,  the initial heritability, 
H2,  and the resultant fitnesses of each genotype. In all three models the popula- 
tion is started in linkage equilibrium with gene frequencies .55, .60, .65, .70 and 
.75 for the five loci in order on the chromosome. This gives an initial genetic 
variance uQ2 = 2.225. The environmental variance around each genotypic mean 

2.225 (1-H2) 
H2 

is then calculated from the relation (re2 = 
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FIGURE 2.-Diagrammatic illustration of double truncation selection. Each normal distribu- 
tion shown has a mean, ui, given by the genotype and a variance caused by environmenta1 
variations. All individuals falling between the heavy vertical lines survive while those outside 
this region do not. The shaded area is the fitness of a genotype. 

For Models IV, V and VI H z  is assumed the same for all genotypes. In Model IV 
it is 1.0 so that each genotype is either lethal, if it falls outside the limits +- K ,  or 
perfectly fit if it falls within these limits. Model V has the same selection limits 
but H z  = .20 so that 80 percent of the variation is environmental. Model VI de- 
creases the stringency of selection by widening the limits to K = 2.3, while hold- 
ing heritability at 20 percent. 

The changes in population structure during the course of selection are shown 
in Figures 3,4 and 5. Part A of each figure shows the changes in gene frequencies 
with time. Part B shows how mean fitness changes and Part C how linkage 
disequilibrium behaves. To avoid confusion only cases of tight ( R  = .01) inter- 
mediate ( R  = .05) and loose ( R  = .235) linkage are given for Parts A and C. As 
usual these are the linkage values between adjacent genes so that the linkage 
between outside markers is considerable weaker. 

The results shown in Figure 3 are typical of the three cases but the results are 
more drastic because of the drastic selection differential. At first there is a sharp 
change in gene frequencies at all loci to bring the mean phenotype of the popula- 
tion close to zero, the center of the acceptable range of phenotypes. This, in turn 
accounts for the rapid rise in fitness shown in Figure 3B. This process occupies 
only about two generations and there is no differentiation between cases of loose 
or tight linkage. After this point, however, the fate of loosely linked and tightly 
linked genes is very different. Loosely linked genes go to fixation in a symmetrical 
fashion with one locus temporarily stalled near q = .50. After about 90 genera- 
tions only this locus is still segregating to any marked degree. As the other four 
loci get arbitrarily close to fixation, the fifth locus will have virtually no selection 
pressure on it since the heterozygote and two homozygotes at this locus have a 
fitness of unity. Accompanying this fixation of genes is a slow but steady rise 
in fitness until it is nearly unity in generation 90. Tightly linked genes are in 
marked contrast with this picture. Tightly linked loci show a much faster rise 
in mean fitness so that by generation 15 fitness is in excess of 99 percent. How- 
ever this rapid increase in fitness is not due to gene frequency changes since the 
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FIGURE 3,Results for Model IV. Part A shows the frequency of the 0 allele (ordinate) at 
various times (abscissa) for five loci. Dashed lines are for R = .01, mixed line for R = .05, solid 
lines for R = 234. Part B shows the mean fitness of the population (ordinate) at various times 
(abscissa) for different degrees of linkage. Part C shows linkage disequilibrium parameters, D ,  
(ordinate) at various times (abscissa). Dashed lines are for R = .01, and solid lines for R = .234. 
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gene frequencies after becoming symmetrical around .50 remain essentially 
unchanged for 90 generations. The most deviant gene frequencies at 90 genera- 
tions are ql = .675 and q5 = .336, for R .01. With R = .05 the three intermedi- 
ate gene frequencies, q2, q3 and q, actually conuerge toward .50 as generations 
pass, although this is temporary. The rapid increase in fitness has occurred 
through the fixation of gametic types so that there is a marked deficiency of 
coupling gametes. This is seen in Figure 3C showing all coefficients of linkage 
disequilibrium as negative. 

One very interesting feature of Figure 3B is the change in the order of mean 
fitnesses with time. In early generations the tighter the linkage the higher the 
mean fitness. However, as time goes on the more loosely linked situations slowly 
increase in fitness passing the more tightly linked case above them. By generation 
90 the most loosely linked case is more fit than all except the most tightly linked 
case, and the next most loosely linked case is beginning its period of more rapid 
rise. This turnover process eventually results in a complete reversal of the order 
of fitnesses although this is of very little significance since all cases are very 
near their maximum possible fitness at that point. As for the quadratic deviations 
models. loss of mean fitness of the population arises from two causes: deviation 
of the population mean from the center of the acceptable zone, and phenotypic 
variance within the population causing individuals to fall outside the acceptance 
zone. In the case of Model IV all this variance is genetic since the heritability 
is 1.0, but for Models V and VI some of the variance is nongenetic. Figure 3B 
can then be used as an index to the genetic variance in later generations. In the 
first two generations the rapid increase in fitness is due to reducing the deviation 
of the population mean from the middle of the acceptance range and this is the 
same for all degrees of linkage. Following that increase, the changes in popula- 
tion fitness are the result of the loss of genetic variance, the highest fitness cor- 
responding to the lowest genetic variance. We see that in the tightly linked case 
there is extremely rapid loss of genetic variance by the process of elimination of 
coupling gametes; while for loose linkage the loss of variance is slower and occurs 
by fixation of genes. Thus, the relative amounts of genetic variance undergo the 
same changes in order as do the fitnesses in Figure 3B. Despite the very low 
genetic variance in the tightly linked cases, the opportunity for the manifestation 
of new genotypes is much greater because gene frequencies are held at inter- 
mediate frequencies. The tightly linked genes then have a greater potential to 
respond to new selective forces because potential genetic variability is maintained 
in the form of linked complexes. 

When we turn to the partial heritability Models V and VI similar features 
are shown with one exception. In  these two models, the partial heritability leads 
to heterosis of one locus when the other four are fixed. Thus there will be a 
permanent equilibrium of locus 3 at q = .50. This is not of general importance 
however and arises only because an odd number of loci is involved in a character 
whose optimum is at 0. The segregation of this locus does not reduce the mean 
fitness much. 
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Homeostatic Models 

The last models to be discussed are the same as Models IV, V and VI except 
that the assumption of equal environmental variance no longer holds. Models 
VI1 and VI11 whose fitnesses are given in Table 9, are based on LERNER'S 
hypothesis that the greater the degree of heterozygosity, the smaller the environ- 
mental sensitivity of a metric trait. In  particular Model VI1 is based upon setting 
the environmental variances of the genotypes progressively greater for lower 

TABLE 8 

Environmental variances (uez) and initial heritabilities in relation to initial genetic 
variances ( 0 ~ 2 )  for different genotypes in Models V I 1  and VlII 

Number of 
loci heterozygous 

5 
4 
3 
2 
1 
0 

1.000 0.0 1.000 0.0 
.833 0.2 .500 1 .o 
.667 0.5 ,333 2.0 
.500 1 .o .250 3.0 
.333 2.0 ,200 4.0 
.I67 5.0 .I67 5.0 

TABLE 9 

Fitnesses for Models VI1 and V I I I .  See text for method of determining fitness 

Number of loci with genotype 

1/1 1/0  o/o Model VI1 Model VI11 

Fitnesses 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
4 
4 
5 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 

5 
4 
3 
2 
1 
0 
4 
3 
2 
1 
0 
3 
2 
1 
0 
2 
1 
0 
1 
0 
0 

.0789 
,0686 
,0861 
.1685 
.4986 

1 .oooo 
,1595 
.2a2  
.4102 
,3294 
,4986 
.225 1 
.36% 
,4102 
.I 685 
,2251 
.2402 
,0861 
.1595 
,0686 
.0789 

,0789 
.1103 
.I 585 
. 2 a 2  
.4102 

1 .0000 
.I 595 
.2113 
.2809 
.36% 
.4102 
.2251 
.2634 
.b09 
. 2 w  
.2251 
.2113 
.1585 
.1595 
.1103 
,0789 
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degrees of heterozygosity. The initial heritabilities and environmental variances 
for the two models are given in Table 8. The result of the changing heritability 
is that the pentuple heterozygote is more fit than any other genotype (Table 9) 
and this, in turn, results in a stable equilibrium of gene frequencies at p q = .50 
for all loci. 

Tables 10 and 11 give the stable equilibrium results for various values of re- 
combination. Only 16 gametic types are shown, but their 16 reciprocal types have 
identical frequencies. What is particularly noteworthy in these results is the 
appearance of alternating coupling and repulsion linkages for tighter linkages 
( R  = .065-.070). All other optimum models described in this paper gave only 
repulsion linkages. The coupling linkages which appear in Models VI1 and VI11 
represent the stable configuration for these models and cause a maximization of 
fitness. Solutions also exist when all linkage are repulsion type but these are 
unstable and result in fitness minima. 

I have not given the picture of the early stages of selection for Models VI1 and 
VI11 since they give stable equilibrium, but these early stages have been computed 
and a single example is given in Figure 6. Starting in linkage equilibrium, the 
populations at first produce all repulsion linkages, but as the gene frequencies 

TABLE 10 

Results of Model VII. Symbols are as explained in the text 
~ ~ ~~ ~~ 

R between adjacent loci 

Gametes ,045 ,050 ,060 .07 .os .10 .14 234 

00000 
00001 
00010 
0001 1 
00100 
00101 
00110 
001 11 
01 000 
01001 
01010 
0101 1 
01 100 
01 101 
01110 
01111 

D’ 12 
D’ 13 
D’ 14 
D 15 
D’ 23 
D’ 24 

W 
- 

.00016 

.00205 
,00861 
.00328 
,00999 
.06109 
,01276 
,00328 
,00861 
,04706 
,20724 
.01109 
,01276 
.04706 
,01290 
.00205 

,00034 
,00351 
,01091 
,00556 
,01245 
.06138 
,01804 
,00556 
,01091 
.05164 
.I6610 
.06138 
,01804 
.05164 
.01905 
.00351 

.00105 
,00829 
.01474 
,01144 
.01413 
.MO46 
,0296 7 
.01144 
,01474 
.05890 
.lo172 
.05046 
,02967 
.05890 
,03612 
,00829 

,00179 
.01144 
.01682 
.01525 
,01537 
.MO9 
,03440 
.01525 
.01686 
,05774 
,07948 
,04509 
,03440 
.05774 
,04188 
,01144 

,00249 
.01328 
.01840 
.01795 
.01716 
.04352 
.03615 
.01795 
,01840 
.(I5481 
.07041 
,04352 
.03615 
.05481 
.04198 
. 0 1 328 

.00388 

.01562 

.02000 

.02322 

.01948 

.04261 
,03749 
,02322 
.02000 
.04959 
,05943 
,04261 
,03749 
.04959 
,04016 
,01562 

,00666 
,01930 
,02324 
.02765 
.02346 
.OW31 
.03725 
.02765 
,02324 
.04380 
.04933 
,04031 
,03725 
,04380 
,03745 
,01930 

,01085 
,02351 
.02590 
,03123 
,02623 
,03796 
.03550 
.03123 
,02590 
,03904 
.04147 
,03796 
,03550 
,03904 
,03516 
,02351 

-.59512 -.52904 --.43516 -.37836 -.33236 -.25792 -.17792 -.11036 
+.35244 $.24136 f.14528 -.02228 - . W O O  -.06264 -.06588 -.05652 
-.24484 -.1604.0 --.05548 -.03840 --.03752 -.04700 --.04876 -.04784 
+.09212 +.OW80 --.03264 -.03616 -.03652 -.04832 -.04.844 -.05400 
--.64448 --.54976 -.32604 -23696 -20656 ---.17768 -.I4140 -.I0120 
f.42628 t.31088 +.08208 f.00636 --.01848 -.04236 -.05548 -.05332 

,43673 .42021 ,39785 ,38979 .38498 .37894 ,36995 ,36099 
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TABLE 11 

Results of Model VIII. Symbols are as ezplained in the text 

R between adjacent loci 

Gametes .005 .01 ,065 .07 .08 .io .14 ,034 

00000 
00001 
00010 
0001 1 
00100 
00101 
001 10 
001 11 
01000 
01001 
01010 
01011 
01100 
01 101 
01110 
01111 

D’ 12 
D 13 
D 14 
D’ 15 
D 23 
D 24 

W 
- 

.ooooo 

.00000 

.00003 

.00000 

.00003 

.00457 

.00003 

.00000 

.00003 

.00436 
,48197 
“7 
.00003 
,00436 
.00003 
.00000 

.00000 

.ooooo 

.om12 

.Ooooo 

.om12 
,00921 
.00014 
.ooooo 
.00012 
.00879 
.46321 
.00921 
,00014 
.00879 
,00013 
.ooooo 

.00208 

.00892 
,01686 
.01159 
.01585 
.04915 
,02778 
.Oil59 
.01686 
.05649 
.1 0992 
. M I 5  
,02278 
,05649 
,03057 
,00892 

.00334 

.01241 

.01909 
,01555 
.01743 
. w 7 9  
,03253 
,01555 
.01909 
,05527 
.08301 
.04479 
,03253 
.05527 
,03693 
.01241 

,00508 
,01555 
.02133 
.01960 
02003 
.04222 
.03523 
.01960 
.02133 
,05112 
,06627 
.04222 
.03523 
.05112 
.03850 
.01555 

.00767 

.01865 

.ow22 

.02504 

.02295 

.om0 

.(I3642 

.02504 

.02322 

.b635 

.05372 

.W60 
,03642 
.04535 
.03713 
.01865 

.01206 
,0226 1 
.02618 
,02883 
.02655 
.03794 
.03565 
,02883 
.02618 
.03993 
. W O  
.03794 
,03565 
.03993 
.03512 
,02261 

.01713 

.02628 

.02809 

.03125 

.0b38 

.03565 

.03402 

.03125 

.0b09 

.03622 

.03782 

.03565 

.03402 

.03622 

.03365 

.02628 

--.98136 -.96160 --.42476 -.35720 -28544. -.20172 -.12544 -.07180 
+.96380 +.92580 +.08748 +.01024 --.02966 -.05016 -.04912 -.03788 

+.92860 +.85592 --.00924 -.02420 --.02800 -.03712 -.I3448 -.03520 

$.96468 +.92756 +.09828 +.02044 --.01828 -.OM20 --.OM4 -.03672 

.59257 .57275 ,34583 ,33754 .33158 .32637 .32058 .31612 

--.94652 --.89128 -.06548 -.03944. --.03324 -.03928 -.03660 -.03204 

--.98220 -96324 -.34716 -.24988 --.19212 -A5152 --.lo804 -.06832 

reach equilibrium, some of these repulsion linkages disappear and are replaced 
by coupling phase linkages. The particular linkages shown in Table 10 are not 
the only possible equilibria. There are ten alternative configurations in which the 
majority of gametic types form a pair of the type 11100/00011 or 10110/01001, 
or, etc. All these equilibria have the same mean fitness. As Table 10 shows there 
are very considerable linkage disequilibria between adjacent genes even when 
these recombine as much as 6 percent. When adjacent recombination fractions 
are 1 percent, the outside markers, which are then 4 map units apart, are in very 
great disequilibrium (D’ = .84 for Model VIII). 

The most remarkable feature of these models is the very large increase in fit- 
ness that results from linkage. In Model 8, if the adjacent genes recombine 1 
percent the average equilibrium fitness is .57275 compared with fitness of .3161Q 
when R = .24. This is an increase of 81 percent in fitness and if the genes are 
really tightly linked ( R  = .OOl) fitness is essentially doubled. 

t 

General Implications of the Results 

As D’ARCY THOMPSON and HALDANE long ago observed, there is a strong 
pressure of natural selection toward intermediate values of various metric traits 
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of organisms. In  fact, with exception of components of fitness such as make up 
the age specific mortality and fecundity schedules, it is difficult to imagine any 
character of a plant or an animal in which the most extreme size is of advantage. 
For this reason the consequences of various schemes of optimizing selection are 
of great interest in population genetics. The question is to what extent such 
optimizing selection results in the long-time maintenance of genetic variability. 

When genes are freely recombining, optimizing selection does not usually lead 
to stable genetic variation. Of the models examined in this paper only those in 
which multiple heterozygotes are better buffered against environment lead to 
much stable variation. The linkage of genes, however, leads to rather a different 
result. The standing genetic variance in an equilibrium population is made larger 
by linkage in quadratic models but smaller in double truncation models, but the 
possibility of long term maintenance of gene frequencies at intermediate values 
is greatly enhanced. Linkage of genes may result in the much more rapid 
immediate response to selection with an accompanying exhaustion of genetic 
variance, while at the same time maintaining the possibility of future genetic 
variation by preventing the fixation of gene frequencies. For environments that 
are stable over long periods but undergo occasional radical shifts this is an opti- 
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mal genetic strategy. On the other hand, in environments undergoing rapid fre- 
quent fluctuation, a less labile system is optimal and tight linkage is at a dis- 
advantage. 

The other point of general interest is the degree to which populations may be 
permanently out of linkage equilibrium. In the earlier papers on this subject 
KOJIMA and I have pointed out that interaction between loci in determining fit- 
ness is necessary if any permanent linkage disequilibrium is to result. By inter- 
action we have meant departures from additivity between loci and this follows 
from our particular model of natural selection in discrete generations. When a 
continuous generation model is used, the definition of interaction is the deviation 
from multiplicatiueness between loci, or additivity on a logarithmic fitness scale 
(KIMURA 1956). Thus, whether or not a particular scheme of fitnesses leads to 
linkage disequilibrium depends in part on the model of the breeding structure. 
For optimizing models, however, interaction is present irrespective of the dis- 
creteness of generations because the fitnesses do not bear a simple relationship 
to the rest of the phenotype. On either discrete or continuous generation models, 
optimizing selection results in very large amounts of interaction on the fitness 
scale and this, in turn, results in linkage disequilibrium for even the loosest link- 
ages. To the extent that genes are selected to produce optimum intermediate 
phenotypes, and this must be a common mode of selection, to that extent linkages 
play an important role in the genetic change in the population and linked com- 
plexes of genes, out of equilibrium, should be found in natural populations. 

Over the past eight years I have had many occasions to discuss these matters with DR. KEN- 
ICHI KOJIMA and I am deeply grateful for the illuminating insights he has given me. 

SUMMARY 

This paper is concerned with the genetic structure of populations subject to 
“optimizing” selection, that is, selection favoring some intermediate phenotype 
and discriminating against phenotypes at both extremes. A number of specific 
models have been examined in which the fitness of phenotypes falls off with 
increasing deviation from the optimum phenotype. For freely recombining genes 
virtually no optimum model leads to a maintenance of significant amounts of 
genetic variation in a permanently stable state. An exception to this rule is a 
model in which multiple heterozygotes have a lower environmental sensitivity 
than other genotypes. When recombination is restricted, however, long-time 
quasi-stable equilibrium of gene frequencies result. The rate of increase of fitness 
with time before the quasi-stable equilibrium is reached is also strongly affected 
by linkage with tight linkage causing rapid initial increases in fitness but lower 
rates of increase in later generations. 

Pronounced linkage disequilibrium also appears during selection and at equi- 
librium. This is usually in the form of excesses of repulsion linkages, but in 
some cases there is an alternation of coupling and repulsion linkages along the 
chromosome similar to the “relational balance” hypothesis of MATHER. 



SELECTION A N D  LINKAGE 

APPENDIX I. Proof that shaded area in Figure 1 represents the 
necessary condition for stable equilibrium of n loci. 
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Let O = optimum. Pj = mean genotypic value due to jth locus. P = mean 
genotypic value. a = additive effect per locus. h = dominance effect per locus. 
Then KOJIMA (1959) shows that a necessary condition for stability is that for all i 

a(hi-1) 
2 < 6 < P-Pj + - a(h- I )  

2 
P-Pj + 

Now ( 1 )  specifies the following three properties: (a) 0 lies in an interval 
whose width is a; (b) The upper and lower limits of 6 are each linear in h with 
slope a/2; (c) Lower limit of O = P-Pj when h = 1. We thus have a band of 
the shape and slope shown in Figure 1 for each locus relating the dominance h 
to the optimum 0. Since we are looking for  a necessary condition we want the 
simultaneous condition on all the i loci which is as broad as possible. But this 
will be given by the intersection of all the conditions and will be as broad as 
possible when all bands are identical and include the same region of the h, 6plane 
since they are all of fixed width a and fixed slope h/2. This will occur when 

for all i and i. 
- 

( 2 )  F-P, = P-P, 

Since p = f: Pi, if ( 2 )  is true then 
3 =1 - 

( 3 )  

(3) and condition c above 
(4) 
Conditions a, b and c in conjunction with (4) are the required area. 

P-Pi = nPj-Pj = (n-1)Pj . 
Finally, when h = 1 ,  Pi = a because of fixation of the plus allele. Thus, from 

6 = ( n - l ) a  when h = 1 .  

APPENDIX 11. Derivation of limiting phenotypic variance 
maintained by the quadratic optimum model 

a(h2-1) (1-2qi) + 2[1 + h( l -Qj)]  [p-Pj--O-l = 0 
Expression 7a of the text states that at equilibrium 

( 1 )  
for all i. 

maximize the variance, ( 1  ) becomes, for n loci 
( 2 )  a(h2-1) (1-2q) + 2[1 + h ( l - 2 q ) ] [  (n- l )Pj  - d ]  = 0 

Setting q = 1 E and ignoring higher pwers  of E ,  

( 3  1 Pi = aq2 + 2pq ah--p2a = a [  1 - 2 ~  ( l-h) ] 
so that from ( 2 )  and ( 3 )  
(4) a(h2-1) (2~-1)  + 2 [ 1  +h(2~-1)][(n-l)a-6--2~(1-h)(n-I)a] = O  

It  was proved in Appendix I that (n-I ) a  - 6 is a small constant for all values 
of n. Therefore, as tz grows large without bound the left hand side of (4) will 
also grow without bound unless n e  is bounded. 

Taking the case where all loci have the same gene frequency, which will 
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Therefore 
h E = O  
n+ m 

(5) 

Setting 0 - (n- 1 ) a = aE and rearranging ( 4 )  yields 

( l f h )  -2E 
4(1-h) lm ne = 1' 

n+ m 

Finally, the variance at a single locus is (from text equation 5 )  
( 8 )  Ujz 2a2(1-h)'E 
ignoring higher powers of E .  Therefore the limiting variance of total phenotype 
from (7 )  and (8) is 
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