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R E C E N T  studies of the joint effects of linkage and selection have concentrated 
on equilibrium populations, and on the effect of recombination on the posi- 

tion and stability of the equilibrium (BODMER and PARSONS 1962; HALDANE 
1962; PARSONS 1963; LEWONTIN 1964 a,b). Less attention has been given to 
cases in which alleles are increasing towards fixation, with no intermediate 
equilibrium possible. Selection of this type, whether natural or artificial, may be 
referred to as directional selection. Linkage will affect gene and genotype fre- 
quencies only in the presence of linkage disequilibrium, which may be defined 
as nonrandom association of alleles at different loci. Linkage disequilibrium can 
arise during directional selection, although it must inevitably disappear when 
the favored alleles become fixed. Consequently, computer stimulation studies of 
artificial selection have often shown significant linkage effects. This paper will 
examine the qualitative effects of directional selection on linkage disequilibrium, 
and will discuss the effects of linkage on the rate of change of gene frequencies. 

With two loci, A and B, each having two alleles, there are four types of gametes 
or haploid genotypes possible: A,&, A,B,, A,B, and A&. In  thc eqmtions which 
follow, the gamete frequencies will be described by two systems of parameters, 
one involving the gamete frequencies themselves, the other using the gene fre- 
quencies and a linkage disequilibrium parameter. These systems can be sum- 
nisrized as follows: 

AIBl x , = p q + D  

AZB, 
A& 

AiB, ~ Z = p ( l - q ) - D  ( 1 )  
XJ = ( 1  - p j q  - D 
~4 = ( 1  - p) (1 - 4) + D. 

p = xI + x2 is the frequency of A,, and q = x1 + x3 is the frequency of B,.  D is 
the excess of the A,B, gametes over the frequency which would be pi edicted with 
random association of A ,  and B,. Note that 

D = xIx4 - xZx3. 

Another measure of linkage disequilibrium, 2, will also be used: 

2 = loge (XlxA) - loge ( ~ 2 ~ 3 )  

= loge XI - loge ~2 - loge ~3 + loge 5 4 .  

Note that Z and D always have the same sign, and are both zero when there is 
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linkage equilibrium. Note also that 2 is not defined when any of the xi are zero. 
MORAN (1964) has defined a useful function to keep track of sign changes in 

the equations for two-locus systems: 

The following properties of k( i )  should be noted: 

k"i) = 1 
4 

k ( i )  = O .  
i=1 

Using this function, we can rewrite the definition of Z as: 
4 

2 = k ( i )  log, xi. 
i=l 

Infinitely large random-mating populations of organisms having both a hap- 
loid stage and a diploid stage in their life cycle will be considered. Models of 
selection can be constructed with either continuous or discontinuous generations, 
with selection occurring in either the haploid or the diploid stage. These possi- 
bilities will be examined to determine the type of 1inka.ge disequilibrium pro- 
duced by directional selection. In all cases r will denote the recombination frac- 
tion between A and B. 

Haploid selection, continuous generations: Let the probability that in a small 
interval of time dt a haploid individual mates at random and produces one off- 
spring be given by b dt. Let the probability that an individual of type i dies in 
the interval dt be given by didt. Let mi = b - d,. Then by a derivation similar to 
that given by KIMURA (1956) we obtain 

where m= 
containing only type i individuals. 

effects, and an interaction effect, as follows: 

x2m,. The m, would be the malthusian parameters of populations 

Each of the m, can be represented as the sum of a mean effect, individual locus 

i 

AIBl ml = p  
A,& m2=p+B 
A,B, m3=p+a 
A,B, m 4 = p f a + / 3 + E .  

We can write an equation for the interaction parameter E in terms of the m,: 
4 

E = ml-m2-m3-km4 = k(i)mi.  ( 3 )  
i = l  

In  direct analogy with the linkage disequilibrium parameter D, the epistasis 
parameter E measures the excess of m4 over the value it would assume if the mi 
were determined additively by the two loci. 

We are now in a position to examine the effect of selection on linkage dis- 
equilibrium. 
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(4) 

Substituting (2) and ( 3 )  into (4), we obtain 

1 
1 x1 

Note that ~ > 0, and recall that Z and D always have the same sign. Then 

if E is positive, Z will increase whenever Z and D are negative or zero. If E is 
negative Z will decrease whenever Z and D are positive or zero. If E = 0, Z will 
move towards zero, provided that r is not zero. In general, Z will change until it 
has the same sign as E. 

Haploid selection, discontinuous generations: If x1 is the frequency of the hap- 
loid genotype A,B,  before fertilization, then the frequency immediately after 
meiosis will be x?, + x1x2 + x1x3 + x1x4( 1 - r )  f x2x1r or x1 - rD. If W ,  is the 
probability that type i survives from meiosis to fertilization, then if we count the 
genotypes immediately before fertilization, we obtain 

where w = x ( x ,  - k ( i ) r D )  W, .  

and an interaction effect: 

xi = W , ( x ,  - k ( i ) r D ) / W  ( 5 )  

1 

Each of the W ,  can be represented as the product of individual locus effects 

A,B, W ,  = 1 
A,B, W ,  = p 
A,Bl W ,  = (11 
A,B, W ,  = (11p y 

We can write an equation for the interaction effect in terms of the W,:  
WlW, 

Y=- w,w, 

E = log,y = log,. (-.-.2 ) 
The measure of epistasis in this model will be the logarithm of y 

Wl w 
w, w, 

E = 2 k(i)log,W,.  
i 

E is a measure of the excess of log, W ,  over the value it would assume if the W ;  
were determined multiplicatively by the two loci. 

As before, we can write an equation for the change in Z :  

From ( 5 )  

= k( i ) log,W, + k( i ) log , ( l  - k(i)rD/xt). 
i 2 

Noting that the sign of Lo?( 1 + y )  is the same as the sign of y ,  the second term of 
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(6) will be a sum of terms each having the same sign as -k2( i) rD/zi. Then 
A Z = E + Q .  

Where Q has the same sign as -rD. As before, Z will change until it has the same 
sign as E. 

Diploid selection, continuous generations: Let a diploid individual composed 
of gamete types i and i be denoted by ii. Let the probability that any individual 
dies in a time interval of width dt be d dt. With probability bij dt an individual of 
type ii selects a mate at random from the whole population and produces a single 
offspring during the time interval dt. Thus each mating consists of an active and 
a passive partner. Type ii participates during a time interval dt in nii bij dt 
matings as the active partner, and in nii b d t  matings as the passive partner, 
where b dt is the probability that a randomly chosen individual will mate during 
the interval dt, and ni j is the number of type ii individuals. Although this model 
may seem unnecessarily limited and complicated, it can be shown that it will not 
generate departure from Hardy-Weinberg proportions, as will many other pos- 
sible diploid-continuous models (such as, for example, almost any model in which 
the probability of death varies with the genotype). Other models will, however, 
approach Hardy-Weinberg proportions as selection is made infinitely slow. If 
the genotypes are in Hardy-Weinberg proportions, the diploid genotype f requen- 
cies are the products of the corresponding gamete frequencies. Note that Hardy- 
Weinberg proportions are not incompatible with the existence of linkage dis- 
equilibrium. 

Letting mii = $$ bi - d and assuming that the coupling and repulsion double 
heterozygotes have the same birth rates, so that b,, = b,,, it can be shown that 

(7)  
dxi -- -s;(mi -m)- k( i ) r (%.  b14 -I- $$ b)D 

- dt 
where mi = 2 xi mij, and m = zi mi = zizi mii. Equations similar to (7) 

were first derived by KIMURA (1956). 
If the mii are the sums of the effects of loci A and B, knowing the fitness of the 

double heterozygote, mI4 (= mZ3), and the single heterozygote fitnesses mlz, mI3, 
m2,, and mS4, we can predict the double homozygote fitnesses m,,, mz2, and 
m4+ Define the presence of epistasis by the deviation of any of these four fitnesses 
from their expected values. Then there will be four independent parameters 
measuring epistasis. Four such parameters are: 

E,  = m,, - mlz - m13 + mI4 
E,  = mlz - m22 - mz3 + mZ4 
E ,  = m13 - mZ3 - m3, f m34 
E4 = m14 - mz4 - + m44 

Ei = k(j)mii i = 1,2,3,4. (8) 

I i ii 

or, in general, 

i 
Epistasis parameters of this sort were first used by FISHER (1918) to measure 
epistasis on a phenotypic scale. KOJIMA and KELLEHER (1961) used the above 
parameters to measure epistasis on a fitness scale. 
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The effect of selection on linkage disequilibrium can be derived by obtaining 
an  equation for the change in Z :  - 

1 d r  -- - 2 k ( i )  dZ 

Substituting from ( 7) and (8) , 
dt i xi dt . 

- dZ 1 
- = k ( i ) - [ x i ( m ;  - m)- k ( i ) r ( %  b,, f b ) D ]  

dt k xi 

If all of the Ei have the same sign, then E = xjEj will have this sign. We have 
1 -- d Z  - E - ( %  bl,+ % ' Z ) r D x - .  

dt i xi 
If all of the E ,  are positive, Z will increase whenever 2 and D are negative or 
zero. If all of the E ,  are negative, 2 will decrease whenever 2 and D are positive. 
If all of the E ,  are zero, Z will tend to zero if r is not zero. As in the haploid cases 
we can say that 2 will ultimately have the same sign as the E,. Although the only 
cases treated here have been those in which the E ,  are all the same sign, these 
cases will later be shown to be of particular importance. 

Diploid selection, discontinuous generations: Let W , ,  (= W , , )  be the pruha 
bility that an individual of type ii survives from fertilization until it reproduces 
by mating at random. The equation for the frequency of gamete type 1 at tertili- 
zation can be seen to be 

5: = [ x l x l W l l  + x 1 x 2 w 1 2  + x1x3W13 + x l x 4 W l d ( I  - r ) +  x 2 x 3 W Z l r l / W .  

xfl = [ x l ( x l W , ,  + x 2 w 1 2  + ziw13 + x4W1+) - r(x1x4 - x2zj) W , , ] / W  

x', = ( z ,W,  - k ( i ) r D W , , ) / W  

If w,, = WL?. 

and in general, 

where W ,  = x I W 2 ,  and w = 2 x z W z  = 2 x , x , W , l .  These equations were first 

derived by LEWONTIN and KOJIMA (1960). 
Assume that in the absence of epistasis, the W , ,  are the products of the effects 

of loci A and B .  We can then predict the viabilities of the double homozygotes 
from the double heterozygote and single heterozygote viabilities. Four epistasis 
parameters are needed. In this case our parameters will represent the deviation 
of the logarithms of the double homozygote viabilities from the values they would 
assume in the absence of epistasis: 

1 7 $ 3  

E ,  = 2 k ( j )  log, W L l .  (10) 
3 

If there is no epistasis all the E ,  will be zero. The meaning of the epistasis para- 
meters is illustrated by the set of parameters in Table 1.  

As in the previous cases, we can examine the equation for the change in Z to 
find the effect of selection on linkage disequilibrium. In contrast to the previous 
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TABLE 1 

Fitness of genotypes in diploid-discontinuous nmdel 

'41'41 abeEl a ac&, 

'42'4, bdcEa d cdeE4 
'41'42 b 1 c 

cases, clear results can be obtained only when D = 0. The equation for the change 
in Z is 

A Z = Z ' - Z = b g e ( -  X'lx'4 -). 22x3 

x'*x'3 21x4 

From (9), 

1 ( Wl - rDW14/xl) (W4 - rDW14/x4) 
= loge [ ( W ,  + rDWl,/x,) ( W ,  + rDW14/x,)  

and when D = 0, 

which will have the same sign as W,W, - W,W,. Using the parameters of 
Table 1 in place of the Wt1, we can write 

W ,  = abeElx, + ax2 + bx? + x, 
W 2  = ax, + ace-"a2 + x1 + cz4 
W 3  = bx, + xL + bde-Ea, + dx, 
W ,  = x, + cx, + dx, + cdeEa4. 

If the E,  are all zero, 
WIW, - W,W, = ( x l x *  - X 2 X ? )  (ad - 1) (bc - 1) 

= D(ad - 1) (bc - 1) 
= O .  

If the E ,  are all positive, W ,  and W ,  are increased and W1 and W ,  are decreased, 
so that W,W, - W,W, > 0. If the E ,  are all negative, W ,  and W ,  are decreased, 
and W ,  and W ,  are increased, so that W,W4 - W,W, < 0. Then when the E ,  
are all of the same sign and 2 and D are zero, the linkage disequilibrium will 
increase if the E ,  are positive and decrease if the E ,  are negative. 

Equations for the change in D were derived by NEI (1963), in the only pre- 
vious derivation of the effects of directional selection on linkage disequilibrium. 
His equations differed from the above in that they treated the change in D rather 
than the change in 2, and did not utilize the above fitness parameters. 

The conclusions for the diploid-discontinuous model are weaker than for the 
other models since we cannot say that when D is opposite in sign to the E ,  it will 
change in the direction of the E , .  If we choose r very small, A 2  will have the 
same sign as W,W, - W,W,. If we choose fitnesses such that the E ,  are small 
in magnitude and (ad - 1 ) (bc - 1 ) is positive and large, then AZ will have the 
same sign as D for large D regardless of the signs of the E,. Thus our conclusion 
for this model is the same as for the other models, with the restriction that it need 
hold only at or near D = 0. 
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We have seen that directional selection will tend to generate linkage disequi- 
librium of the same sign as the epistatic parameters. It must be emphasized that 
although the effect of recombination will be to reduce the amount of linkage 
disequilibrium generated, linkage disequilibrium can be produced by selection 
even when the two loci are unlinked. This point has been made for equilibrium 
populations by BODMER and PARSONS (1962) and LEWONTIN (1964). It is often 
assumed, especially in the literature of biometrical genetics, that the absence of 
linkage is sufficient to guarantee the absence of linkage disequilibrium. Although 
this assumption has been shown to be invalid, nothing has been said about the 
magnitude of the linkage disequilibrium generated by selection. When the loci 
are unlinked or loosely linked, the linkage disequilibrium generated by selection 
will often be so small that it can effectively be ignored. 

It may be useful at this point to establish that there is a certain equivalence 
between the epistasis parameters defined for the continuous and discontinuous 
models. If we have haploid-discontinuous and haploid-continuous models whose 
fitness parameters are related by 

m, = log, W ,  
then since 

m, - m, - m, + m, = log, W ,  - log, W ,  - log,W-,+log,W, 
the epistasis parameters in the two models will be equal. Likewise, if we have 
diploid-discontinuous and diploid-continuous models whose fitness parameters 
are related by 

since 
m,, = loge w,, 

E W m , ,  = 2 W l o g c  WI, 
3 I 

the epistasis parameters in the continuous model will be equal to the epistasis 
parameters in the discontinuous model. 

Epistasis produced by a simple transformation 

We now examine an important type of epistasis, namely, epistasis produced 
when fitness is a function of an additive phenotype. Let a phenotype P be the sum 
of contributions from loci A and B, and let the fitness of a genotype which has 
phenotype P be given by 

log, W = m = f ( P ) .  
Then the haploid cases can be summarized: 

P m or log, W 
AiB, C f ( e )  
AiB, b + C  f ( b + c )  
A81 a f c  f ( a  + c )  
A82 a + b + c  f ( a  + b + c )  

E = ml - m2 - m3 + m, = f ( a  + b + c )  - f ( a  + c )  - f ( b  + c )  + f ( c> .  (11) 

Suppose that in the determination of P the fitness of every heterozygote is 

Assume a > 0 and b > 0. Our measure of epistasis becomes 

The diploid cases are summarized in Table 2. 
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TABLE 2 

Phenotype and fitness when fitness is a function of an additively 
determined phenotype in diploid selection 

between the fitnesses of the corresponding homozygotes. Then a, > a1 > 0 and 
bz > b, > 0, and (Y = a, - a, > 0 and ,!3 = b, - b, > 0. From the definition of the 
epistatic parameters in equations (8) and (IO) we obtain 

ET = f ( a , + b i + c )  -f(ai+c) - f ( b l + c )  + f ( c )  
E ,  = f ( a ,  + b, + C )  -/(ai + bi + C )  - /(be + C )  + f(b,+ C )  

E , = f ( a ? + b i + c )  - f ( a z + c )  -/(ai+ b,+c) + f ( a l + c )  
E, 2 f ( a z  + b, + C )  - f(az + bi + C )  - f ( a ,  + b2 + C )  + f ( a l +  bi + C )  

E, = f(ai + bi + C )  - /(ai + C )  - f(bi + C )  + f ( c )  

E , = f ( ( ~ + b i +  (a1t-c)) -/(a+ (ai+c)) - f (b i+  (ai+c)) + f ( a i + c )  
E 4 = f ( ( ~ + p +  (a,+bi+c)) - f ( a +  (ai+bi+c)) - f ( P +  (aiSbi+c)) 

which can be written as 

E , = f ( a l + p +  ( b l + C ) )  -!(a,+ (b,+c)) - f ( p +  (b ,+c))  + f ( b , + c )  

+ f(a1+ b, + c). (12) 
We can now make use of the 
Theorem: I f f  is continuous and has continuous first and second derivatives on the 
interval [ c , a + b + c ] ,  w h e r e a > O a n d b > O , t h e n f ( a + b + c )  - f ( a + c ) -  
f ( b  + c) + f(c) has the same sign as f ” ( z )  for some z in [c, a + b + c]. 

This theorem is proved in the Appendix. Assume that f has the continuity 
properties required, and that its second derivative f”(z) has the same sign for all 
values of z. This means that the graph of f is either concave upward (f” (z) > 0 )  
everywhere or concave downward ( f ” ( z )  < 0) everywhere. By equation ( l l ) ,  
since a > 0 and b > 0, E will have the same sign as the second derivative of f .  
And by equations (12) , since ai > 0, bl > 0, (Y > 0, and p > 0, all of the Ei will 
have the same sign as the second derivative of f .  Since m = log, W ,  these con- 
clusions will hold in both continuous and discontinuous cases. 

We have seen that selection will tend to produce linkage disequilibrium of the 
same sign as the epistasis parameters. Then we can conclude that if fitness, as 
measured by m or log, W ,  is a function of a phenotype which is determined 
additively by two non-overdominant loci, selection will tend to produce linkage 
disequilibrium of the same sign as the second derivative of the function, provided 
that the second derivative does not change sign in the interval of interest. In this 
context, positive linkage disequilibrium represents association of the two alleles 
which increase the phenotype and association of the two alleles which decrease 
the phenotype, while negative linkage disequilibrium represents association of 
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the allele at one locus which increases the phenotype with the allele at the other 
locus which decreases the phenotype. 

It may be helpful at this point to give a semi-intuitive justification of the results 
obtained so far. Suppose we have selection at a single locus in the haploid phase. 
Suppose that there are two alleles, A,  and A,, whose frequencies are x, and x,. 
The fitnesses of the two alleles are m, and m, in the continuous model and W ,  
and W 2  in the discontinuous model. As an indirect measure of the gene frequency 
let us use 

Then it can be shown that in the continuous model du/dt = m, - m, and in the 
discontinuous model A u  = loge W ,  - log, W,, so that the rate of change of gene 
frequencies will depend on the difference in m or log, W between the two alleles. 

Suppose we have a two-locus model with haploid selection and no recombina- 
tion. Then if we have the situation shown in Figure 1, where the second deriva- 
tive of f is positive, the frequency of B,  among chromosomes containing A ,  will 
increase faster than the frequency of B,  among chromosomes containing A,. 
This will result in an excess of A,B, chromosomes, making D positive. If we 
have the situation shown in Figure 2, where the second derivative of f is negative, 
the frequency of B,  among A ,  chromosomes will increase faster than the fre- 
quency of B, among A,  chromosomes. There will be an excess of A,B, and A,B, 
chromosomes, making D negative. Thus the sign of the linkage disequilibrium 
will tend to become the same as the sign of the second derivative of f .  The effect 
of recombination will be to randomize the B,  alleles among the A ,  and A ,  chro- 
mosomes, but since the randomization is incomplete, the sign of the disequilib- 
rium will not be affected by recombination, 

U = log, (x,/x,) = log, xz - log, x, . 

M 
OR 

LOG, W 

P 

(/ / 

*I Bl 

P 
FIGURE 1.-Fitness as a function of pheno- 

type. In this case the function has a positive 
second derivative. Dashed lines connect geno- 
types having the Same allele at locus A.  

FIGURE 2.-Fitness as a function of pheno- 
type. In this case the function has a negative 
second derivative. Dashed lines connect geno- 
types having the same allele at locus A .  
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Ef7ect of linkage on the change in gene frequencies 

The effects of linkage on the rate of progress under selection, as measured by 
the cha2ge in gene frequencies, can now be examined. An intuitive argument 
will be presented, followed by more formal proofs. It should be evident that the 
effect of recombination is to break down linkage disequilibrium. Selection will 
tend to produce linkage disequilibrium if there is any epistasis. The amount of 
linkage disequilibrium actually attained will be due to a balance between these 
opposing forces, a balance which will shift with changing gene frequencies. A 
smaller value of r will lead to more linkage disequilibrium. 

If D is positive, the two favored alleles will tend to be associated and the two 
unfavored alleles will also be associated. If we examine the difference in average 
fitness between chromosomes containing A,  and chromosomes containing A,, 
this association of alleles can be seen to increase the difference in average fitness, 
and thus increase the rate of change of gene frequencies. Likewise, a negative 
value of D tends to associate the favored allele at each locus with the unfavored 
allele at the other locus, reducing the difference between the average fitnesses of 
A,  and A,, and decreasing the rate of change of gene frequencies. Since tight 
linkage increases the magnitude of linkage disequilibrium produced by selection, 
if the dlsequilibrium produced by selection is positive, tight linkage will increase 
the rate of change of gene frequencies. If the linkage disequilibrium produced 
by selection is negative, tight linkage will slow the rate of change of gene fre- 
quencies. 

d p  > O i n  the 

> 0 in the discontinuous models, showing continuous models, and - A - 

that positive disequilibrium speeds and negative disequilibrium retards the 
change of gene frequencies. 

Hapbi~-discontinuous: 

This argument can be made more exact by proving that - a aD (dt) 
a 

aD ( 1 - p )  

a P a P' P a P' 
m A (Ip) = ao (w 1--p ) = ao (IP'J 

Substituting from equations ( 5 )  , 

Using equations ( 1 ) , 
a 
ao I - - p  

[W,(x ,  + 7-0) + W4(x4 - rD)], .  

-( 4) = { [W3(23 + rD) + W4(24 - rD)1 [wl- W*l C l  - 7-1 

-[wi(zi-rD)f W Z ( & + ~ D ) ] [ W ~ - W ~ I [ ~  - r I ) /  

If we assume that A,B, has the highest fitness and A,B, the lowest fitness, then 
W ,  > W p  and W ,  > W4, so that 
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Haploid-continuous. From ( 2 ) ,  
- - 

pm) . Since m = q m ,  + z,m? + x,ma +x4m4, 

= ( 1  - p )  (m,  - m2)+p(m3 - 4. 
If A,B,  has the highest fitness and A,B, the lowest, ml > m, and m3 > m4, so that 

Diploid-continuous: 
- 

xlml + x2mz - pm. dP __ __-  
d t  

which after some algebra becomes 
a 

= (1 - 

+2(1 -p)(xiEi +x,E,)--p(~,Ea + x ~ E , )  
assuming that m14 = m2,. m13, m14, and mZ4 are the fitnesses of the three geno- 
types at locus B provided locus A is heterozygous. If the interaction parameters 
are small relative to m14 - m24 and m13 - m14, then 

If locus B is not overdominant and if A, and B, are the favored alleles, m14 > ma4 
and m,, > m,,, so 

-(%) a > o .  
aD 

If the E,  are too large to be ignored, we can derive the inequality only under 
restricted conditions. The E,  must all be of the same sign, and the fitnesses must 
be such that substitution of an A, for an A, allele or a B, for a B,  allele always in- 
creases fitness. The most important restriction is that D must be zero. When these 
restrictions are imposed, after some algebra we obtain 

When D is nonzero we can find counterexamples to the inequality. 
It has not been possible to prove an inequality similar to (13)  for  the diploid- 

discontinuous case. 
BODMER and PARSONS (1962)  have shown that if alleles at two loci are indi- 

vidually deleterious, but advantageous in combination, they will both increase 
when initially rare only if linkage between the loci is sufficiently tight. When 
the alleles are rare they will occur primarily in heterozygotes, and almost all of 
the diploid genotypes in the population will be A,B,/A,B,, A,B,/A,B,, A 2 B J  
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A&, or AzBz/AzBz. Selection can be treated as if it occurred in the haploid phase. 
Since the selective values correspond to E positive and very large, selection would 
produce a positive value of D, and tight linkage would indeed be expected to in- 
crease the rate of change of gene frequencies. KOJIMA and SCHAFFER (1964) have 
treated the same case in terms of the probability of loss of the mutant alleles 
when initially rare, and have reached the same conclusion. 

When initial linkage disequilibrium is either zero or of the type which direc- 
tional selection tends to produce, tight linkage will increase the rate of change 
under selection if selection tends to produce positive linkage disequilibrium, and 
decrease the rate of change if selection tends to produce negative linkage dis- 
equilibrium. When the initial value of D is opposite in sign from its final value, 
tight linkage will at first slow the approach to zero, then speed the divergence 
from zero once D has passed zero. In terms of the effect of linkage on the rate of 
change of gene frequencies, this creates a very complex situation which awaits 
further investigation. 

In the above treatment, the rate of change of gene frequencies has been used 
as the measure of the rate of progress under selection. A more natural measure 
would be the rate of change of the mean fitness, G or W. When epistasis is small, 
changes in mean fitness will largely reflect changes in the gene frequencies, SO 

that the results given above can be extended to mean fitness. But when epistasis 
is large, the rate of change in D will be an important factor determining the rate 
of change of mean fitness, complicating the analysis considerably. It should be 
obvious that our understanding of the effect of linkage on the rate of advance 
under directional selection is far from complete. 

Application to Artificial Selection 

Artificial selection of an additively determined trait can be considered as a case 
in which fitness is a function of phenotype. Let the phenotype be determined 
additively by two non-overdominant loci. Let the environmental component be 
normally distributed around the genotypic mean with constant environmental 
variance 2. During a given generation let us save all animals whose phenotypes 
exceed the value c. Then fitness is a function of the genotypic mean of the pheno- 
type. For a genotype whose mean phenotype is pi, the probability that an  animal 
of that phenotype survives is 

or 

Wi as a function of pi is plotted in Figure 3. The curve is obviously an inte- 
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FIGURE 3.-Fitness as a function of the 
genotypic mean of the phenotype for the case 
of truncation selection. Individuals whose 
actual phenotypes exceed c are saved. u2 is 
the environmental variance of the phenotype. 

grated normal curve. We can also write 
r m  
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-I  
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LOG,W 
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c - 2 0  c - 0  c C + B  c . 2 0  

PHENOTYPE 

FIGURE 4.-log, W 'as a function of the 
genotypic mean of the phenotype for the same 
case as Figure 3.  

Log,W, is plotted as a function of pi in Figure 4. The second derivative of the 
function is negative, so that selection will tend to produce negative linkage dis- 
equilibrium. This conclusion will hold whether the cutoff point c remains the 
same in all generations or changes from generation to generation, as it would if 
a constant fraction of the population were being saved. If we assume that the 
effects of linkage are the same as those observed in the haploid cases and in the 
diploid-discontinuous case under restricted conditions, we can predict that if 
initial linkage disequilibrium is either zero or negative, tight linkage will reduce 
the response to selection. 

FRASER (1957) used Monte Carlo methods to simulate artificial selection of a 
phenotype which was determined additively by six loci. The initial populations 
were in strong negative linkage disequilibrium. Tight linkage drastically reduced 
the response to selection. MARTIN and COCKERHAM (1960) carried out an essenti- 
ally similar Monte Carlo simulation study. They found that tight linkage re- 
duced the response to selection not only when the population was initially in 
negative linkage disequilibrium, but also when the population was initially in 
linkage equilibrium. If the phenotype is additively determined by more than two 
loci, the theory developed above can be applied to all pairs of loci, provided that 
the genetic variance at the other loci is added to the environmental variance U'. 
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If the linkage disequilibrium is not extreme, this residual variance should be ap- 
proximately the same for all of the genotypes at a given pair of loci, so that the 
conclusions given above can be extended to multiple locus cases. The conclusions 
seem to explain some of the results of Monte Carlo studies of linkage. 

A natural extension of this theory would involve consideration of epistasis on 
the phenotypic scale. GRIFFING (1960) has shown that epistasis on the phenotypic 
scale can generate linkage disequilibrium when the character is under artificial 
selection, although his approximations cause him to ignore the linkage disequilib- 
rium generated when the phenotype is additively determined. In many cases it 
would seem that phenotypic epistasis could be taken into consideration by regard- 
ing the actual phenotype as a function g ( P )  of an additive phenotype. Fitness 
would be a function of the actual phenotype, so that log, Wi = f [ g ( P ) ]  and 
conclusions could be drawn once the second derivative of the composite function 
f [g ( P )  ] were known. 

I wish to thank DRS. J. F. CROW, W. F. BODMER, and R. C. LEWONTIN for invaluable dis- 
cussion and criticism. 

SUMMARY 

Four models of natural selection in two-locus, two-allele, random-mating popu- 
lations are described, in which selection may occur either during the haploid or 
the diploid phase of the life cycle, and generations may be either continuous or 
discontinuous. Epistasis is defined as deviation from additive locus effects on fit- 
ness in the continuous-generation models, and deviation from multiplicative locus 
effects on fitness in the discontinuous-generation models. I t  is shown that there 
is a simple relation between the signs of the epistasis parameters and the type of 
linkage disequilibrium generated by selection. Cases are considered in which fit- 
ness is a function of a phenotype determined additively by two non-overdominant 
loci. It is shown that the linkage disequilibrium generated by selection has the 
same sign as the second derivative of the function which relates phenotype to 
fitness in the continuous-generation models, or which relates phenotype to the 
logarithm of fitness in the discontinuous-generation models. It is shown that if 
the linkage disequilibrium generated by selection is positive, tight linkage will 
increase the rate of change of the gene frequencies, while if the linkage disequilib- 
rium generated by selection is negative, tight linkage will decrease the rate of 
change of the gene frequencies. Artificial selection on an additive phenotype is 
considered. It is shown that negative linkage disequilibrium will be generated, 
and hence tight linkage will reduce the response to artificial selection. 

A P P E N D I X  

Theorem: If f is continuous and has continuous first and second derivatives on the interval 
[c, a 4- b + c ] ,  where a > 0 and b > 0, then f ( ~  + b + c) - f ( a  + c )  - f ( b  -I- c) + f ( c )  has 
the same sign as f ” (z )  for some z in [c, a f b f c ] .  

Proof: Without loss of generality we can take b 2 a. By the Mean Value Theorem, found in 
any calculus text, since f is continuous and has a continuous derivative, there is an x1 in (c, 
a + c) and an z2 in ( b  + c, a + b + c) such that 
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f ( a f  b + c ) - f ( b  +c)=af ' (z , )  
and f ( a + C ) - j ( c ) = a f ' ( z l )  
so that 

f ( a+b+c) - f ( a+c ) - f (b+c) f f ( c )=a [ f ' (x , ) - f ' ( x , ) ] .  
Since b 2 a, b + c 2 a f c, so that x2 > xl. Since f'(x) is continuous and has a continuous 
derivative, there is an x? in (xl. x?) such that f'(x2)- f'(x,)= (x2 - x,)f"(x,). 
Thus there is an x3 in (c. a + b + c) such that 

f(a f b f c)- f(a + c)- f (b  + c)f f(c)= a(x, - x,)f"(x,). 
Since a > 0 and x2 - z1 > 0. f ( a  + b f c )  - f ( a  f c) -  f ( b  f c) f j ( c )  has the same sign 
as j " ( x < ) .  
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