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HE frequency #with which a husband is related to his wife, which we call the 
probability of consanguineous marriage, is determined by a number of 

factors, among which the following seem to be the most important ones: ( 1  ) the 
abundance of relatives, which depends on the type of relationship and on popu- 
lation growth. (2) The availability of consanguineous individuals in the “mating 
range”, (migration causes a dispersal of relatives whose effect increases as the 
relationship becomes more remote: the more migration, the less consanguineous 
marriage). ( 3 )  The availability of the consanguineous individuals in the right 
age groups (age effect). (4) Assortive mating for socio-economic conditions and 
physical traits may have to be considered because of the similarity between 
relatives. ( 5 )  Traditions for or against some types of consanguineous marriages 
may also be a factor of importance. (6) There may exist other factors of social 
or economic nature. 

In an earlier paper (BARRAI, CAVALLI-SFORZA and MORONI 1962), we showed 
the influence of factors 2 and 3. Another effect was also found, belonging to 
group 6. In the present paper we will concentrate on evaluating the effect of the 
first four factors, with a view to estimating the probability of consanguineous 
marriage in a population for which some necessary demographic parameters are 
available. 

The necessary parameters are essentially those specifying the distributions of 
the distance between birth places, as well as of the age differences: between sibs, 
between father and offspring, between mother and offspring, between husband 
and wife. As estimates of these parameters are not usually available, a sample 
survey was carried out in an area (in the Parma province) for which information 
on consanguineous marriages was already at hand ( MAINARDI, CAVALLI-SFORZA 
and BARRAI 1962). Data from the sample survey will be used in this paper. 

The number of relatives: We will consider the simplest, and commonest type 
of relationship represented by individuals who are related via two sibs, as in Fig- 
ure 1 .  In that example, the chains of descent via two sibs lead to the two relatives 
A and B, who are second cousins once removed. We will call i the number of 
ancestors between the common ancestors and the male relative A, j the number 
between the common ancestors and the female relative, B. Thus, in Figure 1, 
i = 3, j = 2, and n = i + j is the number of intermediate ancestors. Of these, no 
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FIGURE 1 .-Example of consanguineous mating: for definition of symbols, see text. 

will be females and n, will be males, with no -I- nl = n. In Figure 1, no = Q, nl = 3. 
If s is the expected number of sibs per individual, p the expected number of 

progeny per individual, and if there is no correlation in fertility, there are (ignor- 
ing sex) 22p3s relatives of type A per B individual in the example illustrated, 
because B has 22 grandparents each of which has s sibs, each of which has p 3  
great grandchildren. In general, there are 2ip3s relatives of the wife in a con- 
sanguineous marriage which have the same consanguinity degree with her as 
her husband, and 2ipis relatives of the husband. 

In a closed, stationary population in which everybody marries, the expected 
number of married progeny per couple is p = 2. In  a stable population p = 2a, 
where a is the factor of increase per generation. The average number of sibs s 
depends on the distribution of progeny size. In fact, a family with progeny size 
p ascertained through the progeny is counted p times and each individual in the 
progeny has ( p  - 1 ) sibs. Then if (b ( p )  is the frequency of progeny size p,  

p C#J (p)/ p (b ( p )  = + ( p )  is the frequency of (p-1) sibs (FROTA-PESSOA 1957). 

The mean of the distribution given by t) is equal to ( p  - 1 )  t) ( p )  = (V -I- 
p2 - p ) / p  where p and V are the mean and the variance of the number of prog- 
eny. When this is distributed as in Poisson, the mean number of sibs is equal to 
the mean number of progeny p. For distributions with variances higher than the 
mean, the mean number of sibs is higher than p (MAINARDI et al. 1962). 

In  many populations, however, it is so closely s = p = 2 that, if the variance 
and correlation for fertility can be ignored, the expected number of relatives n, 
is 2" for  even cousins, namely, for cousins having i = i, and 2n+1 for cousins once 
removed (i = i f 1 ) . But these are also the numbers of pedigrees which can be 
distinguished on the basis of the sex of intermediate ancestors (BARRAI et al. 1962) 
and therefore each individual has one expected relative for each pedigree type 
ignoring the sex of the relative. Ignoring the type of pedigree, each individual has 
four first cousins, four relatives with F = % (uncles, aunts, nieces, and nephews), 
16 first cousins once removed, 16 second cousins, 64 second cousins once removed, 
and 64 third cousins. These classes of relatives will be here called degrees of 
relationship; while the relationship specified by a type of pedigree as determined 

m 
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by the arrangement of males and females among common ancestors will be called 
type of relationship. 

Migration efect: 1. The discontinuous case. The study of migration demands 
a choice of the model of the geographic distribution of population. A first choice 
is that between continuous and discontinuous models. If we prefer a discontinuous 
distribution, for computing the probability of consanguineous marriage, we must 
have two matrices, X and M ,  both of order k, where k is the number of groups of 
people (villages, tribes, castes, etc) into which the population is clustered. Ele- 
ments xlj of matrix X specify the probability that far a given type of relationship 
a relative of an individual born in village i is born in village j .  Row elements 
must add to unity in each row. In matrix M ,  elements mSJ specify the frequencies 
that of all marriages in the area, one member is born in village i and the other 
is born in village j .  This matrix is symmetric because we ignore sex, and the sum 
of its elements is unity. The probability of consanguineous marriages correspond- 
ing to a given type of relationship, will then be 

where the sum is extended to all combination of i and i, n, is the size of group i 
and n, is the number of relatives of that type. 

Matrix X is not easy to obtain from field data. It can be computed however, 
as a product of other matrices S, A,,, A,, defined below, each representing one step 
in the path connecting one consanguineous individual to his consanguineous mate 
in the pedigree, on the assumption that migration in successive steps is independ- 
ent and therefore can be treated as a Markov process. In fact, a correlation be- 
tween migration steps may exist, especially because of stratification in socio- 
economic conditions, not accounted for by the grouping method employed, when 
this is for instance, a purely geographic one. We shall give the treatment for equal 
group size n, in a stationary population at equilibrium for migration, and discuss 
a possible generalization later. 

The computation of matrix X from matrices S, A,,, A ,  will be shown for sim- 
plicity using an example, namely, the pedigree of second cousins once removed 
shown in Figure 1. A,  is a matrix of the transition probabilities for father-offspring 
migration. Its element a,j is the probability that a child of a father born in village 
i is born in village j, with row elements adding to unity in each row. Because of 
migration equilibrium and equal group size, also columns will add to 1. The A,  
matrix is the same transition matrix for mother-offspring. Matrix S is a transition 
matrix for sib migration, whose element s,j is the probability that the sib of an 
individual born in village i is born in village j. Matrix S is symmetric with rows 
and columns adding to 1 .  

Then, the matrix X for  the example of Figure 1 can be equated to the product 

A’, A’, A’, S A,  A ,  ( 2 )  

where A,’ is the transpose of A,, etc. The above matrix product is obtained by 
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following the path from A to B in Figure 1, via intermediate ancestors. Following 
the reverse path from B to A one obtains 

A’, A’, S A,  Ai A0 (3) 

which, by a well known theorem of matrix algebra, is shown to be the transpose 
of product (2). Note that S is symmetric. 

The probability of consanguineous marriage P, will then become 

1 - ~ i j  mij N 

where N is the size of the individual group, and n, is put equal to 1. 
Since the mij’s are the elements of a symmetric matrix, it is immaterial if we 

use expression (2) or (3) for computing matrix X whose elements appear in (1’). 
The above treatment is based on the assumption of equal group size. On the 

other hand, the group size may be different in the actual case, but we can still 
apply the above theory by considering actual groups as collections of subgroups 
with approximately equal size. 

Although matrices A,, A,, S are not difficult to obtain, they are not usually 
available. It may therefore be convenient sometime, as a first rough approxima- 
tion, to use the method suggested by BARRAI et al. (1962) which is essentially 
the same as that followed by HAJNAL ( 1963), of ignoring the possibility of mar- 
riage in the group outside the one in which the individual is born, as this prob- 
ability is often small, and use an average of the probabilities that an individual 
will have a child born in the same group, as the one in which he was born. We 
shall see later to what formulas this method leads, and their shortcomings. 

The probability for a given degree of relationship should be obtained by adding 
up the probabilities for the various types belonging to this degree, as these differ 
one from the other. It is only if there is no difference between male and female 
migration rates that the expected frequency of consanguinity types that form 
them is independent of the proportion of the sexes among intermediate ancestors. 

2. The continuous case. The use of a discontinuous model may be unsatisfactory 
if the population distribution is nearer to the continuous one. Also, much detailed 
knowledge is necessary if we want to use the discontinuous model. An approxi- 
mation by a continuous model may therefore be useful, as it requires somewhat 
less detailed statistical information. 

In analogy to the study of isolation by distance, put forward by SEWALL 
WRIGHT (1963), we might consider two types of continuous population distri- 
butions, a one-dimensional and a two-dimensional type. It may be noted, how- 
ever, that the first type is far less frequently encountered, at least in a pure form, 
in human populations, and represents in any case a simpler model than the two- 
dimensional type. We have therefore concentrated our attention on a model of 
two-dimensional isotropic migration. The one-dimensional case could be obtained 
fairly easily as a simplified treatment, following the lines that we will give here 
for the two dimensional model. For isotropic migration in a two-dimensional 
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habitat given by coordinates x, y ,  the density function that the marriage of an 
individual born at the origin takes place with a mate born in (x, y )  will be 

where r = (x2 + y 2 )  %, f ( r )  is the probability density that individual A marries 
an individual born at distance r from A’s birthplace, and - CO < x. y < f m. 

Suppose that an individual, say a male A, is at the origin, and consider a small 
area dS (= dx . d y )  around a point (x, y )  . The number of females in that area 
is (D/2)dS ,  where D is the population density, and D/2 the population density 
of females. 

If we know a function M ,  (x, y )  giving the probability density that one rela- 
tive of A with a given type of relationship is born at point (x, y )  and if there are 
expected to exist altogether n, relatives of that type, the expected number of A’S 
female relatives living in area dS will be 

The probability of marriage between two individuals with given type o’f rela- 
tionship will be 

Noting that dxdy = rdr& and integrating over all values of 0 between 0 and 
277 we have 

The function M c ( z ,  y )  measures the dispersal of relatives and is the convolution 
of the following distributions: ( 1 ) The probability distribution of the distance 
between the birth places of the sibs which start the chains of relationship; ( 2 )  n 
probability distributions, each representing me generation in the chain of rela- 
tionship starting with the two sibs, where n = i f i is the number of intermediate 
ancestors, i.e.; the ancestors between the common ancestors and the consanguine- 
ous mates. 

Since it is important to distinguish male and female migration, the n one-gen- 
eration steps of migration will have to be subdivided into no female, and n, male 
generations (no + n, = n )  . 

In taking M ,  as the convolution of n 4- 1 distributions it is assumed that there 
is no correlation between migration and successive generations and, in the absence 
of information, this might be taken as a first approximation. 

In order to give M c ( x ,  y )  one must know the elementary distributions of which 
M ,  is made. The contribution of sib-sib migration was neglected, because it is 
very modest with respect to the other components. Migration distributions of 
interest to genetics have been recently analyzed for European populations 
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(SUTTER and TRAN NIGOC TOAN 1957; LUU-MAU-THANH and J. SUTTER 1963; 
CAVALLI-SFORZA 1958, 1963) and are extremely skew. Perhaps the best fit was 
obtained with gamma distributions which, when fitted with respect to r, had 
exponents close to -1, and could not therefore permit convolutions to be obtained 
over two dimensions. 

Accordingly, it was tried to fit distribution functions that would lend them- 
selves more easily to obtain the M ,  function. Two such functions are the ex- 
ponential distribution, and a two-dimensional normal distribution (with equal 
variances for x and y )  . When expressed with respect to r, such distributions are 
given in (8) and (9) : 

LLexponential” mE ( r )  = k e-kr (8) 

(9) 
r -ra/zv 
V 

Neither of these functions seems to fit adequately the observed data. It is not 
unreasonable, however (considering the variety of means of transportation em- 
ployed), to use sums of two or more of such functions. Fitting these distributions 
to the Parma data by numerical maximum likelihood, it was found that the sum 
of two exponentials 

(10) 
or the sum of three normals: 

mN(r )  = - e  normal” L L  

mE ( r )  = p k h r  + ( 1 - p )  k c k 7  

fit the data reasonably well (Table 1 ) . 

TABLE 1 

Distributions of birth distances for father-ofjspring ( F - 0 ) ,  mother-offspring (M-O), 
husband-wife ( H - W )  pairs. Observed frequencies are given from a sample 

of families living in 1958 in the Parma province 

Distance (km) 

F-0 

obs trinorm’ biexp* 
~ 

ObS 

M-0 

trinorm biexp 

11-W 

obs 

0-1.56 
1.56-4.06 
4.06-7.81 
7.81-12.81 

12.81-1 9.06 
19.06-26.56 
26.56-35.31 
35.31-4.5.31 
45.31-CC 

340 339.7 338.4 
11 11.0 11.1 
8 7.3 5.7 

10 9.8 6.9 
6 7.2 7.5 
4 4.4 7.5 
4 4.7 7.2 
7 5.7 6.5 

24 24.1 23.1 

293 
18 
21 
16 
16 

7 
5 
6 

21 

289.2 291.7 
17.8 18.1 
18.5 13.9 
24.0 15.4 
15.5 15.1 
6.4 13.5 
5.0 11.1 
5.9 8.5 

20.7 15.7 

133 
10 
6 

12 
14 
9 
2 

10 
19 

trinorm 

132.1 
9.92 
7.0 

11.5 
11.7 
8.7 
7.4 
7.7 

19.0 

biexp 

132.2 
10.0 
8.4 
9.7 

10.0 
9.7 
8.7 
7.3 

19.0 

Total 414 403 215 

X2[41 0.70 3.15 
5.6 12.63 8.93 

5.28 
x2[61 

* Theoretical distributions are given by equations ( I O )  for the biexponential and ( 1 1 )  for the trinormal, and the 
method of fitting is given in text. Parameters of the theoretical distributions are given in Table 2. 
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3.  “Sum of Exponentials” for the migration distributions. Using distribution 
( 1 0 )  for the elementary migration step, integral (6) ,  giving the probability of 
consanguineous marriage under consideration of the sole migration effect, requires 
numerical integration. If we use the Cartesian coordinate system (z,y) for iso- 
tropic migration in two dimensions, the density function for migration in one 
generation can be expressed as 

m(x,r> =r ml(r)  where r = d ( x 2  + y’) 

c(u,v> = JJ-me“z+ivv m ( z , r > d z d r  , (i=d?), 

(12) 

If C(u,v) is the characteristic function of m(x,y) such that 
+ m  

( 1 3 )  

C(u,u) = oml ( r )Jo ( s r )dr  ( 1 4 )  

s = (U2  + v2) ( 1 5 )  

we obtain, in terms of I, 
r m  

where J ,  is the Bessel function and 

In particular, when ml ( r )  is given by mE ( r )  of ( l o ) ,  the characteristic function 
reduces to 

If we consider the distribution of migration distances after no female generations 
and n, male generations, with parameters p,, h,, k, and p,, h,, k, respectively, if  
the migrations in different generations are independent, the density function 
will be 

C? ( s )  Q ( s )  s J O  ( T S )  ds ( 1 7 )  
1 r m  

2 n  O 

- -- 

where C, (s) and C ,  (s) are the characteristic functions of the distributions of the 
female and male migrations over one generation. Figure 2 illustrates some of 
the results of convolution based on (1 7 ) .  

Equation (1  7 )  gives us the M ,  function desired for equation (6). We now have 

(18) p=- IZc SJO” CF (s) C? (s) sJ, (rs) f ( r )  drds 27rD 
If f ( r )  is also given (see Table 1 )  as a sum of W O  exponentials with parameters 
p,,, &, k,, then, noting that 

(19) 
1 

{redmT J ,  ( sr )  dr = ( h i  + 5.2)  ‘;2 

one obtains 
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FIGURE &.-Distributions based on equation ( 1  7) .  

in which 

Calling 
I,n = P D 

and using for p ,  h, and k parameters the estimated set of values for male, female, 
and mating range distributions, expressions (21) can be used for the numerical 
evaluation of Im, and hence, P. 

4. Sum of normals for fitting migration distributions: If the distribution of 
migration distance is expressed by the sum of normal distributions, our calcula- 
tion becomes much easier. This is mainly because the sum of any number of 
independent random variables, each of which is distributed normally, is again 
distributed normally with the mean and variance given respectively by the sums 
of means and variances of component normal distributions. Furthermore, if the 
distribution of migration in two dimensional Cartesian coordinate ( q y )  is given by 
normal distribution, 
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and if the distribution of distance between mates is also given by another normal 
distribution, 

the integral of the product of the above two distributions can be expressed in the 
simple form: 

In what follows, we will assume that the individual migration is expressed by 
the sum of three normal distributions, corresponding to short range (S) , medium 
range ( M )  and long range ( L )  components of migration. These distributions all 
have mean 0, but their variances are Vs, V ,  and V L  respectively for short range, 
medium range and long range components. Thus the male migration in one 
generation may be expressed symbolically 

p i  Si + qi Mi + ( 1 -pi-qi) LI (26) 
where p and q are constants and S,, M,, and L, represent normal migration with 
variances, Vsl, VMl and V,, respectively. The corresponding expression for a 
female migration is 

(27) 
where So, MO and Lo have variances Vso, VM0 and VLo. We will also assume that 
the distribution of distance between the birth places of mates in two-dimensional 
Cartesian coordinate is expressed by the sum of three normal distributions: 

Po so + qo MO + (l-po-qo) Lo 

This distribution will be expressed symbolically by 
pw Sm + qm Mm + ( 1 -pm-qm) L m  (29) 

With these expressions, the probability of marriage between two mates connected 
by n, generations of male migrations and no generations of female migrations in 
their ancestors is 

in which M C ( x , y )  can be expressed symbolically by 

which is a sum of normal bivariate distributions: 
M ,  = [piSi+qlMi+(l-pi-ql)L,l”~[~oSo+qoMo+(1--po--qa)~oIn~ (31) 

M , ( x , y )  = cj e - (3 ‘2+Y2) /2v1 /2  n Vi , ( 3 2 )  
I 

each term of this sum corresponding to a term of the expansion of (31) .  Each 
such term contains the symbolical product 

(33 )  S; M,” L9-a-b S: M f  L2-C-d 5 T j 
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which corresponds to a normal distribution whose variance is given by 
vj = av,, + bV,, + (n1-a-b) v,, + cvso + dV,, + (no-c-d) V L O  (34) 

while cj in (32) will be given by the numerical coefficient accompanying the 
symbolical product (33) in the expansion. The integration in (30) may then be 
carried out using formula (25).  Thus, the integral I, in the right side of (30) 
may be expressed symbolically as follows: 

(35) 
and will give rise to a quantity 

1, = 2 bj/(QXWj) (36) 

L. L. CAVALLI-SFORZA et al. 

1, = Mc * [pm s m  + qm Mm + (l-pm-qm) L m l  

i 
which can be computed by expanding the symbolical product (35). The sym- 
bolical part of each term of the expansion contains T Y ,  where T is given by 
(33), and Y stands for either Sm, M ,  or L,. Corresponding to each TY there is a 
term in (36) with values bj = cj p ,  and Wi = Vi + V s ,  if Y = S,; bj = Cj qna 
and Wj = Vj i- V,, if Y = M ,  and so on. 

Age effects: Cousins of even degree are usually of similar age; cousins of uneven 
degree have usually some difference in age and therefore tend to marry less fre- 
quently. For an exact estimation of age effects, we need to know the probability 
distribution of age at marriage 

(37) 
where t’ and t are the ages at marriage of male and female. We need also infor- 
mation on the distribution of the ages of consanguineous individuals. 

9 c  (t/t’> (38) 
is the probability density of female (aged t )  who are relatives of males aged t’. 
while 

9 g ( t )  (39) 
is that of individuals from the general population, then 

$t = 9c /9s  (40) 
will express the frequency ratio of a certain age class among the relatives of an 
individual of age t’ to the same age class in the general population. 

This frequency ratio can be averaged over all the marriages taking place in the 
population by computing the integral 

(41 ) 

extended to the whole range of ages at marriage for  t ,  and t’. 
The function c ) ~ ,  namely the frequency of individuals of age t in the general 

population is given, to a first approximation, by a rectangular distribution which 
is constant over the range of ages of persons eligible for marriage. It may, how- 
ever, decrease with increasing t in populations with high mortality in the repro- 
ductive period, or with decreasing birth rate, or it may also fluctuate as a con- 
sequence of irregularities of birth and death rates. If, however, population by 
ages were rectangular between 0 and 0, 

where o is the upper limit of the age distribution and 

d +,( t,t’) = 9, (t,t’) d t  dt’ 

1, = JJ+m(t,t’)$t dtdt’ 

9dt )  = l/O (42)  
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(43 1 
where J represents the double integral. 

The choice of males or females as the starting point in equation 38 is arbitrary 
and the procedure should be repeated after reversing the sexes, averaging the 
results. Since $tC (t/t’) = +c (t’/t) , it is enough to take as 1 / O  the average frequency 
per year of age, of individuals of either sex in the population, averaging over 
reproductive years. 

In order to obtain the function (38) it is useful to obtain the distribution of 
age difference A between two relatives of different type of relationship. If there 
is no correlation between the age at marriage in various generations, the distribu- 
tion of age difference A between relatives is easily computed. One needs, to this 
aim, information on: (1 ) the distribution of the age difference between sibs; as 
the order of birth of sibs is immaterial, this distribution has expected mean 0, 
and variance us2; (2) the distribution of generation times, namely the distribu- 
tion of the age of the parent at birth of an offspring. These distributions are 
usually different for males and females and their means and variances will be 
given by the symbols T ~ ~ ,  U,? for males and T f , U f 2  for females. 

If we refer to Figure 1, we shall see that the computation of the expected age 
difference A between individual A and his relative B involves the difference be- 
tween the sum of as many generation times T as there are intermediate ancestors 
in the branch leading to B, minus the sum of as many generation times as there 
are intermediate ancestors in the branch leading to A. T ,  or ~ f ,  namely male 
or female generation times, must be taken each time depending on the sex of 
the intermediate ancestors. The age difference between sibs does not contribute 
to the expected value of A, because the order of birth of sibs is not taken into 
consideration, but it does contribute to the variance of A. Therefore, if m, is the 
number of males among the common ancestors in the branch of the tree leading 
to A (the husband) and having i generations, and mi is that in the other branch 
with i generations, (where m, + mi = n,) the expected age difference is 

(44) 

(45) 

Z = E ( A )  = (m,-mi).r, + (j-i+m,-m,)Tf 

U A * = us2 + nlum2 + (n-n,)uf2 
and the variance of A will be given by 

Formulas (44) and (45) were obtained by us (see BRAGLIA 1962) and also inde- 
pendently by HAJNAL (1963). 

In order to provide material necessary for this type of evaluation, a sample of 
the population of the Parma province was subjected to analysis by questionnaire 
in 1958. The numerical results thus obtained will be used in the later part of this 
paper. Among other things, distributions of generation times and of the difference 
in age between sibs were derived. These distributions are somewhat asymmetric, 
but as A is the sum of several of them, it tends to normality rapidly with increas- 
ing ( i  + i )  . A direct check of data available between first cousins showed good 
agreement with the expectation of normality (MAINARDI et al. 1966). 
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We can therefore use the following expression for the desired distribution 
given in (38) above: 

If we want to proceed to obtain integral J given in (43) above, we need to 
specify the bivariate distribution of age at marriage, +m. This distribution is cer- 
tainly not normal in most populations in which the data are available. We found 
it could be rather well represented by a normal correlated surface after trans- 
forming ages to log(t-tmin) where tmin is the minimum age at marriage. How- 
ever, the evaluation of i demanded in this case numerical integration. 

When compared with the more exact treatment just mentioned, the results 
obtained by using the normal approximation to function +m were also satisfactory 
except for the uncle-niece or aunt-nephew case. 

If we then consider +m to be a normal bivariate function with means ,L&h,,L&w for 

the ages at marriage of husband and wife (where ,Uh-,L&w = T ~ - T ~ )  respective 
variances U2h, uZw, and a correlation coefficient phw, then the integral J reduces to 

(47) J = -  1 &P/2S2 

S V Z  

where - 
M =  A -  (ph--pw) (mj-mi-1)~~ $. ( i - i f m i - m j f l ) ~ ,  (48) 

S2 = uA2 + ahz  - !&hw Uh uW + uW2 = uO2 + nl um2 + (n-n,) uf2 

where 

a result comparable to that obtained by HAJNAL (1963). 
It is interesting to compare the results given in (47) with observations in the 

paper by BARRAI et al. (1962) on the problem of age effects. The analysis sum- 
marized in Figures 1 and 2 of that paper indicated an approximately parabolic 
relationship between the logarithm of the frequency of a given type of consan- 
guineous marriage and a function indicated in the abscissa which is a linear trans- 
formation of the quantity M given in (48) above. It will be noted that formula 
(47) gives an exactly parabolic relationship between log J and M if there is no 
difference between the variance of male and female generation times (om2 and 
u f 2 ) .  It is very probable, therefore, that the deviation from a parabola observed 
in Figures 1 and 2 of BARRAI et al. (1962) is due to the fact that the variances 
of male and female generation times are unequal. 

The computation of the quantity I ,  from formula (43) thus supplies a correc- 
tion factor for the expected kequency of a given pedigree type of consanguineous 
marriage which can be applied to the expected frequency computed on the basis 
of migration alone, provided that between migration and age there is no impor- 
tant correlation. The corrected probability will be: 

Uo2 = Usz f ahz  - 2pUh Uw f Ow2 

P , = P I ,  (49) 
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Assortative mating for heritable traits: Assortative mating for socio-economic 
conditions or other traits which are inherited via biological or social mechanisms 
may also affect the frequency of consanguineous matings because of the higher 
resemblance between relatives. In order to assess its influence, one needs knowl- 
edge of the correlation between husband and wife (p)  and that between relatives 
( r e )  for the trait or traits responsible for assortative mating. We will assume that 
the trait is measured in such a scale that x, y ,  the male and female values respec- 
tively, are normal with mean 0 and standard deviation U in the general population. 
The expected value y c  of the trait, in female relatives of individuals of trait 5, 
will then be ye  = r,x, with variance a2( l - r z e ) ,  and therefore the frequency of 
relatives with trait yc of individuals with trait z will be: 

while the frequency of individuals with trait y in the general population will be 

The ratio between the frequency of individuals with trait y among the relatives 
of an individual with trait x, and the same frequency among individuals from 
the general population will be 

+(YlZ) = +c(rlx>/+(r> (52)  
If + (5, y )  is the bivariate correlated distribution of the trait, with correlation 

p between husband and wife 

and 
the integral 

(54)  

(55) 

will give the average over all marriages of the ratio +. On integration this is found 
to be 

1 I, = ___ 
1 -prc 

Factor I, can be used to multiply the probability of consanguineous marriages 
computed on the basis of migration and age (if the trait in question is independent 
of both migration and age), in order to correct the probability for the effect of 
assortative mating. 

I t  is likely that the postulated independence does not exist for socio-economic 
conditions and migration, so that this method of evaluation may be valid only 
as a first approximation. 

In  any case, it would seem, from what little knowledge is available that the 
correction factor is not likely to be large. From data collected in the Parma region 
p is of the order of .5, re is not known, but must be low. rc could be estimated from 
knowledge of p and of the correlation between parent and offspring for the trait. 
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If rpo, ryo and rs are the correlation coefficients between father and offspring, 
mother and offspring, sib and sib respectively, the correlation between relatives 
with no and nl female or male intermediate ancestors will be 

Even assuming that p = rpo = rMo = 0.8 the correlation between first cousins 
would be rc = .18, that between second cousins r, = .116, leading to correction 
factors of 1.20 and 1 .I 1. 

For the traits determined entirely by additive genes rpo = ryo = r8 = 0.5, and 
if p = .25 the correction factor would be 1.03. It would take a great many inde- 
pendent heritable traits to make the correction factor important. It therefore 
seems likely that one can neglect assortative mating effects at the first approxima- 
tion. 

Agreement between theory and observation: A complete test of the theory just 
given would require demographic knowledge which is not available in the litera- 
ture. Material which has been collected in the Parma province contains such 
information but the work of analysis is not complete, especially for the part re- 
garding demographic data of the past two centuries ( BARRAI, CAVALLI-SFORZA 
and MORONI 1964). Changes of demographic patterns are known to have taken 
place especially in the last and the present century, and the study of consanguine- 
ous marriages requires demographic knowledge valid for ancestral generations. 
Therefore, until data for earlier times than now available is at hand, no satisfac- 
tory test will be possible. 

At the moment, the source of data coming nearest to the requirements is that 
from the Upper Parma River Valley. Here a sample of almost 500 families com- 
ing from various villages of the area was investigated by questionnaire (MAINARDI 
et al. 1962). Some of this material is already published (CAVALLI-SFORZA 1963; 
CAVALLI-SFORZA et aZ. 1964). This is, at the moment, the only source of informa- 
tion on distribution of distances between birth places, and age differences, in 
which we are interested, but it comes from a contemporary population living in 
the same area in which we have collected consanguineous marriages. 

1. Migration. The migration data utilized in Table 1 are from the source just 
cited. Biexponential and trinormal distributions were fitted by a fully numerical 
version of maximum likelihood estimation, computing the likelihood of a set of 
trial values of the parameters, then obtaning first derivatives by recomputing 
likelihoods with small increments added to each parameter in turn. From this 
the information matrix could be calculated and corrections of the trial values 
obtained. The procedure was iterated until the increase in likelihood was negli- 
gible. In some cases there were difficulties in obtaining a good fit using maximum 
likelihood and another method was employed in which chi-square is minimized 
as follows. One defines plausible intervals for each parameter and on the basis of 
chi-square decides which half-interval to use as trial estimate. One then proceeds 
by taking the better half-interval for each parameter in a new cycle of computa- 
tion, progressing in this way until the required precision is reached. 

Maximum likelihood estimates for biexponential and for trinormal migration 
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TABLE 2 

Parameters of the fitted distribution of Table I 
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Trinormal 

P 
Q 
1-P-9 

F-0 M - 0  H-W 

,839 ,740 ,646 
.061 ,163 , 1 4 4  
,100 ,097 .210 
.32 .36 .42 

60.0 58.7 89.9 
1890. 1608. 1182. 

Biexponential 
P ,828 ,725 .614 
h 2.493 2.330 2.266 
k ,024.8 ,0425 .0325 

curves to the distribution of birth place distances of the pairs father-offspring, 
mother-off spring, and husband-wife are given in Table 2. 

The distribution of distances between birthplaces of sibs showed such a high 
concentration in the zero class that this distribution was neglected throughout. 
This has the only disadvantage that, when using biexponentials, the integral of 
equation (20) does not converge for uncle-niece or aunt-nephew, while it would 
if the convolution had included the sib-sib migration. Therefore we are unable 
to give expected values for this class of relatives under the hypothesis of biexpo- 
nential m:gration. 

Table 3 shows the probabilities of consanguineous marriage, P computed from 
equation (30) for trinormal migration and from equation (20) for biexponential 
migration. The numerical integration necessary in the latter case was carried out 
by computer. The migration parameters are those given in Table 2 and the popu- 
lation density employed in the calculation is that valid on average for the Upper 
Parma River Valley, years 1860-1962, and is D = 45.7 inhabitants per square 
kilometer. All probabilities are given for n, = 1. All consanguineous marriages 
from uncle-niece or aunt-nephew to third cousin are considered, but only pedi- 
grees that have different probabilities are distinguished, namely those pedigrees 
in which the number of males nl among intermediate ancestors (n )  varies from 
0 to n. 

It will be noted that there is a marked discrepancy between the trinormal and 
the biexponential, which is more serious the nearer the relationship. The cause 
of this is believed to be the difference in behavior of the two functions at the 
origin. In fact, even if the two functions are fitted to the same observed distribu- 
tions, the class at the origin, which represents on the average some 75% of the 
observations, is fitted in the biexponential by a monotonically decreasing function 
which cuts the ordinate at a value different from 0, while for  the trinormal the 
function used is zero at the origin and goes to a peak thereafter. It seems there- 
fore that with data such as the present ones, in which there is an accumulation 
of most of the observations in the class at the origin, the choice of one or the other 
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TABLE 3 

The probability of consanguineous marriage under assumption of a trinormal and of a 
biexponential migration distribution as given in Tables I and 2. Only 

migration effect is considered 

Degree of relationship 

Uncle niece, aunt nephew 

First cousins 

1 ‘/z cousins 

Second cousins 

2% cousins 

Third cousins 

1 0  
1 

2 0  
1 
2 

3 0  
1 
2 
3 

4 0  
1 
2 
3 
4 

5 0  
1 
2 
3 
4 
5 

6 0  
1 
2 
3 
4 
5 
6 

P values 

trinormal biexponenQa1 

.002150 
BO2558 
.001088 .003886 
001278 BO4542 
,001499 .005311 
.000613 .001635 
.OOO714 ,001889 
.OW830 BO2182 
.WO96 L .00%22 
.000366 .000843 
,0004.25 ,000966 
,000432 ,001 107 
.000570 ,001270 
.000654 .mi457 
.ON227 .0004.90 
.ooO263 ,000559 
.000304 .000628 
.000350 ,000716 
.0004.04 .Om817 
.000462 ,000933 
.000145 .000301 
,000168 .OW342 
.000193 ,000388 
.o00222 .m441 
,000255 ,000501 
.WO294 .000570 
,000335 .000649 

~ 

n IS the number of mtermedlate ancestors and nI IS the number of males among them. 

continuous model is not an easy one. The choice cannot be done on the only 
evidence of the goodness of fit of the theoretical distribution. As the type of the 
distribution is critical in determining the expectations, it is believed that it will 
be preferable in cases like this to adopt, when adequate demographic data are 
available, the discontinuous model, using migration matrices which do not assume 
any specific form of migration distribution. 

Other evidence shows, in any case, that the demographic data available from 
the present day populations show only qualitative agreement with the consan- 
guinity data. When the values of probabilities of consanguineous marriages of 
Table 3 are plotted on a graph (Figure 3) it will be seen that P rises almost 
exponentially with the number of males for a given n. The slope of increase of 
log P is about log 1.14 from Figure 3 data. This slope should correspond to the 
logarithm of the quantity called c and estimated from actual data coming from 
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1 

o ; z 3 4 5 6  
.oi 

--+ nZ(,w.m OF MILEJ AMONG ~ . w s n ~ o u r a  AUCEITOSI) 

FIGURE 3.-Probabilities of consanguineous marriages, based on values in Table 3 

a comparable area in a former paper (BARRAI et al. 1962). There, values of c 
were, for the mountainous region of Parma, 1.389 for second cousins, 1.366 for 
third cousins and lower than 1 (.918) for first cousins, the last value being influ- 
enced (as shown in that paper) by a sociological factor which should account for 
the aberration. The agreement is thus only a qualitative one in the sense that 
the difference between male and female migration observed in a modern popula- 
tion, although in the right direction, is not as high as would be expected from 
the c value determined from second and third cousin marriage frequencies in the 
same area. 

A priori the approach by the “sum of exponentials” is probably more satis- 
factory than that by the “sum of normals”. In fact, the biexponential seems to 
represent a little more accurately the clustering of people in villages by its having 
the mode at the origin. 

It is, however, of interest to follow further the “sum of normals” approach, 
because it does not require any numerical integration and is therefore more 
directly available for the calculation of expected frequencies of consanguinity. 
Although the migration integral I, requires, with a trinormal distribution, the 
computation of 3”+l terms, whose sum constitutes I,, only one term is important 
in the present circumstances. This depends on the fact that the short range migra- 
tion is so much more important in terms of frequency than the other two. It 
therefore happens that for the values given in Table 2, the term 

accounts for some 95% of the value of I,. Since, approximately, V,, = V,, = 
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Vsm = V,, formula (58) simplifies to 

L. L. CAVALLI-SFORZA et al. 

It  is interesting to compare this value with that obtained by the simplified dis- 
continuous treatment, in which only marriages inside the village where both 
mates are born are considered. In the latter case let us take as P, the proportion 
of children born in the same village as their fathers, Po the proportion born in 
the same village as their mothers, P, the proportion of husbands and wives who 
were born in the same village, and N the village size; then, always considering 
n, = 1 and neglecting age and other corrections, for a pedigree with no and n, 
female and male common ancestors, 

TIQP,  
(60) 

With the numerical values so far used (namely Vs approximately = 0.4, and 
D = 45.7) the two formulas from simplified normal migration and the simplified 
discontinuous treatment give approximately equal results only for first cousins, 
(n = n, + no = 2) as the average village size ( N )  in the corresponding region is 
not far from 300 and as Po = .821, P, = .727, P, = .645, are not far from the 
corresponding values po, p , ,  p ,  of Table 2. For other types of relationships these 
two estimates inevitably diverge. 

2. Age eflects: A direct comparison between the P values given in Table 3 
and the observed ones is not possible until we correct P values for age according 
to (49). To this aim, we need to know the required age distributions. From the 
1958 Parma sample (MAINARDI et al. 1962) the values given in Table 4 were 
computed. Here also, however, we find a discrepancy between data from the 
contemporary population and those suited for the analysis of the consanguineous 
marriages, but again there is at least qualitative agreement. A test would be pro- 
vided by the fitting of parabolas to the logarithms of the frequencies of con- 
sanguineous matings of various degrees versus the expected age difference be- 
tween mates, as was done in Figures l and 2 of the paper by BARRAI et al. (1962) , 
but a more direct test was used in Table 2 of the paper by CAVALLI et al. (1964), 
in which the demographic data given here in Table 4 were used to fit the fre- 
quencies of 29 classes of consaguineous matings from the Upper Parma Valley. 
Consanguineous marriages 1850 to 1950 were considered ranging from uncle- 
niece to second cousins, and grouped according to n,, and n, which gives rise to 
the 29 classes shown in that table. Expectations of each class were computed as 
proportional to 

where M, V are as defined by equations 48. When, however, the values of the 
contemporary sample, given in Table 4, were inserted in this equation, the fit to 
the observed consanguinity frequencies was not satisfactory. We therefore tried 
to fit P,, Pf, T ~ ,  T f ,  uZm, uZf,  (2, -I- U ; )  values to the data by numerical maximum 
likelihood. The expectations improved considerably and the only major dis- 

N P+ 

p n o  m f  p", e-xYzV (61 1 
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TABLE 4 

Estimates of parameters necessary for age corrections, obtained from a contemporary 
population in the Upper Parma River Valley (Mainardi et al. 1966) 
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Generation time: 
Males 33.24 i: 0.19 7112 mean 

variance U 2  m 46.60 

28.73 f 0.16 rf Females mean 

Variance of 
variance U2 33.78 

age difference 
between sibs U s 2  25.78 

Variance of 
age difference 
between mates go2 33.31 

crepancy left was between classes of first cousins, where other factors of socio- 
logical nature might be involved (CAVALLI-SFORZA et al. 1964). The demographic 
parameters thus estimated are given also here, in the heading of Table 6. 

It will be noted that these estimates indicate a later average age at reproduction 
than in the modern population (by 2 or 3 years) as well as an increased variance 
of generation times. The consanguineous marriages from which these parameters 
were estimated extend from 1850 to 1950, and therefore, their intermediate 
ancestors lived mostly in the 19th Century or even earlier. The difference be- 
tween the fitted values, which are estimated for earlier generations, and the 
values obtained for the present generation is probably in the right direction. 
Thus, removing geographical heterogeneity was not sufficient to give an agree- 
ment, other than qualitative, between our present estimates of the demographic 
parameters and those necessary for a good fit. It should be noted, in addition that 
in the period 1850 to 1950 some changes in the consanguineous frequencies were 
observed, and a more recent research (MORONI, in preparation) shows that very 
extensive changes in consanguineous frequencies took place in the 19th Century. 
Unfortunately, breaking dawn the figures further by periods of time would reduce 
them too much for a meaningful comparison with expected values to be possible. 
We shall have to be content at the moment with an approximate agreement, 
as is possible with the present data. 

It may also be argued that the normal approximation to the distribution of ages 
at mating or at reproduction may be inadequate. However, it has been seen 
(MAINARDI et aZ. 1966) that for first cousins, age differences are normally dis- 
tributed, in agreement with expectation, and the effect of the non-normality of 
the distribution of age at mating is noticeable only slightly for the extreme case 
of uncle-niece or aunt-nephew. It  was found that ages at mating are well fitted 
by log (t-tmin) where tmin is the minimum legal age at marriage (HALD 1952). 
We have found that also the correlation surface between male and female ages 
at marriage is reasonably normal using the above transformation, and have used 
it to compute I,, although it requires numerical integration. Table 5 shows that 
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TABLE 5 

Age effect 

J values -- 
Transformation Untransformed 

Type of relationship i j m, md 1% (t-tm,J ages Difference % 

Uncle-niece 0 1 0 0  
0 1 0 1  

Aunt-nephew 1 0 0 0  
1 0 1 0  

First cousin 1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

.001688 
,003776 

,000146 
.OOOO57 

,033564 
,034278 
,026568 
,031437 

,001 64.9 
.000688 

.000133 

.OO0050 

,033006 
.034000 
.026188 
.031030 

2.4 
13.0 

10.0 
14.0 

1.7 
.8 

1.4 
1.3 

Discrepancy between numencal integration using a normal bivariate distribution fitted to ages of mates transformed 
according to log ( t  t,,,) and direct integration using a normal bivariate distnbution fitted to untransfornied ages (1954 
mamages, Italy) 

the divergence between the two methods of computation is rather small, even 
in the most critical cases. 

The quantity I ,  from formula (43) gives the correction factor by which P 
values obtained from migration should be multiplied to obtain P,. In order to 
obtain it, we need J from formula (47) and O. The value o will be computed here 
as the reciprocal of the mean frequency per time unit (years in this case) of 
individuals of either sex in the population, averaging over reproductive years. 
In practice, we have simply taken ages between 15 and 50 years and averaged 
the corresponding frequencies (unweighted for simplicity), using data from the 
1901 Italian census, a time which corresponds to the middle of the period 
examined before. The value of O thus obtained is 70.36 years. 

Using as demographic values those given at the head of Table 6, the quantities 
I, = OJ given in the body of Table 6 were obtained. 

3. Probabilities of consanguineous marriage. It is now possible to obtain the 
P, values corrected for age effects, multiplying each P, value times the appropri- 
ate I ,  value. The correspondence between P and I ,  values is easily established, 
keeping in mind that ma, m3 (m,  + m3 = n,) are the parameters specifying the 
number of males among intermediate ancestors in the branches leading respec- 
tively to the consanguineous husband and wife, and that i, j (i+j=n) are the 
total numbers of intermediate ancestors in the two branches. An example of 
of calculations will be found in Table 7. 

The result (always keeping D = 45.7 as in Table 3) in the calculation of P, 
is given in Table 8, where both the biexponential and the trinormal models of 
migration are retained and compared with observations, after adding up for all 
pedigrees belonging to the same degree of relationship. When doing this, it should 
be remembered that some pedigrees are represented more than once, and that 
if P,(i,j,m,,m,) is the expected frequency of a pedigree with given i, i, ma, and 
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TABLE 6 

Correction factors for age (I,) computed from formulas ( 4 3 ) ,  (47), and ( 4 8 )  using 
demographic values* estimated from frequencies of consanguineous 

marriages in the paper by Caualli et al. (1964) 
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Uncle-niece 

Aunt-nephew 

First cousins 

First cousins once remcved: 
husband older generation 

Second cousins once removed 

Third cousins 

0 
0 

0 
1 

0 
0 
1 
1 

0 
0 
0 
1 
1 
1 

0 
0 
0 
1 
1 
1 
2 
2 
2 
3 
3 
3 

0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

0 
1 

0 
0 

0 
1 
0 
1 

0 
1 
2 
0 
1 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 

0.08851 
0.03018 

0.00316 
0.00091 

2.1688 
2.29962 
1.61077 
2.04407 

0.33139 
0.1664.6 
0.07878 
0.66639 
0.38086 
0.20306 

0.14860 
0.29895 
0.5201 7 
0.07800 
0.17162 
0.32619 
0.03915 
0.09375 
0.19378 
0.01887 
0.04898 
0.1 0966 

1.53060 
1.57073 
1 . a41  5 
1.30132 
1.33034 
1.4841 5 
1.52047 
1 .MI 66 
1.07619 
1.30132 
1.441 66 
1.47475 
0.81582 
1.06610 
1.27388 
1.40262 

I -  7,-36.10, .,=30.95, oZm=53.32, u2,=42.59, o*,=53.08, 0=70.36.  
t As before, i,i are the numbers of intermediate ancestors in the branches of the pedigree leading to the husband and 

to the wife (see Figure 1 )  and m i ,  m, are the nnmbers of males among them. 
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TABLE 7 

Computation of probabilities of consanguineous marriages P, in percent. Example for 
1% cousins, husband in shorter branch (i = I ,  j = 2 )  

1, P, percent 

Pedigree types m, m, n’ Trinormal Biexp fa Trinormal Biexp 

0 0 1  .000613 .OOt 635 .33139 .MO3 .0541 Q 
.00714 .O01889 .16644i ,0119 .O314 QQ 0 1 2  

0 2 1  .000830 ,002182 ,07878 .0065 .0172 

.0476 .1259 1 0 1  .WO714 .001889 ,66639 

Q 
Q 

.000830 .o(E2182 ,38086 ,0316 .0831 

1 2 1  .001961 ,002522 ,20306 .0195 ,0512 

zn’Pc  = .1809 .4774 
Q 
P data from Table 3 and I ,  data from Table 6 .  m,, ml are the number of males among intermediate ancestors in the 

branches of the tree leading to the husband and wife respectively; n’ is the number of pedigrees. P, values are products 
I ,  X I ,  and are given in percent. In pedigrees, squares are males, circles females. 

mj, the sum of the frequencies of all pedigree types for a given pedigree n = i + j 
will be given by: 

pc(n> = E (mi> (mj>Pc (i, i, mi, mj> (62) 
where the E is extended to all pedigree types with different i, i, mi, mj values 
belonging to the same type of relationship. The expectations given as probabilities 
of consanguineous marriages in Table 8 are then obtained, corresponding to the 
two continuous models. 

It twill be noted that there is only an approximate agreement, but the migration 
estimates here employed are probably too large. This can account for the dis- 
crepancy becoming higher with less close relationship. In  any case, the biex- 
ponential function gives a better fit. Also, the vagaries of demographic values and 
of consanguineous matings with time and geography are very probably responsi- 
ble for a part of the discrepancy. As better estimates of the demographic para- 
meters will be forthcoming in the not too distant future, we hope to have better 
opportunities for a more satisfactory test of the theory. 

i j  
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TABLE 8 

Comparisons between probabilities of consanguineous marriages corrected for age (as in Table 7) 
and observed frequencies for upper Parma Riuer Valley (communes of Corniglio, 

Monchio, Tizzano, Palanzano) 

Probability P, Observed marriages 

mi mi Trinormal Biexp Number Percent 

Uncle-niece 

Aunt-nephew 

Total 

First cousins 

0 0  
0 1  

0 0  
0 1  

0 0  
0 1  
1 0  
1 1  

Total 

1 % cousins, in shorter branch 
1 '/2 cousins, in shorter branch 
Second cousins 

0 0  
0 0  
0 0  

,0190 
.0077 

.0007 
,0002 
.0276 

.2360 

.2939 
,2059 
,3052 

1.041 0 

.I809 

.0399 
1.2870 

3384 
1 . w 5  
.7316 

1.0856 
3.7001 

,4774 
,0919 

2.8953 

109 
157 
99 
96 

153 
4!5 

938 

.037 

.030 

.007 
0 
,074 

3066 
1.1618 
.7326 
,7104 

3.41 14 

1.322 
.3330 

7.2520 

It is also possible that some of the assumptions here made: independence of age 
and migration, lack of parent-offspring correlation in fertility, and in mobility, 
may limit the usefulness of the simple model here described, to an extent that 
further research may show. 

This work has been supported by grants from the U.S. Atomic Energy Commission and by 
EURATOM-CNR-CNEN Contract No. 012-61-12 BIAI. We wish to thank DR. RAYMOND 
APPLEYARD for reading the manuscript. 

S U M M A R Y  

Theories were developed to predict the frequencies of various types of con- 
sanguineous marriages based on demographic data of migration patterns, age 
distributions, and similarity of mates in the general population. The effect of 
migration was formulated both with discrete and continuous models. In the 
former, the entire population is subdivided into discrete groups (villages etc.) and 
migration and marriage are treated using transition and matrimonial migration 
matrices. It was then shown that the method of matrix algebra leads to simple 
expressions of the results. However, information is not at the moment sufficient 
to construct numerically the migration and marriage matrices to treat the actual 
cases, but may become available in the future. On the other hand, using continu- 
ous models, fitting of either biexponential or trinormal distribution to migration 
distances allows us to predict the frequencies observed in an actual case (the 
Parma Valley area) when age effect on marriage is also taken into account.-The 
agreement between observed and expected results for Parma is only fair. In part, 
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at least, this seems to be the consequence of the inadequacy of the demographic 
information now available and that should be improved by future research.-As 
an indicator for the breeding structure of populations, the probabilities of con- 
sanguineous marriages should have an important bearing especially for human 
population genetics. 

LITERATURE CITED 

BARRAI, I., L. L. CAVALLI-SFORZA, and A. MORONI, 1962 
ous marriages and mating structure of the population. Ann. Hum. Genet. 25: 347-377. 

BARRAI, I., L. L. CAVALLI-SFORZA, and A. MORONI, 1964. 
51-60. Mathematics and Computer Science in Biology and Medicine, H.M.S.O., London. 

BRAGLIA, G. L., 1962 
di Parma. 

CAVALLI-SFORZA, L. L., 1957 

Frequencies of pedigrees of consanguine- 

Record linkage from parish books. pp. 

Frequenze di matrimoni consanguinei. Tesi di Laurea in Fisica, Universith 

Some notes on the breeding patterns of human populations. Acta 
Genet. Statist. Med. 6: 395-399. - 1963 The distribution of migration distances: 
models, and applications to genetics. pp. 139-158. Entretien de Monaco en Sciences Hu- 
manines; Les &placements humains. Edited by JEAN SUTTER. 

CAVALLI-SFORZA, L. L., I. BARRAI, and A. W. F. EDWARDS, 1964 Analysis of human evolution and 
random genetic drift. Cold Spring Harbor Symp. Quant. Biol., 23: 10-20. 

FROTA-PESSOA, O., 1957 The estimation of the size of isolates based on census data. Am. J. Hum. 
Genet. 2: 9-16. 

HAJNAL, J., 1963 
Soc. London B 159: 125-177. 

HALD, A., 1952 
LUU-MAU-THANH, and J. S u m ,  1963 

Random mating and the frequency of consanguineous marriages. Proc. Royal 

Statistical Theory with Engineering Applications. Wiley, London. 
Contribution B I’ktude de la rkpartition des distances 

skparant les domiciles des kpoux dans un dkpartement francais. Influence de la consanguinitk. 
Entretien de Monaco en sciences humaines; Les dhplacements humains, 123-137. 

MAINARDI, M., L. L. CAVALLI-SFORZA, and I. BARRAI, 1962 The distribution of the number of 
collateral relatives. Atti Ass. Genet. Ital. 7: 123-130. - 1966 Some demographic 
estimates of genetic interest. (in preparation). 

MORTON, N. E., 1955 Non-randomness in consanguineous marriage. Ann. Hum. Genet., 20: 
116124. 

MORONI, A., Inbreeding explosion in the 19th Century in a Catholic country. (In preparation). 
SUTTER, J., and TRAN NGOC TOAN, 1957 The problem of the structure of isolates and of their 

evolution among human populations. Cold Spring Harbor Symp. Quant. Biol., 22: 379-383. 
WRIGHT, S., 194.3 Isolation by distance. Genetics 28: 114-138. 


