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ECENT work on mutation has stressed its harmful effects. Since under a 'wide R range of assumptions natural seleclion in a constant environment results in a 
genetic equilibrium at optimal gene frequencies (that is, those gene frequencies 
which maximize the adaptive value w )  , the only effect of mutation is to displace 
the gene frequencies from their optima and reduce fitness by an  amount which 
is designated mutational load. It is also generally recognized that mutation is the 
ultimate source of genetic variability and hence of adaptation to new conditions. 
Thus there would seem to be some optimal mutation rate at which the harmful 
effects (load) are offset by the advantage a mutant allele may have in some new 
environment. 

KIMURA (1960) was the first to consider simultaneously the loss of fitness due 
to mutational load and the contribution that mutation makes in the adaptation 
to new conditions. He considered secular evolutionary change in which genes are 
being replaced at a rate corresponding to HALDANE'S (1957) estimate of one allele 
per 300 generations. RIMURA allowed almost complete dominance and mutation 
toward the favored allele only. This led him to an estimated total mutation rate 
over all relevant loci of about 0.06 per generation. 

Our study differs from KIMURA'S in that we are concerned with the contribu- 
tion of mutation to the short term survival of a population under fluctuating con- 
ditions, the pattern of which persists for a long time. Therefore our results are 
sensitive to the pattern of environmental fluctuation, especially the variance and 
autocorrelation of the environment. 

Consider a single locus with two alleles in a random mating population. At 
any given time the mean fitness of the population is 
1.01 
where z is the frequency of the allele A and W,,, W,,  and W,, are the fitnesses 
of the genotypes AA, Aa, and aa, respectively. 

If the Wij are random variables without correlation from one generation to 
the next, the average fitness is given by 
1.02 E (  W )  = W,,Z2 + 2WI2Z ( 1-2) + W,, ( 1-2) ' + (WllfWZ2-2W12) U: 

where the bars above symbols indicate expected values. In  order to have a steady 
state distribution of gene frequencies instead of the fixatiomn of one allele, we 

w =  W,& + 2W,,z(l-z) + wzs(l-z)~ 
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specify an average heterosis so that the coefficient of U; is negative. Thus the fit- 
ness is reduced by fluctuation of gene frequency. If there are correlations between 
the W,, of successive generations, there will also be correlations between the W t J  
and x, so that their covariances will appear in equation 1.02. 

We will consider two models. In model I we concentrate on the effect of 
mutation on the mean gene frequency. It will be shown that under fluctuating 
conditions the average gene frequency is not the optimum for the average environ- 
ment, so that mutation can increase fitness by bringing the average closer to 
optimum. We demonstrate this for the most unfavorable situation, a heterotic 
lethal. In model I1 the emphasis is on the covariance of gene frequency and 
environment. Here we make special assumptions of symmetry so that mutation 
does not affect the mean gene frequency. Both models lead to optimum mutation 
rates which are much too high. Possible explanations for this are considered in 
the DISCUSSION. Finally, we examine the circumstances under which natural 
selection can increase the mutation rate. 

Model I .  Heterotic lethal 

Here we set W,, = 0, W,, = 1, and W,, = l-s. If s were constant, say S, equi- 
librium of the lethal allele would be reached at 

However, we assume that s is a random variable with mean s, variance U:, and 
no autocorrelation. At any one time, 

This has the expected value 
1.05 
For overlapping generations the rate of change of the population is small despite 
the intense selection against the lethal, and we can use the continuous approxi- 
mation for the rate of change: 

1.03 i = i / ( l + S )  

- 1.04 w 1 - xz - s(1-x)’ 

E ( W )  = 1 - s + 2sx - (1+i)zz - (l+f)Ui 

dx- 1/x(l-x)[s- (l+s)x] z- 1.06 

The average gene frequency also changes. Taking the expected value of both sides 
of 1.06, and noting that E ( d x / d t )  = d(E[x])/dt, we have 

d2 
d t  

1.07 -=1/{2(1-2) [S-(l+S)f] - ui(2Sfl) + ( l+S)  [324+ p 3 ] }  

where p:$ is the third moment of z about its mean. When the mean value, 2, is 
equal to its optimum, 2 = S/  ( 1 +s) , this becomes 

1.08 dx - 
d t  
- - i /z  [-(l-S)ut + (1+S),p3] 

For S very small (that is, for the viable homozygote nearly as fit as the heterozy- 
gote on the average), this is roughly 

1.09 

Hence dx/dt decreases from 2, and the steady state mean f is less than 2. 
Since the mean lethal gene frequency is below the optimum, mutation toward 
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the lethal may increase fitness. In order to determine quantitative values, we 
used the steady state distribution as given by WRIGHT (1931) : 

1.10 
1 
V 

@ (z) = - e z p  ( 2  

where M ,  the instantaneous expected change in gene frequency, here is i /z z ( 1 -s) 
[ S  - (l+S)z] + (1 -x) U for mutation rate U toward the lethal, and V is the 
instantaneous variance, here x2 ( l - ~ ) ~  0;. Numerical computation on the 
IBM 7074 gave us f, <, and E (  w) for different values of S, U:, and U (the muta- 
tion rate to the lethal). These are shown in Table 1. 

TABLE 1 

The effect of mutation rate on average fitness, mean gene 
frequency, and variance of gene frequency 

.05 .03 .048 

.04 .048 

.IO .03 .0909 

. .  .04 ,0909 

.2 

.08 .0909 

.05 ,167 

0 
.0001 
,0005 
.0010 

0 
.0001 
,0005 
.0010 
,0020 
.0030 
,0040 
,0050 
.0060 

0 
,000 1 
,0005 
.0010 
. W O  

0 
.WO1 
.OW5 
.0010 
,0050 
.0100 
,0150 
,0200 

0 
.oO01 
,0005 
.0010 
,005 0 

.WO1 
,0005 

,9513 
.9514 
,9517 
,9519 
,9511 
.9512 
.9516 
.9518 
,9520 
.9521 
9521 
.9521* 
.9521 

.9062 
9063 
,9065 
,9069 
.9081 
,9059 
,9060 
,9063 
.9066 
.9079 
.ma5 
.9086* 
.go84 
.go45 
.go47 
,9053 
.9058 
.9073 

.8250 
,8253 

.0172 

.0193 
,0249 
.0289 
,0150 
,0169 
,0234 
,0281 
.0344 
.0397 
.0442 
,0482 
,0518 

.0428 

.0435 

.0462 
,0491 
,0660 
.WO7 
,0415 
,0444 
.0473 
.0650 
.OB01 
,0923 
.I 029 
.0312 
.0327 
,0375 
.0418 
.0610 

.OB84 
,0898 

.oOo130 

.WO133 

.OOO133 

.000145 

.ooO142 

.OOO155 

.OOO168 

.OOO178 

.ooO207 

.000227 

.OOO242 

.000256 

.OW269 

.000271 
,000271 MIN 
,000271 
.000273 
.WO295 
,000347 
,000346 MIN 
,000347 
.WO351 
,000384 
.W18 
.o00444 
.00M5 
,000565 
.000571 
.000583 
,000593 
.000699 

.OW783 
,000781 
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TABLE I-(Continued) 

.IO .I67 

.3 .IO .231 

.20 .231 

.4 .05 ,286 

.IO .286 

.20 .286 

,001 0 
,0050 
.0100 
.0150 
.0200 
,0250 
,0300 
,0600 
.0001 
,0005 
.0010 
.ONO 
.0100 
.150 

.0200 

.0300 

.0400 

.0450 

0 
.0001 
.WO5 
.mi0 
.0050 
.0100 
.0200 
.WO 
.0600 

0 
.om1 
.0050 
.0010 
.0050 

0 
.0001 
.0005 
.0010 
,0050 
.0100 
.0200 
.0400 
.0600 

0 
.0001 
.OW5 
.0010 
,0050 

0 
.0001 
.ooo5 

3256 
.a277 
,8294 
,8304 
,8313 
3319 
.8322* 
,8306 
.8224 
,8228 
,8233 
.8259 
.8279 
.8292 
,8301 
3312 
.8315* 
,8314 

.7532 

.7533 
,7536 
.7540 
,7565 
.7589 
,7622 
.7658 
.7669 
.7463 
.7464 
,7469 
.7476 
.7513 

.6983 

.6983 

.6985 

.6988 

.7007 
,7028 
,7062 
,7104 
,7125 
,6951 
,695 1 
,6954 
.6957 
.6979 
,6880 
.6881 
.6884 

~ 

.0916 

.lo38 
,1163 
.I270 
.1367 
.1455 
.1537 
. 1 927 
.0794 
.OB13 
.0836 
,0977 
.1113 
.1227 
.13B 
.I505 
.I659 
.I731 

.I292 

.I 295 

.1306 

.1320 

.1420 

.1529 

.1715 

." 

.2271 

.I129 
,1134 
.I151 
.1171 
.I301 

.I842 

.I 844 
,1851 
.1860 
.IQ32 
.2015 
,2168 
,2433 
,2664 
.I787 
.1789 
.1797 
.1807 
. 1 884 
.I663 
. 1 665 
.I 676 

3 0: 

.Om778 

.OOO772 MIN 

.o00774 

.OW779 

.o00784 

.o00788 

.WO791 

.001568 
,001464 
.001467 
.001452 MIN 
.001455 
.001476 
BO1497 
.001515 
.mi542 
.001558 
.001566 

,001985 
.CO1983 
.001977 
,001969 
.001929 
.001898 
.001860 
.001805 
BO1752 
.003760 
.003753 
BO3729 
.003707 
,003636 

.001135 
,001134 
.001132 
.001129 
.001106 
.001083 
.001044 
.0w84 
.WO934 
BO2272 
BO2271 
.002265 
BO2258 
. m 2 m  
.004524 
. w 2 0  
.004503 
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.8 

.0010 

.0050 

.0100 
,0400 
.0600 
,0700 
,0750 
.0800 
,0850 
.0900 

.0001 
,0005 
,0010 
.0050 
.0100 
,0200 
.0400 
,0800 

.30 ,286 0 

.05 .444 0 
,0001 
,0005 
.0010 
,0050 

.o001 
,0005 
.0010 
,0050 
.0100 
,0200 

.OD01 
,0005 
.0010 
,0050 
.0100 
.0200 
.0400 
.0600 

.IO ,444 0 

.20 .444 0 

.6889 

.6920 

.6950 

.7053 

.7082 
,7089 
,7091 
.7093 
,7094.' 
.7w3 
,6797 
.6798 
,6805 
,6812 
,6856 
.6896 
.6952 
.7019 
,7068 

.5471 
,5471 
,5472 
.5473 
,5483 
,5449 
,5449 
,5440 
5451 
,5461 
,5473 
,5491 
,5401 
.5401 
,5403 
,5404 
,5416 
,5430 
,5453 
,5486 
,5507 

.1@8 

.1781 

.1884 

.2356 
,2606 
,2717 
.2771 
,2823 
,2875 
,2926 
.I514 
.1518 
,1533 
,1551 
,1670 
.I789 
.I987 
,2303 
,2790 

.3840 

.3841 

.3846 

.3851 

.3894 

.3825 
,3826 
.3830 
,3835 
.3878 
.3930 
.4030 
.3766 
.3767 
,3771 
.3776 
,3818 
.3867 
.3961 
.4124 
,4261 

167 

.004+484 

.004367 

.OM265 

.003898 
BO3715 
BO3629 
.003586 
.003540 
.003504 
.003463 
,006675 
BO6664 
BO6622 
BO6578 
.006377 
,006238 
.006050 
.(IO5770 
.005272 

.001050 

.001049 
,001 047 
.00104+4 
,001024 
,002089 
,002088 
.002083 
.00207 7 
.002028 
,001966 
.001843 
,0039 75 
,003972 
,003959 
,003943 
.003819 
.0036&3 
,003376 
,002833 
.002347 

It is apparent from the table that in the absence of mutation the average gene 
frequency is less than the optimum, that it rises with mutation to the lethal, and 
that the fitness is increased thereby. The rate of increase of 2 with mutation is 
quite large, as high as 15, while the slope of fitness against mutation is about 1 
for the interval (0, . O O l )  and then decreases. For some parameters we calculated 
optimum mutation rates which turn out to be approximately the values required 
to bring f up to 2. The optimum mutation increases with the variance of the 
environment. However, all optima were found to be very much greater than 
observed mutation rates. Possible reasons for this are considered in the DISCUSSION. 

The variance of x has a more complex behavior. For S = .05, it increases with 
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mutation. For S = . I O  or .20 and 0,' small, the variance of z decreases to a mini- 
mum and then increases. For larger variances, or for S greater than .20, the 
variance of z decreases with mutation rate. But it is generally quite small and 
changes slowly with mutation, so that effectively the mean determines the opti- 
mum mutation rate. 

Model II. Quadratic deviation model 

If mutation is allowed to occur in both directions in such a way that equilibrium 
under mutation alone is the same as the mean gene frequency under selection 
alone, then mutation will not change the mean and we can study its effects on 
other components of fitness. For this purpose we consider the quadratic deviation 
model shown in Table 2. This model has been used in previous papers of this 
series (LEVINS 1964a,b, 1965) to study other aspects of adaptive processes. 

The fitness of a population at any time is 
2.01 W =  1 - (s-M)' - VAPHE 
where s is the environmentally determined optimum phenotype, M is the mean 
phenotype of the population, and VAPHE is the phenotypic variance within the 
population and is therefore 2a2 z (1 -z) . Since s is a random variable, there is no 
genetic equilibrium. But a steady state distribution is possible, and will give an 
average fitness 
2.02 E ( W )  = l-u~-(S--M)'-u~,-E(VAPHE) +2COV(s,M). 

COV(s,M) is the covariance of the environmental variable s and the mean 
phenotype of the population. Since the present phenotypic mean is the result of 
natural selection in the past, M is correlated with past values of s. Therefore if 
successive values of s are correlated among themselves, M is also correlated with 
the current s, and COV ( s ,M)  is positive. 

This holds for a quadratic deviation fitness model in general. When the model 
of Table 2 holds, phenotype is determined by a single locus with two alleles, no 
dominance on the phenotype scale, and an additive phenotypic effect a. Then 
the components of fitness can be expressed in terms of gene frequencies, z. 
VAPHE is 2a2z( 1 -z) , so that its expected value is 2a25( 1-5) - 2a2u2 X. The 
variance of the mean phenotype is 4a2u2. We have chosen to use a symmetric 
model in which s = 0, A4 = 0, f = .5. Then the average fitness becomes 
2.03 E ( W )  = I -U: - az/2 - 2azaf + 4a COV (s,z) 

TABLE 2 

The quadratic deviation model 

G e n o t w  

AA Aa M 

Phenotype 
Frequency 
Fitness 

a 0 --a 

1 - (s-a) 2 l.-SZ 1 - ( s f a )  2 

2 2  2x(1--2) (1--2)' 
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It was shown in the previous papers that if the correlation between the environ- 
ments of successive generations is great enough (> 0.8) then the optimum value 
of a is different from zero, and the response to selection increases fitness. For any 
value of a, the rate of change of gene frequency can be approximated by the 
continuous process 

2.04 

where U is the mutation rate, taken to be equal in both directions. Since mutation 
always pushes the gene frequency toward its mean value of .5, the variance of z 
(and hence of the mean phenotype) is decreased. But VAPHE has its greatest 
value when x = 0.5. Hence, symmetric mutation increases VAPHE and decreases 
the variance of the mean. The latter effect is twice the former, 

dZ=a2z ( l - z ) ( I -2z )  +2ass(l--z) + u(1-22) 
d t  

= 4a2 a V a r ( M )  since a 
= -ea2 a VAPHE 

while a U: 

Thus the overall effect of mutation is to increase fitness. 
Owing to the special assumption of symmetry, the only effects of mutation are 

on U: and COV(s,M). If the environments of different times are uncorrelated, 
mutation only reduces U: and is thus unconditionally advantageous. Any asym- 
metry in the model (either in mutation rates that are unequal in opposite direc- 
tions or in i # 0) would result in mutation displacing f from its optimum. This 
could offset the effect on the variance and result in a low optimum mutation rate. 

In the symmetric model with correlation among environments. it was shown 
in the third paper of this series that 
2.05 COV ( s ,x )  = 2aa4 (x - U: 4- 6aau;). 

Here a is defined from the correlation between two environments, a large (Y indi- 
cating strong correlation: 
2.06 Cor(st,st+h) = e-h/c 

Mutation increases COV(s,x) by increasing the correlation of s with z. This 
happens by way of a damping action. Mutation is constantly pulling the gene 
frequency back toward its mean. Thus at any time the gene frequency depends 
more closely on the environments of the recent past while the environments of 
the remote past have a reduced contribution. However, mutation also reduces U: 
so that for large values of U, 

Hence for a symmetric model and no correlations among environments, an 
infinite mutation rate is advantageous. The introduction of correlations in the 
environment reduces the optimum mutation rate although it increases the contri- 
bution of that mutation rate to fitness. Finally, asymmetry in the model drasti- 
cally reduces the optimum mutation rate. 

These qualitative arguments can be made somewhat more precise by numeri- 
cal methods. We used the same Monte Carlo simulation program on the IBM 
7074 which was described in LEVINS (1965). In  each generation a random s was 
generated with the appropriate statistical properties and used in the equation 
for genetic change 

COV(s,z) will actually fall. 



170 R. LEVINS 

(a'X(I-2) (1-22) + 2as2(1-2) + u(1-22)) 2.07 Ax w 
which is more exact than the continuous expression in 2.04 for discrete genera- 
tions. The components of fitness were calculated from ten replicate runs of 100 
generations each for different environmental and genetic parameters. Since values 
of a greater than zero are advantageous for autocorrelations greater than about 
.8, we used values of .8, .9, and .99. Most work was done with an environmental 
variance of . l ,  which was chosen to give a stable distribution. The vaules of a, 
the additive phenotypic effect were taken near their optimum values. 

In Table 3 we show the optimal mutation rates for various parameters. Muta- 
tion increases the average phenotypic variance in the steady state, and the magni- 
tude of this increase relative to the original phenotypic variance is shown in the 
table to range up to about one third of the variance. The increase in VAPHE 
due to new mutation is of course less. This can be found as follows: 

and for the change in one generation 

2.09 

so that 

2.10 

-- ax - 1-22 
aU 

= 2a2 (1,-2x) i3VAPHE 

TABLE 3 

Optimum mutation rates and uariance due to mutation at optima. In 2-locus cases, 
recombination is 50% and p is the enuironmental autocorrelation 

VAPHE (a )  - VAPHE (0) Proportion of 
Number New variance 
of loci p asz a a VAPHE (0) due to mutation 

1 .8 .1 .12 .018 .22 2 x 1 0 - 3  
.24 .035 .29 7 x 10-3 

.24 ,016 .34 2 x  10-3 

.9 . I  .06 <1W4 -0 -0 
. l 2  .007 .I9 1.6 x 1 0 - 3  

.9 .025 .08 .004 .02 . . . .  
.050 .08 ,006 .05 . .  

. I O  .08 .008 .12 . . .  

.20 .08 ,016 .26 . .  . 
.99 .1  .20 <10-6 -0 -0 

2 .8 .1 .05 .003 .03 3 x 10-4 
.IO >.01 

.09 002 .06 4x 1 0 - 4  

.08 ,008 .I2 1.7 x 10-3 

.10 .010 .14 2.6 x 10-3 

.12 ,014 .19 3 x 10-3 

.9 1 .03 < 10-4 -0 -0 
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This has the expected value 
2.1 1 E{ 2a2 ( 1 -2x) '} = 2u; 

171 

Thus the newly created variance is the fraction 2uoi/VAPHE of the total 
VAPHE, and is shown in the last column of Table 3. We see that although the 
optimal mutation rate per locus is quite high, the new variance created by muta- 
tion is in all cases less than I % of the total phenotypic variance. 

We see from the table that the optimum mutation rate increases with a and 
with the environmental variance and decreases with the autocorrelation of the 
environment. 

In Figure 1 we show fitness plotted against the mutation rate for various 
parameters, and in Figure 2 the effect of mutation on the covariance and correla- 
tion is shown. We see that although mutation increases fitness this effect is small, 
at best resulting in an increase of less than 1 %. However, the contribution of the 
covariance to fitness can exceed this amount. 

There is an element of arbitrariness in the model due to scaling, since we used 
the expression W = 1 - (s - phenotype) z. Fitness is lost owing to environmental 
fluctuation, and a portion of this fitness loss is restored by the response to selection. 
Since the fitness loss is on the order of 0.1, the environmental variance, the frac- 

.007 

.006 

,005 

.004 

.003 

.002 

.Ol 

L 

FIGURE 1 .-Increase in average fitness as a function of mutation rate. The abscissa is mutation 
rate in  both directions, the ordinate is E(W) minus the average fitness for no mutation. Curve 1: 
a =  .le, p = .8. Curve 2: a =  .24, p =  3. Curve 3: a =  .12, p = .9. Curve 4: a =  .24, p =  .9. 
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tion restored by mutation is on the order of 10%. With a large phenotypic vari- 
ance, an autocorrelation in the environment of .9 can result in a correlation of 
gene frequency and environment of .5. 

DISCUSSION 

In both models, optimal mutations have been calculated which are very much 
greater than the per-locus mutation rates normally observed in nature. This 
discrepancy suggests three possibilities: (1) Our calculations in model I1 are 
based on a single locus. But most quantitative characters are polygenic. The 
optimum mutation rate must be expressed in terms of variance per unit pheno- 
type instead of per locus. (2) Genes which affect mutation rate would have 
quite small selective advantage unless they affected mutation at many loci. But 
not all loci satisfy the requirements of our models. At most loci, mutation may 

P ( S , M )  
S O  - 

a 

.40 - 

'0 '0 ' 0, '0 '0 ' op os + ?& cJ0 %* .%* *oL$ '"a6 
U 

FIGURE 2.-(a) Correlation between the mean phenotype and the optimum phenotype s. (b) 
The covariance of mean phenotype and the optimum phenotype s. Curve 1: a = .12, p = .8. 
Curve 2: a =  .29, p = .8. Curve 3: a = .12, p = .9. Curve 4: a =  .24, p =  .9. 
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be harmful, so that the optimum mutation rate will be a compromise between 
the optima at relatively few heterotic loci with variable adaptive values of the 
viable homozygote, and the optimum of zero at the rest of the loci. ( 3 )  That a 
given mutation rate is advantageous does not guarantee that it will be selected. 
We are dealing here with a second order type of selection in which the gene in 
question does not appear directly in the expression for TV but acts only through 
its effect on the frequency of other genes. 

Polygenic quantitatiue characters: In  the quadratic deviation model we con- 
sidered a phenotype controlled by two additive loci contributing with effects a, 
and az, respectively. For p = .9, U', = . 1 ,  the optimum a, + a2 = .12. The loci were 
considered to segregate independently. In Table 4 we show the optimum mutation 
rates for different partitioning of the phenotype between the loci. I t  is clear that 
the mutation rate per locus, the total mutation rate over two loci, and the increase 
in phenotypic variance due to mutation are all reduced when the additive pheno- 
typic effect is spread more evently. It was also found that if the phenotype was 
controlled by two loci but mutation restricted to one locus, the optimum mutation 
rate at that locus was greater. A locus with a relatively small part of the total 
phenotype required a much higher mutation rate if it had to provide all the 
mutational variance. 

Our computing system did not permit any extension to large numbers of loci. 
However, it is already clear that polygenic systems in our model have lower 
optimum mutation rates than single locus quantitative genes. 

Combined optima: For most loci, the effect of mutation is to reduce fitness by 
an  amount equal to the mutation rate. This is the familiar mutation load. For 
the loci of models I and 11, fitness increases with the mutation rate with a slope 
that decreases as U increases. Call this function "(U). If the proportion p of the 
loci are of this type, and I-p exhibit ordinary load, then the total fitness for 
genes with the same mutation rate will be pW(u)  - ( 1 - p )  U. It will continue 
to increase with U as long as 

du P 

TABLE 4 

Optimum mutation rates and increased variance at optimum for two loci 

a1 a2 4 VAPHE ( 0 )  

.I2 0 .007 .I9 

.I 1 .01 .006 .20 

.09 .03 ,004. .ll 

.07 .05 .002 .05 

.06 .06 .002 .w 
a, and a2 are the phenotypic effects of the two loci. The last column is the proportionate increase in variance at optimum 

mutation rate over that at no mutation. The autocorrelation of the environment is .9 and the variance . l .  Recombination 
is 50%. 
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From Table 1 we see that in all cases dW/du falls below 2 for some U < .0001. 
Therefore, unless more than a third of the loci are of the type used in model I, 
the combined optimal mutation will be below IO4. And if dW/& is always less 
than ( 1 - p ) / p ,  the optimum will be zero. The slope of W ( u )  can be found 
from 1.05. 

Recalling our assumption that there are no correlations among successive 
environments (so that E ( s s )  = if) and that P = S/( l+S),  we have 

3.02 

Differentiating with respect to the mutation rate U gives 

E(W) = 1-2 - (ISS) ( f - - f ) 2  - ( I f i )  05 

3.03 

We can find &i?/au from the equation for the rate of change of the mean gene 
frequency, which is the same as 1.07 with the term (1-s) U added to show muta- 
tion toward the lethal: 

3.04 
d.f 
dt 

At the steady state, dz /d t  = 0. The right side can then be differentiated with 
respect to the mutation rate U. The higher moments change only very slowly 
with U ,  as seen from Table 1. Thus we find that near U = 0 

-- - i /z {s ( 1 - E )  (3-2) (I +S) + [3f ( l+S) - (2Sfl)  ]U;+ ( I +s (U,}+ (1 -s> U 

and finally 

3.06 
W W )  - 4(2-3) (1-2) 

- 

au (1-25) (2-3) - ?(I--5) + 3 4  

The values of ? , E ,  and U: can be found from Table 1. The most favorable case 
occurs for S = .l, U: = .04. There the estimated slope aE(W)/au is about 24. 

Thus, if even only 4% of the loci are of this type, there will be an optimum 
mutation rate greater than zero. But aE(W)/au decreases rapidly with U ,  and is 
less than 1 at U = 

Selection for the mutation mte: A gene whose only effect is to alter the mutation 
rate does not appear directly in the expression for w. However, it will not be in 
linkage equilibrium with the gene whose mutation it affects. Therefore selection 
on the principal locus will carry selection for mutation rate along with it. Con- 
sider an ordinary locus with the alleles X,, X ,  and the genotypic fitnesses Wll, 
W,,, W2,.  In  the absence of mutation, selection will carry such a locus to equi- 
librium at a frequency of XI given by 

Thus the optimum will certainly be less than 

4.01 
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We do not require that this be a stable polymorphism. Mutation may occur in 
both directions at this locus. Under mutation alone (in the absence of selection) x 
would reach an equilibrium value at 
4.02 Xm = u/(u+v) 

where U and U are the mutation rates to and from xl. Since the mutation rate is 
influenced by a second locus, xm may be a function of the frequency y of the 
mutation rate gene Y,. 

When x is less than xm, increased mutation increases x. Thus, for those gametes 
which carry Y ,  the frequency of X ,  is x+e, where e is positive for x < xm and 
negative for z > xm. The value of e also depends on the closeness of linkage be- 
tween the X and Y loci. Similarly, the gametes carrying Y ,  have a reduced fre- 
quency of X,, equal to x-f.  Since the frequency of X ,  is x, ye = (1-y)f. In  Table 
5 we show the gamete frequencies, genotype frequencies, and their fitnesses. 

From the table we can calculate the marginal fitness of the Y ,  allele, which is 
equal to the weighted average of its homozygous and heterozygous fitnesses. 
This is 
4.03 w(Y,)  = W + e [W,,--W,,-(~W~,--W~~--W~~)ZI 
Thus it follows that y will increase whenever xm-x and 2-x have the same sign. 

The graphical representation in Figure 3 permits us to follow the joint changes 
in x and y.  Under the influence both of selection and mutation, x will approach 
some value between 2 and xm. The higher the mutation rate, the closer it will 
be to xm. This equilibrium value is shown in the graph by the dotted line. Mean- 
while, we see from 4.03 that y increases whenever x is outside the interval ( f , x m )  
and decreases when x lies within that interval. The results are shown by the 
arrows in Figure 3. We see that in a constant environment, selection may 
initially favor an increased mutation rate but eventually x will enter the interval 
(2,xm) and selection will reduce mutation. If f = x,, then of course, mutation 
rate will increase until y = 1, but this is infinitely improbable except when 
both are equal to 0 or 1. In Figure 3b we show that if mutation rate is not 
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1 

Y 

0 

FIGURE 3.-Selection for mutation rate. The abscissa is the frequency z of the principal gene, 
the ordinate is the frequency y of the gene that increases mutation. The dotted line is the equi- 
librium value of z for each y, z is the equilibrium of 2 under selection alone and zn2 is the equi- 
librium of z under mutation alone. Selection and mutation together move z toward the dotted 
line while y increases outside the interval ( 2 , ~ ~ )  and decreases within the interval. 

affected equally in both directions, for some value of y we may have x = xm. 
This does not change our conclusion. 

In a variable environment, f is no longer constant, and x is distributed around 
some mean value. In model I, mutation was toward increased x, and we showed 
that x is usually below the average f. Thus selection will favor an increased 
mutation rate. But as the mutation rate approaches its optimum, the average gene 
frequency approaches 2. Then x is above and below f more or less equally often, 
and progress halts. 

In model 11, the symmetry assumptions are such that without mutation, or 
with x, = f, x is equally often above or below f. If x, is much greater than 
2, x is usually between the two and mutation rate will be reduced. But if z, 
is near enough to .5, and if the variance of the environment is great enough, 
then x will lie outside the interval most of the time and an increased mutation 
rate may be favored, or a polymorphism for mutation rate genes may be main- 
tained. 

The models used in this study are of course rather specialized. They were 
chosen not because they represent common situations but because they emphasize 
particular aspects of the effects of mutation. The essential feature of the first 
model is that under fluctuating conditions the frequency of the least favored 
allele will be below optimum. If mutation toward a lethal is advantageous, it 
would also be advantageous in models with less deleterious homozygotes. 

Similarly, model I1 isolates the effects of mutation on variance of gene fre- 
quency and on the correlation between gene frequency and environment. 

Although both models show ways in which recurrent mutation contributes to 
fitness, the optimal values which they predict are excessive. But we cannot correct 
these estimates quantitatively on the basis of present knowledge. We do not know 
what proportion of the loci influenced by a given mutation rate gene are of the 
type required (with unequal average fitnesses of homozygotes and fitnesses fluc- 
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tuating widely with the environment). We don't know the variance of the selec- 
tion coefficients found in nature. We do not know over how many loci the pheno- 
typic effects are spread. Therefore, the theory can only lead to qualitative 
predictions in the form of inequalities: 

(1) Both models predict that mutation rates will be greater in variable than 
in constant environments. This  could be tested comparing temperate and tropical 
populations of the same or related species. (2) Widespread, ecologically plastic 
species experience greater environmental diversity than those with narrow 
specialized niches. Thus we expect the mutation rate to be greater in the species 
with broad adaptation. (3)  Within species, the mutation rates should be greater 
for phenotypes whose relative fitness is very sensitive to environmental change, 
and less for traits whose fitness is more fixed, such as those related to the canali- 
zation system or reproductive organs. Mutation rate here must be measured as 
rate of production of phenotypic variance. (4) For loci of variable fitness, muta- 
tion toward the allele of lower average fitness should be greater. ( 5 )  It may be 
possible to demonstrate selection for mutation rate in laboratory populations by 
the appropriate pattern of varying selection on the phenotype. 

SUMMARY 

The effects of mutation rate on the components of population fitness in a vari- 
able environment were studied anlytically for populations with the steady state 
distribution of gene frequency and by semi-Monte Carlo simulation on a com- 
puter. Population fitness was analyzed into components due to changes in the 
mean gene frequency, the variance, and the correlation between gene frequency 
and environment. In an asymmetric model using a single heterotic locus it was 
shown that the mean gene frequency of the less favored allele under variable 
selection is below optimum, so that mutation toward this allele is advantageous. 
In  a symmetric quadratic deviation model, the advantage of mutation is the 
reduction of variance of gene frequency and an increase in the correlation be- 
tween the mean phenotype of the population and the optimum phenotype which 
is an environmental variable. However mutation had the adverse effect of in- 
creasing the average phenotypic variance within the population at any given 
time. These different effects of mutation result in optimal mutation rates which 
were calculated to be much higher than those observed in nature. However, when 
the effects are spread over many loci and we look at the total phenotypic vari- 
ance added by the optimal rates it may fall within the observed range. It was 
shown that selection may increase the mutation rate in a variable environment 
especially in asymmetric models. Finally, it is concluded that mutation rates in 
nature should be greater in broad-niched, unspecialized species than in restricted 
species, in variable climates than in stable ones, and for traits whose fitness is 
sensitive to the environment than in traits of more or less constant fitness. 



178 R. LEVINS 

LITERATURE CITED 

HALDANE, J. B. S., 1957 The cost of natural selection. J. Genet. 55: 511-524. 
KIMURA, M., 1960 Optimum mutation rate and degree of dominance as determined by the 

principle of minimum genetic load. J. Genet. 57: 21-34. 
LEVINS, R., 19Ma Theory of fitness in a heterogeneous environment. 111. The response to 

selection. J. Theor. Biol. 7: 224-2443. - 1964b Theory of fitness in a hetergoeneous 
environment. IV. The adaptive significance of gene flow. Evolution 18: 635-638. - 
1965 Theory of fitness in a heterogeneous environment. V. Optimum genetic systems. 
Genetics 52: 891-904. 

WRIGHT, S., 1931 Evolution in Mendelian populations. Genetics 16: 97-159. 


