| Algorithm 1. Proposed method’s algorithm for thermal conductivity estimation (for each hybrid nanofluid) | |
|
Input: T, TC1, TC2, ρ, and hybrid1_datas Output: pTC, MAE, MSE, MAPE, R2 | |
| 1 | size ← Load(hybrid1_datas) |
| 2 | i ← 0 |
| 3 | if i < 30 then |
| 3.1 | , wi2, hTCi = |
| 3.2 | inputDatas(Ti, TCi1, TCi2) |
| 3.3 | outputDatas(hTCi) |
| 3.4 | i = i + 1, go to step 3 |
| 4 | trainRatio = 0.8 trainIndex = randperm(size, round(trainRatio * size)) XTrain = inputDatas(trainIndex, :)’, YTrain = outputDatas(trainIndex, :)’ testIndex = setdiff(1:size, trainIndex) XTest = inputDatas(testIndex, :)’, YTest = outputDatas(testIndex, :)’ net = feedforwardnet([10 10]) net.trainFcn = ‘trainbr’ net.layers{1}.transferFcn = ‘tansig’ net.layers{2}.transferFcn = ‘tansig’ net.layers{3}.transferFcn = ‘purelin’ net.trainParam.epochs = 1000 net.trainParam.goal = 10−1000 |
| 5 | net = train(net, XTrain, YTrain) |
| 6 | pTC = net(XTest) |
| 7 |
MAE = mean(abs(pTC − YTest)) MSE = mean((pTC − YTest).^2); MAPE = mean(abs((pTC − YTest)/YTest)) * 100 R2 = 1 − mean(((pTC-YTest).^2)/(YTest.^2)) |
| 8 | returnpTC, MAE, MSE, MAPE, R2 |