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A simple model for the evolution of closer linkage between two linked loci was 
outlined by R. A. FISHER in 1930. Though unaccompanied by any theoreti- 

cal analysis FISHER’S brief discussion was the basis for most of the subsequent 
analysis of the interaction between selection and linkage. The first attempt at a 
specific analysis of the two locus case was by WRIGHT ( 1952) using a simple sym- 
metric viability model. KIMURA (1956) analyzed a model which showed how 
natural selection could give rise to closer linkage between two loci. LEWONTIN 
and KOJIMA ( 1960) later derived equilibrium frequencies and stability conditions 
for some further special two locus cases which illustrated the importance of the 
interaction between linkage and viability interactions. The interaction between 
selection and linkage in evolution was extensively reviewed by BODMER and PAR- 
SONS ( I  962). Their analysis of the two locus case placed special emphasis on the 
effects of linkage on the conditions for the increase of newly arisen gene com- 
plexes. Many papers have appeared since this review which extend these earlier 
results in various directions. In particular there has been some emphasis on more 
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penetrating numerical investigations of the two locus case (KOJIMA 1965; LEWON- 

TIN 1964 a,b,c; PARSONS 1963 a,b; JAIN and ALLARD 1965; SINGH and LEWONTIN 
1966) and on evaluating the effects of inbreeding on the interaction between se- 
lection and linkage (JAIN and ALLARD 1966). The main aim of this paper is to 
provide the theoretical background for some of the results given by BODMER (in 
BODMER and PARSONS 1962) and to extend and amplify the treatment of the two 
locus case with random mating. No specific attempt will be made to review all of 
the more recent literature though we have endeavored to include most of the 
relevant papers in the list of references. 

After reviewing the derivation of the general equations we obtain a necessary 
condition on the viabilities for the existence of a “linkage equilibrium” and show 
that this is satisfied by simple multiplicative and additive models. We determine 
next the nature of the equilibria given by a general symmetrical model and then 
examine the conditions for the increase of newly produced gametic combinations. 
Finally we shall make some attempt to synthesize the overall properties of the 
two locus, random mating equations. 

1. The General Model 

In  a random mating diploid population with discrete generations, the fitness of 
any genotype will be proportional to the probability of its survival to maturity 
multiplied by its fertility. BODMER (1965) has shown that if the fertility of a 
mating is the product of the fertility values of the parents, Hardy-Weinberg pro- 
portions will obtain in the offspring provided that the fertility values of the sexes 
are the same. These conditions are assumed to hold in all the following deriva- 
tions. In addition, we ignore random fluctuations in gene frequencies, even when 
these are small, and assume that population sizes are infinite. 

Let the frequencies of chromosomes AB, Ab, aB and ab be given by xl, x2, x3 
and xq and let w L j  be the fitness of a zygote consisting of chromosome types i and j .  
The derived scheme of genotype fitnesses and frequencies is shown in Table 1 in 
two forms. Table l a  lists them according to the gametic contributions from the 
parents while Table l b  lists them according to their states at the two loci. BODMER 
and PARSONS (1962), and others, showed that the equations for change in the x, 
are given by 
( l a )  
(1b) 
(IC) 
(Id) 
where r is the recombination fraction between the loci A and B, 

f o r i =  1 ,2 ,3 ,4 ( 2 )  

x ’ ~  = [x, w1 - r(w14 x1 xa - wZc x2 x,) I/W 
x‘, = [x2 w 2 + r(wI4 x1 xq - wZ3 x2 x3) I/W 
z‘, = [x, wB + r(wla z1 x4 - wZ3 x? x3)I /W 
Y4 = [z, w4 - 7-(W1( XI54 - wz, 5 2  x 3 ) ] / W  

4 

W, =z E xj Woj, 
J = 1  

and 
w = x1 w* + XL w:! + 5 3  w3 + 2 4  wq 
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TABLE 1 

Fitnesses and frequencies of genotypes 

(a) 

239 

AB il b aB ab 

AB 

Ab 

aB 

ab 

BB Bb bb 
~ ~~ 

A A  WI 1 W12 w2 2 

x21 21, x, xe2 

AQ w13 w14, w23 W2 4 

2x1 x 3  2% xq, 2% x 3  2x2 2 4  

aa w 3  3 w 3 4  w 4 4  

XZ9 2x, x ,  XZ4 

The frequencies of the gametes AB, Ab, aB and ab are I,, xt, x 3  and x, respectively. w,, is the fitness of the genotype 
formed by the combination of the ith with the jth gamete. Assuming random mating, this has a frequency 21, I,, i # i 
and xZt, i=  j .  

These equations are similar to those derived by LEWONTIN and KOJIMA (1960) 
but allow for a difference between the fitnesses of coupling and repulsion double- 
heterozygotes. Note that the numbering of the gamete types differs from that in 
BODMER and PARSONS (1962). 

We shall make use of the parameter D = x1 x4 - xs x3, which is a measure of 
gametic interaction. The gamete frequencies can be expressed as functions of pl = 
x1 + x2, the frequency of A: p 2  = x1 i x3, the frequency of B, and D, the gametic 
interaction as follows: 

xi = pi p-. + D 
z = p l  (l-p2) - D  
13 = (l-pl) p. - D 
2% = (1--p1) (l-pz) + D 

( 3 )  

D thus measures the difference between the frequency of the gamete A B  and the 
frequency which would be obtained if alleles A and B were randomly associated 
in the population, and similarly for other gametic types. D has often been re- 
ferred to as the “linkage disequilibrium” parameter, and more recently as the 
“gametic phase unbalance” (JAIN and ALLARD 1966). 

2, The Condition for the Existence of a Nontrivial Equilibrium with D = 0 
When D = 0, the gamete frequencies can be expressed as the products of the 

appropriate gene frequencies, so that the two loci are effectively independent. It 
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is a classical result due to JENNINGS (191 7) that, in the absence of selection, the 
gamete frequencies approach this state at a rate 1 - r. However in the presence 
of selection, even when r = 1/2, this is no longer true as was pointed out by 
WRIGHT (1952) for a special set of symmetric viabilities. ID1 has a maximum 
value of s, when either x1 = x4 = 0 and x2 = x3 = % or xl= x4 = 1/2 and x2 = 
x3 = 0, representing the maximum possible disturbances from independence be- 
tween the loci. BODMER and PARSONS (1962) outlined the derivation of a general 
condition that must be satisfied by the selective values in order for a nontrivial 
equilibrium with D = 0 to exist (see also MORAN 1964 and LEWONTIN 1964a,b). 

Assume for simplicity that w14 = wZ3 so that equations (1 ) take the form 
W x', = x, w, - r w14 D, 
W x', = x, w, -t r w,, D, 

f o r i =  1,4 
f o r i  = 2, 3 (4) 

Then a nontrivial equilibrium with D = 0 will only exist if  ZLF~ = W for all i. These 
equations together with D = 0 and x1 + x2 + x3 + x4 = 1 impose a single condi- 
tion on the viabilities which, using equations (3), is given by eliminating pl, p2 
and LE from the following four equations. 
( 5 )  pip? (wll-wz?-wL3+w,6) 4- p1 (w,2-w,i) -I- p2 (Wi3-w*4) - -w = --w24, 

for i= 1,2,3,4 
Applying Cramer's rule for the solution of a set of simultaneous linear equations 
and expressing the fact that p1 p2 = p 1  x p2 the condition can be written in the 
f" 

= O  
There is no obvious general parametrization for the selective values which en- 
compasses this single condition although there are two interesting special cases, 
the "additive" and the "multiplicative" models for which it is satisfied. 

3. The Additive Viability Model 

When wil - wi2 - wiz + wi4 = 0 for all i equation (6) is clearly satisfied. In 
this case the fitnesses can be expressed in the form given in Table 2 assuming 
the coupling and repulsion heterozygote fitnesses are equal, i.e., w14 = w23. It can 
then easily be shown that 

and 
corresponding to the relevant solutions for the two loci considered separately, is a 
unique solution. Thus equations (4) give, at equilibrium when x ' ~  =xi, and 
dividing each by xi and taking the second and third from the first and fourth 
equations 

pl = (a2 - a3)/(2a2 - a, - a3) p z  = (b2 - b3)/(2b2 - bl - b3) 
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TABLE 2 

Fitness scheme for  the additive model 

24 1 

BB Bb bb 

AA 
Aa 
aa 

(7) 
1 1 1 1  
XI Xz 2 3  I4 

w1-w2-w3+w4 = rw14 D (- + - + - + -> = 0 , 
when the viabilities are additive. Since l/xl + l/x, + 1/x3 + 1/x4, r and w14 are 
intrinsically positive we must have D = 0. Given D = 0 it is easy to determine 
the stated equilibrium as the unique internal solution of equations ( 5 )  and SO of 
the general equations (1) for this additive model (see also MORAN 1967). The 
solution is, of course, valid only if a, > a,, a3 and b, > b,, b,. It will be shown later 
that in this case there exists no stable point on the boundaries of the gamete 
simplex, so that this solution is almost always stable when it exists. Only for very 
special combinations of the viabilities can one construct models giving no unique 
stable equilibrium. 

4. Multiplicative Viability Model 

The fitness scheme for the multiplicative model is illustrated in Table 3. It can 
easily be shown by substitution into equations ( 5 )  that 

is a solution which satisfies the condition D = 0 (see also MORAN 1967). AS for 
the additive case, this corresponds to the equilibria obtained separately for each 
of the two loci. It will, however, be shown below that in this case other internal 
equilibria can exist which may be stable when the equilibrium with D = 0 is 
not stable. The condition for  stability depends on the recombination fraction r. 

pi = (a2-%)/(&~-(1'i-(Y3) pz (p,-p,>/(28,-p,-p3> 

5. A General Necessary Condition for the Stability of 
a Nontrivial Equilibrium with D 0 

A necessary condition for the stability of a nontrivial equilibrium with D = 0 
can be obtained by examining the behavior of equations (4) in the neighborhood 
of D = 0. Substituting from equations ( 3 )  into equations (2) we obtain 

TABLE 3 

Fitness scheme for ths multiplicatiue model 
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(8) Wi=Wti(p$?fD) fWliz[pi(l--pz) -D]  fWt3[(1-~i)pz-D] 
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+ Wt,C(1--p.1) (l-pz) + Dl 
or 

where 

is the marginal fitness of the ith gamete when D = 0 and = W ~ ~ - W ~ ~ - W ~ ~ + W ~ ~ ,  

is a measure of the additive viability interaction, which is zero for all i in the 
additive model. Thus 

wi = W$ * + DeZ, i = 1 , 2 , 3 , 4  

wt* = u t 1  PI pz + Waz pi(1-P~) + wt3(1-pi) pz + Wi4(1-pi) (1-p~) 

4 

(9) 23 = wzxz = (Wl++DEl) (p1pzSD) + (WZ*+D&Z) (p1(1-p2)-D) 
1 = 1  + (2% *+DE,) ( ( 1 -p1) ps-D) + (Wl*+DEd ( ( 1 -p1) ( 1 - p d  +D> 
Li?* f 20; + D2 (&1-&2-&3+&q) 

where 

in the mean fitness when D = 0 and 

Note that for the additive model, when E %  = 0 for all i, zij = E* for all values of 
p l ,  p 2  and D. From equation (4 )  we have 

- 
w* =w1* Plp2-k w2* pl(l-pZ) f ~ 3 * ( 1 - ~ 1 ) ~ + ~ ~ * ( ~ - ~ 1 )  (1-pZ) 

- 
E EiPiPz + EsPi (1-p~)  + E3 ( 1-pl) pz + -5.i ( l-pi) ( 1-p~)  = W1 *-Wg *-Ws*+W4*. 

(1 0) w2 w2 (21’24‘ - xZ’x3’) 

= (w1z1-rwl4D) (w4x4-rw14D) - (w2x2+rw14D) (w3x3+rw14D) 
= w1w4x1x4 - w2w3x2x3 - rw14 W D. 

Substituting into this equation from equation (8) we obtain 
(1 1 ) 2 3 2  D’ = p1 (1 -pl) p.2 ( l-pz) ( w1*w4*-w2*w3*) + D[Pl(l-pl) p2(1-p2) (&4EUI1*+&1W4*-&3W2*-&2W3*) 

+ [p1(l-p2) + pz(l-p1)1 (W2*W3*-Wl*W4*) 

+ &1W4* + % W l *  + [p1(1-p*) + p,(l-p1)1 [ E 2 W 3 *  + &3W2*-E1W4*-E4Wl*]] 

+ &4W1* - E Z W 3 *  - &3WZ*] 

+ wl*w4* - rw14 Li?] 
+Ds[p1(1-Pl) pZ(l-pZ) (&1&4-&2&3) + w1*w4* - W2*W3* 

+D3[(pl(l-p2) +pZ(l-pl)) (&2&3-&1&4) + & 1 E 4  + E l W 4 *  

f D4 ( E 1 E g - E z E 3 ) .  

KIMURA (1965) has indicated by an analysis of an equation analogous to equa- 
tion ( l l ) together with some numerical simulations that when r is near 0.5 or 
fitness interactions are small, a state near D = 0 is rapidly approached and 
FISHER’S fundamental theorem holds to a good degree of approximation. 

At a nontrivial equilibrium with D = 0, from equations (4) and (8) wl* 
w4* = wz* = w3* = W. Thus if D is perturbed from an equilibrium with D = 0 
keeping pl  and pz constant at their equilibrium values, it will change in the fol- 
lowing generation to a value given by 

- nul4 231 + 0(DZ> 
where E, p l  and p 2  take their equilibrium values. A necessary condition for the 
equilibrium to be stable is, therefore, that ID”] < ID/. When the coefficient of D 
on the right hand side of equation ( 12) is positive, we have 

(12) W 2  IT = D[pl(l-pl) pz(l-pz) W ( & I - E Z - E Q + E 4 )  + 
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W 2  > p1(l--p2) p*(l-p2)W(El-EL-E?+&4) + W?-?-w14 W 

r > pl(l-pl) p2(1-p2) (El-EZ-EJ+E4)/W14 . 
which gives 

If, on the other hand, 

then 

(13) 

pl(l-pl) p2(1-p2) W ( E ~ - E ~ - E ~ + E ~ )  + W 2  - rwll W < 0 

r > [pl(l-pl) p2(l-p2) ( E ~ - E ~ - Q + E ~ )  + W I / W ~ ~  
> p1(1-p1) p2(1-p2) (&l-E2-E3fE4)/W14 

since 
the form 

which reduces to 

and w14 are intrinsically positive. The condition lD'/D/ < 1 now takes 

- w2 > rw14 W - Lu' - pl( l-pl) p2(1-p2) W ( E ~ - E ~ - E ~ + E ~ )  

- 
W 

+2-. pl (I-pl) p2 (1-pZ) (&1-&2-&3+&4) r <  
w 1 4  w14 

The equilibrium with D = 0 can, therefore, only be stable if r- lies between the 
values 
(13a) - 
pI(1-pl)pZ(l--p2) (&1-&2-&3+&4) pl(l-pl)pZ(l-pZ) (E1-&2-&3+&4) +e. and 

w14 U 1  4 w14 

Since W/wI4 will, for most reasonable sets of fitness values, not deviate markedly 
from 1,  condition (13) will generally predominate. So long as E ~ - E ~ - E ~ + F ~  > 0, 
there will always exist a lower limit on r below which the linkage equilibrium 
cannot be stable. For the additive model, E ~ - E ~ - E ~ + E ~  = 0 and condition (13) is 
always satisfied. 

It can easily be shown that for the multiplicative model 
W l * W 4 *  - w 2 *  w3* = 0 

for all values of pl and p2  so that, from equation ( l l ) ,  D = 0 is an eigenvector 
for linear perturbations of D, p l ,  and p2  from their equilibrium values. Thus 
(13a) gives the condition for D to increase from D = 0 in all directions, that 
is for all values of pl  and p 2 .  Since the stabilities of the gene frequencies to per- 
turbations from their equilibrium values when D=O are guaranteed by the 
heterotic nature of the fitness scheme, required for this equilibrium to exist, the 
eigenvalues for the eigenvectors orthogonal to D = 0 must both be less than unity, 
so that condition (13a) now becomes a necessary and sufficient condition for  
stability of the equilibrium with D = 0. The fitnesses given in Table 3 can be 
written, without loss of generality, in the form a2 = p2 = 1, a1 = l-sl, a3 = 1- tl, 
p1 = l-sZ, p3 = 1-t, so that the equilibrium is at 

We then have 
pl = tl/Sl+tl p2 = ta/s2+tz. 

E1 = w11 - W l Z  - w13 + w 1 4  = alp1 -alp2 - ff2pl + f f 2 p 2  

= (l-s*) (1-s2) - 1 + SI-1 + Sz + 1 = SlS2 
and similarly fo r  e2, c3 and E~ so that 

and condition (13) takes the form 
E1 - E 2  - E 3  + E 4  = (Sl+ti) (Sz+tz )  
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> ( Sltl ) ( sd2 ) 
s1 + tl sz + tz 

NOW Sltl/(sl+tl) and s2t2/(s2+t2) are the “marginal” segregation loads at loci 
A and B respectively. Thus, two multiplicative overdominant loci cannot be at a 
stable nontrivial equilibrium with D = 0 if the recombination fraction between 
them is less than the product of their segregational loads. 

LEWONTIN’S (1 964b) second five-locus model involves multiplicative determi- 
nation of fitnesses. It is interesting to note that, although he finds that the equi- 
librium involving D = 0 becomes unstable at about r = 0.065, the above formula 
(14) predicts that it should become unstable at r = 0.0625. This shows that with 
more than two loci segregating, higher-order gene interactions play some part, 
although perhaps only a small one, in further increasing the minimum value of 
1“ necessary for the stability of an equilibrium with D = 0. 

6. A General Symmetrical Viability Model 

6.1 Deriuation of the equilibrium solutions. It has not, so far, been possible to 
obtain general explicit solutions for the equilibria given by the equations (1 ) . A 
number of authors (WRIGHT 1952; KIMURA (1956; LEWONTIN and KOJIMA 
1960; BODMER and PARSONS 1962) have however considered simplified symmetric 
viability models which can be completely solved. A symmetrical fitness scheme 
which includes essentially all of these models is given in Table 4. When a: = 6 it 
corresponds to LEWONTIN and KOJIMA’S (1960) model, when ,8 = y it corresponds 
to BODMER and PARSON’S (1962) model (of which WRIGHT’S (1952) is a special 
case) and when 8 = -s+t, Q = s+t, p = 0 and y = t it corresponds to KIMURA’S 
(1956) model. 

For this model equation (1) takes the form - wl’x,‘ = x1 - 8xI2 - ,8xlx2 - yx1x3 - rD 
w i x ;  = x2 - /3xlxz - mxZ2 - yx2x4 - rD 
WX3’ = 2 3  - yx1x3 - a x 3 2  - px3x4 + rD 
Ex,’ = x4 - yx2x4 - px3x4 - 6xa2 - rD 

- (15a) 
(15b) 
(15c) 
(15d) 
where 

At equilibrium when xi’ = xi, subtracting (15a) from (15d) and (15b) from 
(15c) gives 

E = 1 - 6 (X12+X4*) - Q(X22+Z3’) - 2p(x324+5152) - 2y(x123+x2x4). 

(16) E(x~-x~)  = x1-x4- S(X~’-X~‘)  - P ( X ~ X ~ - X ~ Z ~ )  - Y ( S ~ Z ~ - X ~ X ~ )  

w ( 4 3 3 )  = 2 2 - 2 3  - (Y (x2*-x32) - p ( 21&-X3x4) + y (2159-2zx4) 

TABLE 4 

Fitness scheme for general symmetrical viability nodel 

A A  
An 
aa 

Wll = 1--6 W12 = 1--p W Z 2  = I-a 
W13 = I-y WZ4 = I-Y 
w33 = I-a w34 = 1-/3 Wq4 = 1--6 

WI4 = 1 = W Z 3  
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so that x1 = T,, x2 = x1 clearly gives an equilibrium solution of equations ( 1  5 ) .  It 
can be shown that when ,8 = y > 0 and a,8 > 0 no other equilibrium can exist in 
which x1 f x4 and xz .f; x3. However, equilibria with x, =x4 and x2 # x3 (or vice 
versa) do exist for certain special values of the fitnesses. When a, p, y, 8 are not 
all positive, equilibria in which x1 # x4 and x2 # x1 also, sometimes, exist. Details 
of these analyses will be published elsewhere (BODMER, M. FELDMAN and S. 
KARLIN. in preparation). I t  seems likely, however, that in general equilibria in 
which either x1 # x4 or xr # x3 are of little biological significance since their 
existence depends on special relationships holding between the viabilities. 

When xI = xq and x? = x3 we have 
X I +  x2 = 5 3  + 2 4  = i /z  = p1= l-pl 

x1+x3 = Z2+Z4 = i /z = p2 = (I-&. 
and 

Substituting xI = % + D = x4 and x2 = % - D = x3 in equation (15a) gives the 
following cubic equation for the value of D at equilibrium, 
(17 )  
where 1 = 2(,8+y) - (aS.8) and m This equation is equivalent to 
equation ( 7 )  of BODMER and PARSONS (1962), since ,8 and y only occur in the 
form ,8 + y so that setting /3 =- y results in no loss of generality for the model as 
far as the equilibrium solutions with x1 = x4 and x2 = x3 are concerned. A number 
of special cases of equation ( 1  7 )  are easily solved and will be considered next. 

When r = 0, so that the system is equivalent to a four allele model, equation 
(1 7) reduces to 
(18 )  
giving D = + %, - s a n d  
The first two solutions correspond respectively to the equilibria x2 = x3 = 0 and 
xI = x4 = 0, when either gametes aB and ab or A B  and A b  are absent from the 
population. 

If m = 0 or 8 = a, which is the case considered by LEWONTIN and KOJIMA 
( 1960). equation ( 1  7 )  reduces to 
(19 )  D(64  1D’ - 4(2--8r)) = 0 
giving D = 0 (i.e., z1 = zz = x3 = x4 = x) or D = * $& ( 1 -  (8r/Z) ) $5. The solu- 
tions other than D = 0 are only valid if ID/ < % that is, if 2 > 0. D = 0 is only 
a root of equation ( 1  7 )  if m = 0, which in this case is therefore a necessary condi- 
tion for the existence of “linkage equilibrium.” 

The case considered by WRIGHT (1952) corresponds to 1 = 0, when equation 
(1 7 )  reduces to 
(20) 
giving solutions 

64 2D3 - 1 6 m P  - 4(2 - 8r)  D + m = 0 
(8-a). 

(16 D:’-l) (4ZD-m) = 0 
m/41. 

16 mD’ - -  32 rD - m = 0 

D = - t (  r 16 r2 4- mz)E )* + % ( + 16 &)!’ 
m 16 m2 m m .  

When r / m  is small, we have D = * 4- r / m  + 0 ( r 2 / m 2 ) .  On the other hand, 
when r / m  is large ( m / r  small) D = ( 1 /32)  ( m / r )  -t 0 ( m2/rz ) .  

Following BODMER and PARSONS (1962) ,  useful approximate solutions to 
equation (17)  can also be obtained when r is small and 1 +: 0, m # 0. Differenti- 
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ating equation (1 7) implicitly with respect to r gives 
dD dD dD 
dr dr dr 

192 1D2- - 32mD-- 4(Z-8r) -4- 32 D = 0 
or 
(21 1 dD/dr = 8D/(1- 8r + 8mD - 4810’). 
Using Taylor’s theorem in the neighborhood of the three solutions of equations 
(18)’ namely, substituting r = 0 and D = %, -% and m/4Z into equation (21) 
gives the following approximate solutions, to O ( 1’) , 

r r 
(22a) D = % - - . x1=x4=1/2-- m # l  1-m ’ 1-m ’ 

r r (22b) D = -  % +-* X , = Z ~ = - -  
l+m ’ m+l ’ m f -1 

m 2m m 2m 
41 1‘-m2 ’ 31 1’-m2 

(22c) D = - + - .  x, = xq = % + -+ ~ 

Note that solution (22a) is only valid when 1-m > 0 or ,# + y > 8 and (22b) is 
only valid if I+m > 0 or ,# + y > a. The first and second solutions correspond to 
equilibria in which either gametes AB and ab o r  Ab and aB are in the majority, 
and represent extreme cases of linkage “disequilibrium”. The conditions for their 
existence correspond to the type of optimum model proposed by MATHER (1941 
and later), as discussed by BODMER and PARSON (1962). The third solution 
corresponds, in general, to an equilibrium near x1 = x2 = x3 = x4 = %, or near 
D = 0, provided m/l is small. Numerical examples of solutions of equation ( 1  7) 
have been given by WRIGHT (1952), KIMURA (1956), LEWONTIN and KOJIMA 
(1960), BODMER and PARSONS (1962), PARSONS (1963a), and JAIN and ALLARD 
(1966). 

6.2. Conditions for the stability of the equilibria. In  order to investigate the 
stability of an equilibrium given by x1 = x, = x, x, = x3 = % - x (i.e., D = 
- $& + x), we examine the behavior of equations (15) in the neighborhood of the 
equilibrium. Substituting into these equations 

where X, + X, = X, + X,, and ignoring quadratic terms in XI, X,, X ,  and X, 
gives the following set of linear equations relating X’, to X,, i =  1,2,3,4: 
(23a) GX’, = X,[l- 28x - (1/2 - x) ( p  + y )  + 28x2 + 2x( 1/2 - x) ( p  + y )  I 

+X, [Px - r/2 - 21 ( 1/2 - z) a - 2s’ ( p + y ) 3 
+X,[yx - r/2 - 2x( 1/2 - z ) a  - 2x’(,# + y )  I 
+x4[26S’ + 2X( % - X) ( p  + y) ]  

+X, [I - ( p  + y ) z  - 2a( % - z) - r/2 + 2a( % - x)’ 

+X, [- r/2 + 2 (% - x) ‘01 + 22( % - Z) ( p  + y ) I 
+X4Cy(%-x) -2W%--) -2 (% - S I 2  (P+Y)l  

+X,[-r/2+2(1/2 - x ) z a + 2 x ( i / - x ) ( p + y ) l  
+Xx,[l-  ( , # + y ) ~ - 2 a ( 1 / 2 - x ) - r / 2 + 2 a ( % - x ) ’  

x1 = x + x,, xz = 1/2 - x - x 2 ,  z3 = % -x-xx,, xq = x + x4 

(23b) u)eX’,=XI[,#(%-~) - 2 S z ( i / - ~ )  - 2 ( 1 / 2 - ~ ) ’ ( J 3 + ~ ) ]  

+ 2x(% -.I (P+Y)l 

( 2 3 ~ )  GeX’s=Xl[y(s-z)  - 2 6 ~ ( % - ~ )  -2(%-5)’  ( p + y ) ]  

+2x(%---)(P+r)l  



LINKAGE AND SELECTION 247 

+x,rp(% - z) - 2 4 %  - 2 ) s  - 2 ( %  - 

+X,[yz- (r/2) -2x(% -.)a-222(p+y)l 
+x, [pz - (r/2) - 2 4  1/2 - z ) a  - 22, ( p  + y )  1 
+X,[1 - 2sx - (% - s) ( p  + y)  + 2sz2 + 2x(% - z) ( P  + y ) l  

(P  + Y ) l  
(23d) WJ’, = X1[2Sz2 + 22( % - X) ( p  4- y ) ]  

where W e  = 1 - 2Sx2 - 2a( 1/2 - s), - 4 ( p  -I- 7) z( % - s) is the value of b at 
equilibrium. 

Adding and subtracting equations (23a) and (23d), and (23b) and ( 2 3 ~ )  gives 
(24a) W,(X’, + X’,) = (X, + X,) (1 - 2Sz - (% - z) ( p  + y )  + 4 6 2  
+ 4 4 %  - z) ( p  + y ) )  + (X, + X,) ( ( p  + y )  x- 7- - 4.(% - x > a  - 4z2(P + Y ) )  

-4(% - x > z  ( P  + Y > >  + (X, + X,) (1 - ( p  + y ) z  - 2 4  q‘? - s) + 4a( % -z) a 

+ 4 d %  -x> ( P  + U > >  

(24b) IZ,(X’~+X’~) = ( X 1 + X , ) ( ( p + y ) ( % - ~ )  - 4 ~ ( 1 / - - ) S  

( 2 4 ~ )  be(X’1-X’d) = (xl-XX,)(1-2Sz- ( i /z-X)(p+y))  
+ (X, - X,) (P  - y ) z  

( p  - y)  + (x,-Xx,)(1--(%--) - d P + y ) )  
(24d) be (X’, - X.3) = (XI - X4) (% - 

It is easily seen that equations (24a) and (24b) are equivalent since Xl 4- X, = 
X, + X,. The system of linear equations (23) can thus be transformed into 
equations (24c) and (24d) , involving only X, - X, and X, - X, and the follow- 
ing equation in Z = XI + X, = X, + X,, 
(25 1 
The equilibrium will, therefore, be stable provided IZ’/ZI < 1 and the charac- 
teristic roots of the pair of linear equations (24c) and (24d) both have modulus 
less than unity. When the coefficient of Z on the right hand side of (25) is posi- 
tive, the condition for 2 gives 
(26) be > 1 - r + 22(1 - 2z)Z - % ( p  + y )  or 

r > 1 +22(1-2z)  - % ( p + y )  - 6,. 
When, on the other hand, 

l-r+2z(l-2z)l-% ( P + y )  < o ,  
the condition IZ’/ZI < 1 gives 

since We is positive. These two conditions combine to give 
(26a) 1+2z(1-2z) l -x  ( p + y )  <r<1+2~(1 -2z )Z-x  ( p + y )  +be. 
Since, in general, be will not be much less than one, and p, y < 1, the upper limit 
on r in (26a) is of little significance and thus condition (26) generally predomi- 
nates. Substituting for IZe into condition (26) gives 

where I and m are defined as before. Thus, since equations (24c) and (24d) do 
not involve the recombination fraction r, (27) is, essentially, the only condition 
which relates the value of r to the stability of the equilibrium, but it is by itself 
only a necessary and not a sufficient condition for stability of the equilibrium. 
This condition is equivalent to equation (8) of BODMER and PARSONS (1962). The 

be 2’ = Z (  1 - r + 2z( 1-22) I - 1/2 ( p  + y )  ) . 

b e > r - 1 - 2 ~ ( 1 - 2 ~ ) 1 +  % ( p + y ) ,  

(27) I* > - (Z+m)/4 + (31 + V Z ) X  - 61~’ 
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characteristic equation for equations (24c) and (24d) reduces after some manipu- 
lation, to 
(28) X2We2-hWe[2-226s -2~(1 /2 -x )  - 1 / 2 ( P + ~ ) ]  + 1  + 4 ~ ( ? , 4 - ~ ) P y  

+46ax(1/2-x) -262-2O1(1/2-x) - i / z  ( P + y )  
+ 2 ( P + y )  (8x'+O1(1/2--x)2) = o ,  

which can be used to check the stability of an equilibrium in conjunction with 
condition (27). Equation (28) has, in general, no simple rational solution. When, 
however, 01 = 6 and x = % ( D  = 0) , corresponding to one of the equilibria dis- 
cussed by LEWONTIN and KOJIMA (1960), it has the solutions 

yielding the two stability conditions 

which are equivalent to 
(29) a > O  and a >  IP -y l .  
Substituting 01 = 6 and x = % into condition (27) gives r > 1/8, which together 
with (29) gives the complete sufficient condition for stability of this equilibrium 
(LEWONTIN and KOJIMA 1960). It is interesting to note that I 2 1/8 is the con- 
dition for the existence of the other two solutions of equation ( 19). 

The multiplicative model given in Table 3 reduces to a special case of the sym- 
metrical model with m = 6 -a = 0 when 0 1 ~  = P2 = 1 and a1 = (lis = l-sl, 
P1 = /I3 1-s2. The conditions for the stability of the equilibrium with D = 0, 
namely (29) together with r > 1/8, reduce to 
(30) r > % s1s2, (l-sl) (l-sz) < 1 
so that it is clear that, for the multiplicative viability model, if r is sufficiently 
small, stable nontrivial equilibria with D = 0 cannot exist, and so stable equilibria 
with D + 0 will usually exist. As pointed above, this is not true for the additive 
fitness model given in Table 2. 

When r is small, substituting the approximate solutions (22a) and (22b) into 
condition (27) gives, to 0 (r2), 

r < (1-m)2/81 and r < (1+m)2/81 
respectively, as necessary conditions for the stability of these equiilbria. When 
r = 0 and x = 0, equation (28) has solutions 

( l / f i e )  (1 - (P  + 01)/2) and ( 1 / f i e )  (1 - ( Y  + 01>/2) 

f f > y - P  and a > p - y , s i n c e P , y , a <  1, 

and s1 + sz - s1s2 > Jsl-sI/ 

l - a  1 - (P+u) /2  and 
1 - O1/2 1 - O1/2 

both of which are less than one, if ,8 + y > > 0, which is the condition for  the 
existence of the equilibrium given equation (22b). Thus provided r is small 
enough, stable equilibria in the neighborhood of x = 0 and x = 1/2 will always 
exist so long as p + y > 01 and + y > 6, respectively. 

7. Conditions for the Increase of a New Allele Linked to a Polymorphic Locus 

We assume that, initially, gametes aB and ab are maintained polymorphic by 
an advantage of the heterozygote aB/ab over both homozygotes aB/aE and ab/ab, 
and examine the fate of gametes AB and Ab following their introduction into the 
population at low frequencies. We shall obtain the conditions for the increase in 
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frequency of gametes AB and ab by approximating to the general equations ( 1 ) 
in the neighborhood of the equilibrium given by x1 = xL = 0. The equilibrium 
frequencies U and U of gametes aB and ab in the absence of AB and ab are given by 

where wi+ > w4* and w33 for the equilibrium to be stable before the introduction 
of A.  

U = 1 - U = (W3( - W 4 4 ) / ( 2 w 1 3 4  - W d j  - W 4 4 )  

Following BODMER ( BODMER and PARSONS 1962), we substitute 
~3 = U - d3, 2 4  = U - d,, ( ~ 1  + 12 = d3 + d4) 

into equations (1 ) and, assuming xl, x2, d,, d, are small, ignore quadratic terms 
in xl, etc. to obtain the following linear equations relating x ’ ~  etc. to xl, etc. 
(31a) 
(31b) 

wx’l = xl[wl* - rw14v] + x2rw2.+ 
W X ’ ~  = x 1 r w I 4 ~  + x ~ ( w * ~  - ruw,,) 

( 3 1 ~ )  wd’, = x i [ U w l s  + ~ U W I ~ - ~ U W I , ]  + ~ 2 [ ~ ~ 2 3  + 2 ~ ~ 2 4  + ~ ~ ~ 2 3 1  

+ d.3 [ ( 1  - 2u) (uw33 + vw34) + UW33l  

+ d, [UW34 - 2 U  [um34 f V W u ]  1 

+ d3[UW3, - 2 U [ U W 3 ,  + U W 3 4 ] ]  + d4[UW44 + (31d) wd’, = x1[2uw13 + u w I 4  4- ruwla] + x2[2uz4J23 + uwZ4 - ruwL3] 

( 1  - 2u) (uw34 + U W 3 4 )  1 
where 

is the mean fitness before the introduction of the new gametes and 

are the initial marginal fitnesses of the new gametes AB and Ab respectively. 
Since equations (31a) and (31b) do not involve d3 and d, the characteristic 

equation for  equations (31 ) breaks down into two quadratics, the first correspond- 
ing to equations (31a) and (31b) and the second corresponding to the terms 
involving only d3  and d, in equations (31c) and (31d). This latter quadratic is 
given by the determinental equation 

W = U2W33 f 2UUW34 + V2W44 

Wl* = uW13 + Uw14) w2* = uw23 + uw24 

, 2 U U ( W , 4  - w33) - m u d 4  

and has roots 

Xl = 0 and ti2 = ( w3, - 2uv [w3* - wJ3 - 

s = 1 - w33/w34 and t = 1 - 

) / w  . 
If we write 

following the usual notation for a two-allele balanced polymorphism, the second 
root becomes 

st 
s+t-sst 

= I -  1 - 2uu(s + t )  - 1 - (2st /s  + t )  
1 - ( s t / s  + t )  1 - (st/s + t )  

- ti, = 

Thus A, < 1 provided s, t > 0 or  wsr > wS3, w ~ ~ ,  which is the condition for the 
stability of the polymorphism in aB and ab in the absence of AB and Ab. 

The remaining quadratic obtained from equations (31a) and 31b) is given by 
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wl* - rw14v - X rwZ3u 

rw14u w2* - rwZ3u - hw 
which reduces to 

(33) 

The discriminant of this quadratic ( “b2 - 4ac”) is given by 

&Az - hw[w1* + w2* - r(uwZ3 + vw14)] + wl*wz* 
- r[uwZ3w1* + vw14w2*] = 0 . 

w2[wl* + w2* - r(uwZ3 + U W ~ ~ ) ] ~  -4w2[w1*w2* -r(uwZ3w1* + vw14w2*)] 
= [ml* - wz* + r(uwZ3 - vw14)]2 + 4r2 zmu23w14 > 0 ,  

since all quantities involved are intrinsically positive, so that the roots of equation 
(33) are always real. The condition for the increase of the new gametes is, there- 
fore, that at least one of the two roots of this equation have modulus greater than 
unity. It is easily shown that for a quadratic equation given in the form h2 4- 
AX + B = 0, this condition is 1 4- B - IAl < 0 if [AI < 2, or IA I > 2. Since 

application of this condition to equation (33) gives 
(34a) 
or 
(34b) 
if 

When wl* = w,* = w*, say, equation (33) has roots w*/w and 

so that the dominant latent root is then always greater than one if w* > w, which 
is therefore the condition for increase of the new gametes. 

If w > wl* and w2*, neither of conditions (34a) or (34b) can be satisfied, and 
the new gametes can never increase. If, on the other hand w < wl*, w2* either 
(34a) is satisfied or 

r > (wl* +a* - 2W)/(UWz3 + uw14). 
Now 

)* < 1 < (w1* + wZ*)/(Uw23 + Uw14) 

wl* + w2* - r(uwZ3 + vw14) > 2w 

(w-w~*)(w-zLJ~*) + r [ u w l 4 ( ~ w 2 + )  - - - U ~ ~ ~ ( W ~ * - W ) ]  < 0 

wl* + w2* - r(uwZ3 + vw14) < 2w.  

(w* - r(uwZ3 + w 1 4 ) ) / w ,  

(w1* - w )  (wz* - w) Wl*-w+W2*-W - 
uw23 -k vw14 Uw23(w1*--) + vw14(WZ*-W) 

> 0 ,  - uw23(w1* -w)’ + vw14(w2* -w>’ - 
(uw23 + vw14) (uW23(wl*-w) + vw14(m2*-w)) 

so that 

implies 
r > (wl* + w2* -2w)/(uwZ3 + vw14) 

(wl* - w) (wz* - w) 
(uwz3(m1* - ur) + VW14(WZ* - w) r >  

which is condition (34b). Thus w < wl*, w2* implies condition (34), and the 
new gametes always increase. Adding equations (31 a )  and (3 1 b) gives 

from which it is easily seen that pl = x1 + zz, the gene frequency of A ,  always 
w(5’1+ 2 2 )  = 2 1  w1* + 2 2  w2*, 
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increases if w < wl*, wz* and always decreases if w > wl*, wz*, verifying the 
above conditions. When wl* > w > wz*, the new gametes always increase if 
uw14(w-w2*) 5 uwz3(w1*-w), for then the left hand side of the first inequality 
of (34b) is always negative. If, however, uw14(w-w2*) > uwz3(w1*-w), the 
new gametes only increase if 

(w - w2*) (w1* - w) 
uw14(w - wz*) - uw23(w1* - w) 

r <  

A similar set of conditions holds when w2* > w > wz*. A summary of the condi- 
tions for increase of the new gametes for all values of wl* and wz* is given in 
Table 5. 

There are two cases (IIc2 and IIIc2) in which the new gametes will increase 
only if the recombination fraction, r, is less than a critical value, 

(w - wz*) (w1* - w) I ~ 

] (w-m2*) uw14- (w1* -w) uw23 I 
It is interesting to note, as pointed out by BODMER and PARSONS (1962), that for 
the symmetrical model considered by LEWONTIN and KOJIMA (1960) in which 
all homozygotes have the same fitness, wl* = wz* so that recombination is never 
critical for the increase of new gametes. Special cases illustrating these conditions 
will be discussed in a later section. It was also pointed out by BODMER and 
PARSONS (1962) that, in some cases, when there is a difference between the 

TABLE 5 

Increase of a gene linked to a polymorphism 

= (w3~-wqq)/(2w31-W3~-w~q) 

U =  1-U 

w'l = UW13 + U W 1 4  
W*? = uwL'3 + U W Z 4  
w = UWQ3 + uw3+ = uw34 + uwq4 = uZw33 + 2llUW3* + u2w44 

(w-w',) (w*,-w) 
(w-w*2)vw14 - (w*1-w)uw23 

rc = I 
A increases if and only if 

w*l = W*? > w I. W I 1  = w * 2 
11. w*, > w+, 

a.  w+, > w*, > w always 
b. w 2 w*l 2 W*? never 
c .  Wtl > w 2 Wf, 

1. (w-w*Z)uwl~ 5 (w*1-w)uw23 always 
2. (w-w*2)uw14 > (W*1-W*)UW23 r < rc 

a.  w * ~  > wfl > w always 
b. w 2 W*? > Wtl never 

111. W f 2  > w*l 

c.  W*? > w 2 w*l 
1. (W-w*l)UW,3 5 (w*2-w)uw14 always 
2. (W-w*l)uWqQ > (W*,-W)UWl4 r < rc 
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viability of coupling and repulsion heterozygotes, that is a “position effect,” new 
gametes may only increase in frequency if the recombination fraction between 
the loci involved is less than some critical value. 

The root of equation ( 3 3 )  which has the largest modulus is of some interest 
since it determines the initial rate of increase of the new gametes, and so, approxi- 
mately, their ultimate probability of survival when random fluctuations of gene 
frequencies are taken into account (see BODMER 1960). When r = 0, equation 
( 3 3 )  has the roots wl*/w and w2*/w, so that the increase conditions are wl*, 
wz* > w corresponding to the conditions for the increase of new alleles at a locus 
which is already polymorphic for two alleles (see BODMER and PARSONS 1960; 
HALDANE 1957). When r/(w,* - wz*) is small and, without loss of generality 
wl* > wz*, the dominant root of equation ( 3 3 )  takes the approximate form 

hl= (wl*/w) - (mW14/w) + O(r2) , 
as given by BODMER and PARSONS (1962), and the increase condition is, approx- 
imately, 
(35) r < (w,* - w>/vwl4. 

Note that h, increases as the recombination fraction r decreases. When wzj = 1 
for all i and i, equation ( 3 3 )  has roots A = 1 and 1 - r, as expected from the 
classical results for two linked loci without selection (JENNING 191 7; HALDANE 
1926). 

8 .  Conditions for the Simultaneous Increase of New Alleles 
at Each of Two Linked Loci 

Consider now a population in which the genotype ab/ab predominates and 
gametes Ab, aB and AB are all present at low frequencies. We are interested in 
the conditions under which the increase of the new gametes is dependent on close 
linkage between the two loci. Let x4 = 1 - d, where d = x1 + xz + x3 and xl, 
xz, x3, and so d, are all small. BODMER (BODMER and PARSONS 1962), obtained 
the necessary conditions for this situation by assuming xl, xz, x3, were all of the 
same order of magnitude and considering the linear equations in these variables, 
obtained by ignoring quadratic terms, in equations (1 ) , This approach however 
ignores the fact that, initially, xl, being the frequency of the gamete AB which 
contains both new alleles, may be of order x2 x3, being produced by recombination 
in the rare double heterozygote Ab/aB. Thus if x1 = 0 initially, i1 = (rW232223)/ 
E. Equation (la) may be written in the form 

(45 1 w (Y1 - x,) = 5 1  [w, - w - rw14541 + rw235223 
from which it follows that a sufficient condition for x’, > z1 for all values of 
x,, x2 and x3 is r < ( wI - E) /( ~ 1 4 x 4 )  or, since 

(w1- E) /w14 < (wl-  E) /w14x4 

r < (w, - W)/w,, . 
( 5 4  5 1) 

(46) 
Now when x,, xz and x3 are small, 



LINKAGE A N D  SELECTION 253 

wz = W,4 + O b , )  

so that W = w4* + O(x,‘) and, to this order of approximation, condition (46) takes 
the form 
(47) < (w14 - w44)/w14 * 

Thus, so long as all the xc are small compared with (w14 - W44)/W14. x1 will 
always increase provided condition (47) is satisfied. If we assume x1 = O(x2x3) 
and ignore quadratic terms in x2 and xl, and hence in d, equations (1 b) and (IC) 
take the form 
(48a) x2* = (w21/w44) 2-2 

(48b) x31= (w34/w44) x1. 

Thus x2 and xj increase, separately, if and only if w2& > wq4 and u ~ 3 4  > wA4. This 
follows intuitively from the fact that when gametes Ab and aB are rare, recombi- 
nant products from the double heterozygote Ab/aB can be ignored and the gam- 
etes can be treated as if they were simply new alleles at the two respective loci. 
So long as x2 and x3 are small, and x1 = 0 (x, x?), when wZ4 < wd4, w34 < wi4 and 
I < it follows from equations (47) and (48) that x? and x3 de- 
crease geometrically while z1 increases. A state must therefore be reached at 
which x , ,  xL and x1 are all of the same order of magnitude. At this point, the linear 
approximation considered by BODMER and PARSONS ( 1962) becomes valid and 
takes the form 
(49a) w44x1’ = w14 ( 1 -r)  x1 
(49b) wq4xZJ = T W , ~ X ~  + wZ4x2 
(49c) w4~xS’ = +w14x1 + w-&xi 
From this it follows that the further increase in r1 and the subsequent increase in 
xZ and x3 still depend on condition (47). Thus, as indicated by BODMER and PAR- 
SONS (1962), when the single heterozygotes (Ab /& and &/ab) are less fit than 
the prevailing homozygote (ab/&), but the coupling double heterozygote (AB/ 
ab) is fitter than this homozygote, the genes A and B will ultimately increase in 
frequency if and only if the recombination fraction satisfies condition (47). 

TABLE 6 

Increase of two new linked genes, A and B 

A increases if B increases if 

w 1 4 3  w243 IU34 > w44 always always 
w149 W24r > u744 2 w34 always r < ICt 

W147 w34 w44 2 w24 r < rC* always 
w14 > w44 2 w24, w34 r < rC 
w249 w34 > w44 2 w14 always always 
w24 > w44 w14’ w34 always never 
w34 w44 2 w14i w24 never always 
w44 2 w149 w247 w34 never never 

r < rc 

rc  = (W14 - w44)/w14 

* These conditions only apply if the hequency of gamete AB(x,)  is of the same order of magnitude as those of Ab 
and aB ( x 2  and x3). 
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When either W 2 4  > w4, or w3, > w44 and we start with x1 = O(x2x3) ,  it is no 
longer clear under what circumstances linkage may affect the increase of the new 
gametes. This problem was discussed by BODMER and PARSONS (1962) using a 
numerical example. It is clear that whenever x1 is large enough to be of the same 
order of magnitude as x2 and x3,  the conditions derived from equations (49) apply. 
Then if, for example, w2, > w,, but w34 < w4,, B will only increase in frequency 
if condition (47) is satisfied. When, however, x1 is too small initially, locus A 
may become polymorphic without locus B. The problem then reduces to that of 
the conditions for increase of a new gene linked to a polymorphic locus, which 
has been discussed above. These various conditions for increase are summarized 
in Table 6. 

9. A General Condition for Stable Linkage Disequilibrium When r is 
Suficiently Small 

When r = 0 and x, = x3 = 0, gametes AB and ab can be maintained in the 
balanced polymorphism given by 

provided w14 > w4, and wI1 .  Now assume that r is small so that gametes Ab and 
aB occur with frequencies x, and x3  which are of the same order of magnitude as 
r. Writing x1 = U-dl and x4 = v-d4, where d ,  and d,  are also O ( r ) ,  we have 
wi = uwli 4- V W , ~  + O(r) and E = w + O(r) where w = u2wll + 2uuwI4 + u2w44 
= uwll + uw14 = uwl4 + vw,, is the mean fitness of the population when r = x2 = 
x3 = 0. Using these approximations, equations (Ib) and (IC) take the form 
(50a) 
(50b) 
where w2* = uwlz + uw,, and w3* = uwll + uw3, are the marginal fitnesses of 
gametes Ab and aB when first introduced into the population. At equilibrium 
when x2’= x2, x3J = x3 we have 

5 1  = U = 1-v ‘=I-X4 = (w14-w44) /2w14--wll-w44) 

wx,’ = x2w2* + rw14uu + O(r2) 
wx3’ = x3wj* 4- rw14uu + 0 ( r 2 )  

+ O ( r 2 )  rw14uu rw14uw + O(r2) and XS = 
F W 2 *  5, = w-w3* (51) 

which are valid equilibria provided w > w,* and w3* respectively. This corre- 
sponds to the equilibrium (22a) given by the symmetrical viability model when r 
is small. Writing equation (50a) in the form 

w(xz’-x,) =x2(w,*-w) + rw14uu + O(r2)  
it is clear that when w2* > w, x2  always increases for sufficiently small r and 
similarly for x3 when w3* > w.  Thus when w2*,  w3* > w no stable equilibrium 
can exist with both x2 and xs of O(r) ,  so that w > w2*, w3* is a necessary condi- 
tion for the stability as well as the existence of the equilibrium given by equa- 
tion (51). An exactly analogous equilibrium exists in the neighborhood of x1 = 
x4 = 0 and 

w23 - w33 x, = 1 - 2 3  = 
2W23 - W P P  - w33 

when r is sufficiently small. 
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FIGURE 1 .-Tetrahedral representation of gamete frequencies. 
A point inside the tetrahedron represents a population whose re- 
spective gamete frequencies are the perpendicular distances from 
the four faces of the tetrahedron. 

aB Ab - - - - - - - - - - .:3 - ab - 

10. Sufficient Conditions for the Existence of a Two-Locus Polymorphism 

The gametic frequencies of a population in which two loci are each segregating 
for two alleles can be represented as a point in an equilateral tetrahedron such 
that the distances from the four faces of the tetrahedron are proportional to the 
frequencies of the four gamete types AB, Ab,, aB, and ab. The sum of the four 
distances will equal the altitude of the tetrahedron, no matter where the point is 
placed (Figure 1).  

A population fixed for one of the four gamete types will lie at one of the four 
vertices, while a population which has lost one allele at one of the loci will lie on 
one of the four edges AB-aB, AB-Ab, Ab-ab or ab-aB. We wish to find conditions 
such that the population can ever remain at a vertex, an edge, or a face, so that 
it must ultimately come to rest in the interior of the tetrahedron, where both loci 
are segregating. If we assume r > 0, then the system cannot have an equilibrium 
point on either of the edges AB-ab or aB-Ab, for recombination will continually 
produce the missing gamete types. Likewise there cannot be an equilibrium on 
any of the faces of the tetrahedron, since a population located on a face lacks only 
one gamete type. Recombination will produce this missing gamete, forcing the 
population into the interior of the tetrahedron. This leaves four edges and the 
four vertices. Each of the vertices is automatically an equilibrium point if there 
is no mutation, since at each of these points only one gamete type exists and this 
situation admits of no change by selection o r  genetic drift. We can determine 
whether the equilibria at the four vertices are stable by using the conditions de- 
rived above (Table 6) for the simultaneous increase of two new alleles at each of 
two loci. If the missing alleles can increase in frequency when introduced at low 
frequency at either or both loci, the equilibrium cannot be stable. If introduced 
alleles always disappear (in an infinite population) then the equilibrium is stable. 

If an equilibrium point exists on one of the four edges (AB-ab, aB-ab, AB-aB, 
and Ab-ab) , it will be a selectively balanced polymorphism at one of the two loci 
maintained by overdominance. For such an equilibrium we can use the conditions 
given in Table 5 to determine whether the missing allele at the fixed locus will 
increase if introduced at a low frequency, and hence whether the equilibrium is 
stable. The stability of the equilibria near the remaining two edges AB-ab and 
Ab-aB can also be investigated using the conditions derived in the previous sec- 
tion for sufficiently small values of r. 
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Thus, given any set of fitnesses and the value of T- (# 0), we can determine 
whether any equilibrium point located on an edge or at a vertex is stable. If all 
such points are unstable, then if there is a stable equilibrium point at which all 
four gamete types exist and hence both loci are segregating, it must be somewhere 
in the interior of the tetrahedron. 

We shall first apply this type of analysis in turn to the additive, multiplicative 
and general symmetric viability models given in Tables 2, 3 and 4 and then we 
shall discuss in detail an illustrative numerical example. 

Consider first the additive model given in Table 2. It was shown above that a 
unique internal solution with D = 0 exists provided the pairs of differences a, - 
a,, az-a3  and b, - b,, b,- b, have the same sign. If these differences all have 
positive signs, then all four vertices are unstable equilibrium points, and vice 
versa if all are negative. All four vertices are also unstable if only two of the dif- 
ferences are negative. Now consider the application of the conditions given in 
Table 5 to this model. We have 

wl* = a, + ub, + vb?, w2+ = a, -t ub, + vb, 
w a ,  + u(ub ,  + vb?) + v(ub ,  + vb:) 

where 

Therefore wl* - w = w,+ - w = aL - a, and so the equilibrium on the edge 
aB-ab is stable if az < a3 and unstable if a, > a,. Similarly the equilibria on the 
edges AB-aB, Ab-Ab, and Ab-ab are unstable if bL > h,, a, > a, and 6, > b,, re- 
spectively. Thus, in summary 

i. If a, -a,, a, - a?, b, - b,, b, - b ,  are all positive, the only stable equilibrium 
is the internal point at which D = 0. 

ii. If, for example, a, - a,, a2 - a,, b, - b, are all positive but b, - b, is nega- 
tive then the only stable equilibria are the vertices aB and ab. 

iii. If a2 - a,, a, - a, are positive and b, - b,, b ]  - b, are negative. then both 
edges Ab-aB and Ab-ab have stable equilibrium but no vertices or internal points 
are stable. 

iv. If, for example, a2 - al and b, - b, are positive, while a, -- ai and b, - b, 
are negative, then only the vertex ab is stable. 

v. If, for example, a, - a, is positive and a, - a,, b, - b,, b2 - b ,  are all nega- 
tive then the only stable equilibrium are the vertices aB and ab. 

Lastly 
vi. If all of a, - a,, etc. are negative all four vertices are stable and no other 

stable equilibrium points exist. 
Clearly, where there is more than one stable equilibrium, which one is reached 

will depend on the initial configuration of the population. For the additive model, 
which is undoubtedly the simplest to analyze, linkage has no effect on the equi- 
librium configurations though it may affect the rate of approach to the various 
equilibria. 

In the multiplicative model shown in Table 3 ,  we can without l o x  of generality 
write a, = 1 -sl, a2 = 1, a? =I - t , ;  PI = 1 - s2, = 1, PJ = 1 - ta, to give the 
parametrization shown in Table 7. The internal equilibrium point is then given by 

u = l - j y =  (b ,  - b,)/(2bz - bi - b3) 
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TABLE 7 

An alternative fitness scheme for the multiplicative model 

25 7 

BB Bb b l  

AA 
Aa 
aa 

p1 = t l / ( S l  +tl) ,  pz = t 2 / ( h + t L )  

and D = 0, and is valid only if s1 and t,, and s2 and t2 have the same signs. From 
the analysis of the symmetric model and from the analysis of equilibria near the 
edges AB-ab and Ab-aB (equations (51)),  it €allows that, in general, there exist 
two further internal equilibria for which D f 0. Equation (14) gives a necessary 
condition for an equilibrium with D # 0 to be stable. Consider now the conditions 
for the stability of the equilibrium on the edge aB-ab, which only exists if s2,  
t? > 0.  We have 

U = 1 - U = t3/ (s2+t2)  
w,* = m2* = 1 - s2t2/(sZ+t2) and w ( 1-tl) ( 1  - s2t2/(s2+t2)) .  

Thus, from Table 5, the equilibrium is stable if t l  < 0 so that wl* = w2* < w, 
and is unstable if tl > 0 so that wl* -- w2* > w, the stability being independent of 
the value of r. The conditions for the stability of the edges AB-Ab, Ab-ab, AB-aB 
are, therefore, s1 < 0, t2 < 0 and s2 < 0, respectively. If at least three of sl, t l ,  s?, 
t2  are positive then all vertices are unstable. If two of these quantities are positive, 
then either three or four vertices are unstable depending on which two are posi- 
tive, while if only one is positive, just two vertices are unstable. All vertices are 
stable only when all of sl, t l ,  s2 and t2 are negative. In summary 

i. If all of sl, t,, s2, t ,  are positive, the equilibrium with D = 0 is the only stable 
equilibrium if 

but if r is less than this critical value one or more internal points with D # 0 will 
be stable. 

ii. If. for example, only t2  < 0 then the only marginal equilibrium which is 
stable is that on the edge Ab-ab. The equilibrium with D = 0 does not exist, but 
one or two internal equilibria may exist which are stable for sufficiently small r .  

iii. If, for example. s1 and tl are positive but s2 and t2 are negative, then the 
equilibria on the edges AB-aB and Ab-ab are stable but none of the vertices are 
stable. The equilibrium with D = 0 is presumably unstable. 

iv. If, for example, s, and t2 are positive but s2 and tl are negative, then only 
the vertex aB is stable on the margin, and the equilibrium D = 0 does not exist. 

v. If only one of s,, etc is positive, say sl, and the others are negative then two 
of the vertices (AB and A b )  are stable, but no other marginals points are stable. 

Lastly 
vi. If all of sl, etc. are negative, then, presumably, the only stable points are the 

four vertices. 
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It is not clear without further analysis whether or not in cases (ii), (iii), (iv) 
and (v) stable internal equilibrium points with D # 0 may exist for sufficiently 
small r. 

We next consider the application of the conditions for stability of the marginal 
equilibria to the general symmetrical model given in Table 4. The vertices AB 
and ab will be unstable if either y or p < 6 or if when P, y > 6 the recombination 
fraction r < S. Similar stability conditions apply for  the vertices Ab and ab but 
with Q replacing 6. The equilibrium on the edge aB-ab occurs at U = 1 - U = 
(6  - /?)/(a + 6 - 2p) and exists and is stable, in the absence of gametes AB, Ab 
if and only if Q and 6 > P. When this equilibrium exists we have, following 

Y(8 - P >  
,+s-2p ’ a + s - 2 p  

wz* = 1 - Y ( Q - - P )  wl* = 1 - 

(.-P) (6  -P>  -_ and w = l -  a + s - z p  
Thus wl* - w and w2* - w are both positive if > p + y and 6 > P + y respec- 
tively, in which case the equilibrium is unstable for all r, while if a, 6 < /3 + y 
it is stable for all r. When, however, say, Q > P + y > 6,  the value of r may 
determine the stability of the equilibrium following the conditions (2c) and 
(3c) given in Table 5. By symmetry, these same conditions apply to the edges 
AB-Ab, Ab-ab and AB-&. The equilibria near the edges AB-aB and Ab-aB cor- 
respond, as indicated above, to the equilibria 22a and 22b for small r.  These only 
exist if p + y > 6 and P 4- y > a respectively. It is clearly not feasible to enum- 
erate all the possible equilibrium configurations. One or two examples are, how- 
ever, worth discussing. Thus suppose, for example, that p, y > 6 > 0 while Q > 
/3 + y so that if r < 6, all the vertices are unstable. Then, provided r is sufficiently 
small, a stable internal equilibrium with D # 0 will exist in the neighborhood of 
the edge AB-ab. In this case the value of T- is critical for the determination of the 
overall equilibrium configuration. If p 4- y < 6 and a, and P, y > 0, no vertices or 
edges are stable and the equilibrium near D = 0 is the only one which is stable. 

We shall now use the set of fitnesses in Table 8 as the basis for a more complete 
numerical illustration of the application of these conditions for the stability of the 
marginal equilibria. We first examine the stability of the four vertices of the 
tetrahedron. For AB, the set o f  fitnesses to be tested is w44 = .70, w24 = w34 = .9 
and wI4 = 1 .O corresponding to the upper left hand corner of Table 8. Note that, 
for comparison with the formulation of the section on the simultaneous increase 

TABLE 8 

Fitness scheme for illustrative numerical exampk 

BB Bb bb 

A A  
Aa 
aa 

.70 .90 .80 

.90 1 .oo .41) 

.80 .M .90 
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of two new alleles at two linked loci, it is necessary to renumber the gametes so 
that the double homozygote fitness is w ~ ~ ,  and the single homozygote fitnesses are 
wZ4 and w3+ while the double heterozygote fitness is w14. Since w14, w,, and 
w j 4  > w4+, a and b always increase so that the equilibrium at the vertex AB is un- 
stable for all values of r. 

For the Ab equilibrium, wl+ = 1.0, w2, = .4, wY1 = .9, and wgq = .8. So wlr ,  
w G 4  > wqq > wZ4 and B will always increase. Therefore the equilibrium is un- 
stable. Since we seek only conditions under which at least one of the fixed alleles 
increases when both are introduced at low frequency, the condition on r is ir- 
relevant to our argument. The aB equilibrium also is always unstable, since the 
fitnesses are symmetrical when A is exchanged for a and simultaneously B is ex- 
changed for b. 

The ab equilibrium has wI4 = 1.0, w2+ = wsa = .4, and w44 = .9. Then w14 > 
w , ~  2 wLI,  w?, and so from condition (47), alleles A and B increase only when 
I < (1.00 - .90)/1.00 = .lo. If r 0.1, the equilibrium is neutral, and if 
r > 0.1, it is stable. The foregoing arguments tell us that we are so far assured 
of an interior stable equilibrium only when I < 0.1. Examining the possibilities 
of a stable equilibrium with one locus segregating, we see that if a is fixed and 
locus B segregates, the relevant fitnesses are w3? = .8, wii = .4, and w44 = .9. 
This set of fitnesses shows underdominance so that a stable equilibrium could not 
exist on the edge aB-ab. Likewise, by symmetry, no stable equilibrium is possible 
with b fixed and locus A segregating. If A is fixed and locus B segregates we have, 
renumbering gamete types, 

wis = .7, W j &  = .9, w,4 = .8, 
WIZ = .9, w14 = w.3 = 1.00, w.'* = .8. 

The equilibrium frequency at locus B when A is fixed is 
- w44)/(2w?4 - w33 - W 4 4 )  .333 

U = 1 - U = .666 
At this point 

w: = uwI3 f vwl+ = .966 
w: = uwzs 4- uwz4 = .600 
W* = uwq3 3- U W ? ~  = .833 

Referring to Table 5, we find that w: > w', and w: > w 2 w: so that we must 
calculate (w-w:)uw14 and (w:-w)uw14. These are 

(w-w:)uw14 = .155 and (wf , -w)uwZ3 = .044 
since (w-w1:)uwl4 > (w:-w)uwZ3 allele a will increase whenever 

(.233) (.133) 
(.155) - (0.44) 

r <  = .280. 

Since the equilibrium in which B is fixed and locus A segregates is symmetrical 
with this equilibrium, the same condition holds in that case. We have already 
seen that when, the population is fixed for genotype aabb, that equilibrium i s  
unstable only when r < . l .  So, when r < . l ,  all equilibria at which one locus is 
fixed or both loci are fixed are unstable. Any population started close to the 
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boundary of the tetrahedron will then be pushed by selection into the interior, 
where there must be a stable equilibrium with both loci segregating. 

A computer program has been written to check the validity of the above calcu- 
lations. Using equations (I), the program produces successive generations in a 
hypothetical infinite population. The fitnesses of Table 8 were used, and r varied 
from .05 to .5 in steps of .05. In one set of runs allele B was started at a frequency 
of .33 and allele a at a frequency of .01, all of the a alleles being in ab gametes in 
one set of runs and in aB gametes in another. This corresponds fairly closely to a 
situation in which locus B would be segregating at frequencies maintained by 
selection, with a small proportion of ab or aB gametes being introduced into the 
population. The results confirmed the above calculations. When r was .05, . l ,  .15, 
.2 or .25, allele a ultimately increased in the population, although if it was intro- 
duced as ab gametes it would temporarily decrease to start with. When r was .3, 
.35, .4, .45, or .5, allele a ultimately decreased, although if it was introduced by 
aB gametes it would temporarily increase to start with. This demonstrates that 
the above approximations can hold if the initial frequency of the rare allele is as 
high as .01, the approximations thus being reasonably robust. 

The other set of runs started with alleles A and B at initial frequencies of .01. 
In  half of the runs all of the A and B alleles were initially in AB gametes while 
in the other half they were initially in Ab and aB gametes. Again the runs showed 
that the above calculations are valid. When r was .05, both alleles increased. 
When r was .I5 or greater, both decreased. When r was .l,  both alleles would 
have been expected to remain at their initial frequencies or decrease, since the 
theoretical condition for increase is r < . I .  In the computer runs, A and B re- 
mained almost unchanged after some initial change. In one case ( A  and B 
initially in coupling) there was a slow increase of A and B. This is interpreted as 
due to second-order effects, since the frequency of A and B was not infinitely 
small but was .01, so that some genotypes ignored in the above calculations, such 
as AB/AB, actually existed in the population at low frequencies and affected the 
rate of change of A and B. The computer was also used to solve for stable equi- 
libria of the gamete frequencies. Stable equilibria were found at all values of r. 
This raises the point that the conditions given above for the existence of stable 
equilibria with both loci segregating are suflicient conditions, but not necessary 
conditions. For example, when r = .5, there was a stable equilibrium at z1 = 
.4762, xz,= x3 = .2251, and x4 = .0736. 

It is interesting to note that any set of fitnesses in which the double heterozy- 
gotes are more fit than the corresponding single heterozygotes, and the single 
heterozygotes are more fit than the corresponding double homozygotes will al- 
ways have a stable interior equilibrium. Reference to Table 5 will show that we 
always have w:, w; > w and also wI4, wZ4, wSi > wnq so that introduced alleles 
always increase if r > 0. 

DISCUSSION 

The essence of our analysis of the two locus model with linkage and selection 
is to identify conditions under which linkage causes a significant departure from 



LINKAGE A N D  SELECTION 26 1 

the gametic changes and equilibria which are expected in the absence of selection, 
when D = 0. There are two major aspects of this analysis. On the one hand we 
have attempted to derive conditions for the existence of stable equilibria for which 
D is appreciably different from 0 and on the other hand we have identified con- 
ditions under which close linkage plays a critical role in the increase of new 
gametic combinations. The validity of the results of the analysis of any model is, 
of course, bounded by the assumptions built into the model. While more complex 
two locus models may certainly give results differing quantitatively from those 
presented here, they will not alter the qualitative conclusion that plausible situ- 
ations do exist for which linkage can profoundly affect the selection and ultimate 
equilibrium of new gametic combinations. 

In all our discussion of stability we have assumed that an equilibrium is effec- 
tively unstable provided at least one of the eigenvalues for linear perturbation 
about the equilibrium has modulus greater than unity. Mathematically this is 
not strictly correct, since, in general, this only ensures movement away from the 
equilibrium in certain directions, depending on the eigenvector corresponding to 
the maximum eigenvalue. Instability in all directions is only assured if all eigen- 
values have modulus greater than unity. In reality, however, random fluctuation 
in gametic frequencies always occur, and are bound, sooner or later, to bring the 
gamete frequencies into a region of instability, even when there is only one 
eigenvalue with modulus greater than unity. When this happens, the gamete 
frequencies will nearly always move away from the equilibrium by a definite 
positive amount and so the equilibrium is, for practical purposes, unstable (for 
further discussion see BODMER, FELDMAN and KARLIN (in preparation). 

The analyses presented here have been deterministic, having ignored in par- 
ticular random fluctuations due to very low gene frequencies and due to finite 
population size. As already pointed out, the initial rate of selection of the new 
gamete provides, following FISHER ( 1930), at least an approximate measure of 
the ultimate chance of survival of a single new occurrence. A general stochastic 
treatment of the two locus model, even in its simplest form, is clearly very diffi- 
cult, though some useful results have been obtained by KOJIMA and SCHAFER 
( 1964), LATTER (1 966), KARLIN, MCGREGOR and BODMER ( 1967), and HILL and 
ROBERTSON (1966). 

It is perhaps of some interest to conjecture qualitatively, the likely effect of 
drift due to small finite population sizes. For each stable equilibrium point there 
will be a region of the tetrahedron within which selection will tend to move a 
population toward the equilibrium. Consider a case in which there is a stable 
equilibrium in the interior of the tetrahedron and also a stable equilibrium at an 
edge or vertex. Normally, random genetic drift will result in the population 
wandering about in the region of the interior equilibrium. Occasionally, however, 
the population will be carried into the region corresponding to the equilibrium on 
the boundary of the tetrahedron. Selection will then tend to pull the population 
to the edge or vertex, resulting in fixation at one or both loci. If the missing allele 
or alleles are subsequently produced by mutation or introduced by immigration, 
this will result in displacement of the population from the edge or vertex by a 
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small amount. The population will still be within the “region of attraction” of the 
boundary equilibrium, so that if it moves to the interior equilibrium, it will be as 
a result of random genetic drift opposing the selection pressure. 

On the other hand, if all of the boundary equilibria are unstable (so that there 
must exist a stable interior equilibrium), the population will become fixed at one 
or both loci less readily, since selection pressure will tend to return the population 
to the interior equilibrium. When a fixed population becomes unfixed as a result 
of mutation or immigration, the population will have been moved off the boundary 
into the region in which selection tends to pull the population toward the interior 
equilibrium. If the population then becomes fixed again, it will be in spite of the 
selection, whereas in the previous case selection promoted fixation. Thus if the 
boundary equilibria are unstable the population will spend more of its time in 
the interior of the tetrahedron than it otherwise would. The condition that no 
marginal point be a stable equilibrium is therefore, in a sense necessary for the 
long-term maintenance of a two-locus polymorphism in a finite population. 

The extension of the two locus analysis to more loci is especially important. 
LEWONTIN (1964b) has obtained very interesting results by computer simulation, 
showing how the interaction of linkage and selection can maintain relatively 
large blocks of genes together on a chromosome, provided each pair of adjacent 
genes satisfies the conditions for linkage disequilibrium predicted by the two 
locus models. 

The evidence for evolutionary molding of the organization of genes on chromo- 
somes was extensively reviewed by BODMER and PARSONS (1 962) and will not be 
further discussed here. It is of course our hope, that the results presented here 
provide some indication of the type of selection needed to effect evolutionary 
modification of the positioning of genes on the chromosomes. I t  seems worth 
emphasizing that, at least in higher organisms, an interval on the chromosome 
corresponding to a recombination fraction of one or a few percent may contain 
many, perhaps even hundreds, of cistrons. Our results and those of others, suggest 
that recombination fractions of this order of magnitude may often cause very 
significant departures from random association of genes on the chromosomes, 
though larger recombination fractions are less likely to have appreciable quali- 
tative effects. Thus, clusters of genes which are relatively close together may often 
be maintained in their relative positions by the interaction between selection and 
linkage. Genes which are genetically far apart, are, however, much less likely to 
be maintained in their given relative positions by such selective interactions. In 
other words, the effect of the interaction between linkage and selection is one 
that is expected to be concentrated in short regions of the genome and does not 
necessarily extend over large portions of any particular chromosome. 

We are very grateful to PROFESSOR S. KARLIN and MARC FELDMAN for their many helpful 
comments on the manuscript. 

SUMMARY 

The mathematical analysis of the deterministic two locus random mating 
model with linkage and selection is reviewed and extended following mainly the 
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previous analyses by WRIGHT (1952), KIMURA (1956), LEWONTIN and KOJIMA 
( 1960) and BODMER ( BODMER and PARSONS 1962) - -1. The general equations 
(1 ) for the model are first derived.- -2. A condition on the fitnesses for the exist- 
ence of a non-trivial equilibrium with D = 0 is next derived (equation (6) ) .- - 
3. An “additive” fitness model leads to a unique internal equilibrium with D = 0, 
which is the unique stable equilibrium if both loci are heterotic.- -4. A “multi- 
plicative” model also gives an equilibrium with D = 0, which. however, in general 
is stable only if T exceeds a simple function of the selection coefficients. When T 

is less than its critical value, stable equilibria with D f 0 may exist.--5. A 
general necessary condition (13) for the stability of a nontrivial equilibrium with 
D = 0 is derived. The application of the condition to the additive and multipli- 
cative (14) models is discussed.- -6. A general symmetrical viability model, 
which includes essentially all those previously considered, is analyzed in detail 
for equilibria and their stability. As for the multiplicative model, equilibria with 
D appreciably different from zero may exist provided T is less than a certain 
critical value.- -7. 8. Conditions are derived for the increase of a gene linked 
to a stable polymorphism (Table 5 )  and for the simultaneous increase of two new 
alleles a t  each of two linked loci (Table 6) .- -9. A general condition is derived 
for the existence of a stable linkage disequilibrium whenever I is sufficiently 
small.- -10. The overall pattern of equilibria given by these models as a func- 
tion of fitnesses and the recombination fraction is reviewed with reference to the 
representation of the gamete frequencies of a population as a point in a regular 
tetrahedron. A sufficient condition for the existence of a stable internal equi- 
librium point is that no marginal point (either on an edge or a vertex) is a stable 
equilibrium point. The conditions for the increase of new gametic combinations 
provide the criteria for the stability of the marginal points of the tetrahedron. 
The additive, multiplicative and symmetric viability models as well as a special 
numerical example are used to illustrate these general principals- -It is 
emphasized in the discussion that the reason for an interest in the detailed analy- 
sis of the interaction between linkage and selection, is in order to obtain some 
indication of the type of selection which is needed to effect the evolutionary 
molding of the organization of genes on the chromosomes. 
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