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HE theory of evolution is the unifying concept of biology. At the heart of the 
Tmodern theory of evolution is the idea of natural selection, of differential 
reproduction among genotypes. Many factors contribute to the leaving of differ- 
ent numbers of offspring; survival, longevity, and fertility are some of the most 
important. The biological theory of evolution-the “modern synthesis”-was 
profoundly influenced by the mathematical formulations of population genetics 
by FISHER, WRIGHT, and HALDANE. Many laboratory experiments have been 
devised to test various aspects of the theory. The demonstration that some of the 
genetic changes in nature could be reproduced in experimental populations 
opened the way for a many-faceted attack on the genetic processes in evolution. 
We will consider the problem of measuring selection in experimental populations 
and show how changes in the frequencies of the alleles at a single locus can be 
used to estimate the selection acting on each genotype. Our considerations are 
restricted to sexually reproducing, diploid organisms. The technique was devised 
for experiments with flies of the genus Drosophila, but it is applicable to many 
other organisms. 

The Models: Consider k alleles AI, A,, . . . Ak at a single autosomal locus. Let 
the frequency of A, in the experimental population at the beginning of generation 
t be p ,  ( t )  . The k alleles may be combined in k(k+l)/2 different ways to form 
genotypes, each with two alleles. The adaptive value of a genotype in a given 
environment is defined as the expected number of offspring produced by this 
genotype; this definition includes all the factors of selection mentioned previously. 
The terms “fitness” and “selective value” are synonyms for  adaptive value. Let 
the adaptive value of genotype A,A, be wL1.  For convenience in formulating the 
model, let us distinguish between genotypes ALA, and A,A,, but let w , ~  = wj2. 
We shall consider only constant adaptive values. Since we have worked with data 
involving four or five alleles, we necessarily adopted this simplest model of con- 
stant adaptive values in order to keep the number of parameters estimated to a 
manageable level. 

Under random mating in a large population, the frequency of genotype ALA, 
at the beginning of the tth generation is p 2  ( t )  p ,  ( t )  . (This paper assumes through- 
out that the size of the population is so large that differences between actual popu- 
lation frequencies and expected population frequencies can be safely neglected, 
in contrast to frequencies in samples taken from that population.) Under the 
evolutionary model, the relative frequency of the offspring of genotype A,A, 
among all those produced at generation tS1 is given by p ,  ( t )  p3 ( t )  w2]/Z p L  ( t )  
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p3 ( t )  w,5. Half of these offspring will have received allele i and half allele j from 
the A,A, parent under consideration. Then pz ( t - t l ) ,  the frequency of A, at the 
beginning of generation number t+l, is determined by the contributions of each 
genotype of the previous generation: 

po (t+l) = constant . zj [ ( 1/2>pz ( t )  p3 ( t )  wzp + ( 1/21 pl ( t )  p. ( t )  w, &I 
Remembering that by definition wzp 3 wp2,  

p.(t+I) =constant . p % ( t )  ~ ,p , ( t )w , ,  . 
The constant is chosen so that pl( t+l )+  . . . +p,(t+l) = 1, giving for every 
choice of i 
(1) 
This recurrence relation is the basic formula of the genetic models of selection. 
The formula involves discrete generations; that is, it is constructed with specific, 
nonoverlapping periods for reproduction. The organisms are assumed to partici- 
pate in only one reproductive period, and it is assumed to be the first one after 
their birth. This model is realistic for organisms with short adult lifespans and 
specific breeding times. The experiments for which our analysis was devised (see 
accompanying paper) were designed with generations strictly discrete, so that 
the above assumptions hold. 

Genetic models for populations with continuous breeding and overlapping 
generations have been formulated (see KIMURA 1958 and HASOFER 1966), but 
they are generally only approximations which depend upon a number of assump- 
tions. One of the most important of these assumptions is that selection be rather 
weak. The frequencies of the alleles can then be represented as continuous func- 
tions of time. HALDANE (1927) considered the case of slow selection against a 
completely recessive allele and showed that the changes in the frequencies of the 
alleles were nearly the same under a model of overlapping generations and con- 
tinuous change as with the model of discrete generations. The relationship be- 
tween continuous and discrete models has not been investigated for the case of 
strong selection. The continuous model itself has not been formulated for rapid 
changes in allele frequencies under strong selection. The age structure of popula- 
tions, and the age-specific reproductive capacities of the genotypes must also be 
included in a general genetic model of continuous change, although these factors 
are usually ignored because they are so difficult to handle analytically. Even 
where generations do overlap and breeding is continuous, we shall use the model 
of discrete generations, remembering that it is only an approximation to the real 
situation. 

The basic recurrence relation (1) can be applied in at least two ways in 
attempting an experimental analysis of selection. We can assume, for a fixed set 
of adaptive values {wz3} ,  a single deterministic process and, beginning with the 
known initial frequencies, apply the formula repeatedly to find the expected 
allele frequencies at any generation. The expected frequencies at any generation 
1 depend only on the initial frequencies of the alleles, the adaptive values, and 
the generations elapsed since the population was initiated. 

Another method of analysis can also be used. We calculate the expected fre- 
quencies of the alleles at any particular generation by inserting the sampling 

p * ( t + l )  = pz(t) v 4 ( t ) W . p  / z z , m p z ( t ) p m ( t ) U . ' z m .  
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frequencies from the previous sample into relation (1) and evaluating it for the 
number of generations since the last sample. Thus, to calculate the expected allele 
frequencies at generation t,, we insert the sampling frequencies observed in the 
previous sample, at generation t,, into the right side of relation (1) and evaluate 
the recurrence relation for t,-t, generations. In the first method described above, 
the expected allele frequencies at generation tz would be computed by inserting 
the known initial frequencies into relation (1) and repeating the recursion t, 
times. It was originally hoped that the second method would be more robust in the 
course of a long experiment, in the sense of being less easily influenced by shifts 
in the allele frequencies caused by insufficient experimental control or to some 
other factor unaccounted for by the theory. This second means of analysis is 
incorrect in that it assumes, in effect, that the frequencies we estimate from a 
small sample of the population are the true values. The expected frequencies in 
the next generation. which are predicted from these estimates, will be influenced 
by the sampling errors. We have generated estimates of the adaptive values using 
both analyses. The first method, that of a single process originating in the known 
initial frequencies, consistently yields estimates which fit the observed data best, 
as tested by a chi-square criterion for goodness of fit. LEVENE (in LEVENE, PAV- 
LOVSKY, and DOBZHANSKY 1954) previously commented on the superiority of the 
first analysis. Throughout the rest of the paper, we will consider the first analysis 
only. 

In many experiments on selection among several alleles in Drosophila, large 
populations are maintained in population boxes. These boxes contain food cups 
which are regularly rotated; each cup is kept in the population for a full genera- 
tion so that the eggs deposited in it have an opportunity to develop to adults. 
DOBZHANSKY and his associates obtain egg samples and rear the larvae which 
hatch from them under nearly optimal conditions. Thus the frequencies of the 
alleles are determined after random mating but before selection in the new gener- 
ation. It is important to note that our formula (1 ) is designed to fit the details of 
this type of experiment, in which allele frequencies are determined before selec- 
tion. Formula ( 1 ) would not describe the changes in frequencies of the alleles if 
the samples were taken among the adults after part of the total selection had 
taken place. 

Estimation by Maximum Likelihood: Several techniques for measuring selec- 
tion have been proposed in the past. All were developed for the system of inver- 
sions on the third chromosome of Drosophila pseudoobscura. These inversions act 
as supergenes, locking together blocks of genes. Mathematically they behave as 
different alleles at a single locus. WRIGHT (in WRIGHT and DOBZHANSKY 1946) 
developed a least squares technique. Actually, he developed two techniques. For 
the case of two alleles, he minimized the sum of the squares of the difference 
between the observed and expected changes in allele frequency. For the case of 
three alleles, he minimized the sum of the squares of the difference between the 
observed and expected allele frequencies. The two approaches give very similar, 
although not identical, results. CAVALLI (1950) considered the case of heterotic 
selection (heterozygote advantage) for two alleles; he utilized a model of con- 
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tinuous change and found the maximum likelihood estimates of the selection 
coefficients by FISHER'S method of scoring. CAVALLI'S technique can readily be 
extended to any two allele case, but does not generalize to greater numbers of 
alleles. In  his continuous model the allele frequencies are implicitly defined and 
must be found by some iterative procedure. LEVENE (in DOBZHANSKY and 
LEVENE 1951) designed a graphic technique for the case of two alleles. Later, 
LEVENE (in LEVENE, PAVLOVSKY, and DOBZHANSKY 1954) estimated adaptive 
values by the method of minimum chi-square. His procedure was based on trial 
and error fitting of the allele frequencies expected with various amounts of selec- 
tion to the observed frequencies. We have developed a general technique for 
obtaining the maximum likelihood estimates of adaptive values and their co- 
variance matrices. 

There is a well-known statistical theory of the precision of maximum likeli- 
hood estimation. This theory says that in large samples no other method of esti- 
mation can be materially more precise. Moreover, the theory provides a good 
approximation for  the variances and the covariances of the maximum likelihood 
estimates, namely the inverse of the FISHER information matrix. 

The Likelihood Function: The likelihood is a complicated function of the wLi. 

Let k be the number of alleles under consideration. At generation t the probability 
of sampling exactly z z ( t )  alleles of type i (i=l, . . . ,k) if the total number of 
genes sampled is Xzx5 ( t )  , is proportional to the product 

where the allele frequencies at time t, the p5  ( t )  , are the functions of the adaptive 
values and the initial allele frequencies given by formula (1 ) . The expected allele 
frequencies at any generation may be calculated with relation ( 1 ) .  The likelihood 
function for an entire experiment is the product of the likelihoods at each genera- 
tion. That is, it is the product of the expressions (2), for t = t,, . . . ,t,, where the t ,  
are the numbers of the generations at which samples were taken and n is the total 
number of different generations that samples were taken. The basic formula (1 ) 
assumes that the t ,  are integers and, thus, that samples are taken only at intervals 
of one o r  more generations. For continuously breeding populations, samples are 
often taken at irregular intervals convenient to the experimenter. We have found 
the expected pz ( t )  by simple linear interpolation when t is not an integer. Al- 
though this linear approximation is not strictly correct, it has given satisfactory 
results in application. 

( 3 )  
we want to find that set of adaptive values which maximizes L. It should be 
pointed out here that any set of adaptive values is only unique up to a multiplica- 
tive constant. If W = {wzg  I i7j=1, . , . ,k} is one set of adaptive values, the set 
aW = {olwz3 I i7j=l,  . . . ,k} will produce exactly the same changes in allele fre- 
quency for any > 0. This equivalence follows from our basic formula ( 1  ), 
which we see contains a wii in each term of the numerator and denominator. The 
absolute sizes of the adaptive values determine the population size, that is, the 

( 2 )  f ( t )  = p5(t)a%(t) 

Taking the logarithm of the likelihood function, we have 
L (data 1 selective values) = logef = constant 4- $ zZ ( t,) logepi ( t 8 )  ; 
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number of individuals. The relative sizes of the adaptive values determine the 
allele frequencies, which are all our samples permit us to estimate. The common 
practice in the past has been to set one adaptive value arbitrarily equal to unity 
and define the others relative to it. This scaling disrupts the symmetry of the 
formulae, particularly when a standard error for every estimate is desired. We 
have therefore estimated all k (  k+1)/2 different adaptive values under the con- 
straint that they should sum to the constant k(k+1)/2, so that, if there were no 
selection, every adaptive value would equal unity. 

In order to maximize the likelihood we need the first partial derivatives of the 
logarithm of the likelihood, L, with respect to the wij: 

apz ( t s )  
amzfn 

The Recursive Definition of the Derivatives of Allele Frequencies: The ___ 

were evaluated in the same manner as were the p , ( t s ) ,  through the recurrence 
relation ( 1 ) . Let us denote the numerator of ( 1 ) by F ,  ( t )  : 

Similarly, let the denominator of ( 1 ) be D ( t )  : 

Introducing another abbreviation, let 

F*( t )  = c ,p* ( t )p , ( t )ww 

D ( t )  = sI ,F~(  t )  . 

( 5 )  
Then we have, by differentiation, 

Finally. since pi (ti-1 ) = F i  ( t )  / D  ( t ) ,  
a p i ( t f 1 )  - a F i ( t )  1 - F i ( t >  . ao( t>  --.- 
awl,* awlm D ( t >  [D( t )12  awzm ' 

(6) P'iI,,(t+l) = 

The derivatives ( 5 )  are zero at generation zero, since the initial frequencies are 
known constants. Thus we may evaluate, for any given set of adaptive values, 
the p' i i13 , ( t8)  for any generation number t ,  by recurrence relation (6). Hence 

can be determined. In continuously breeding populations where samples 

are taken at irregular intervals and the t, are not integers, we use linear inter- 
polation to find the p'% z m (  t,) . 

The Iterative Solution of the Likelihood Equations: In  order to maximize L, 
we try to find a vector of adaptive values, W ,  such that aL(data1 @)/awl, = 0 for 
all (Z,m) . (Actually this derivative is defined for only N=k(k+l j/2-1 inde- 

pendent pairs (Z,m) ; W k  is defined implicitly by the equation w,? = 
k( k+l)  /2, and derivatives with respect to W k k  are not taken.) An explicit solution 
of the likelihood equations is not possible, so we have resorted to two iterative 
techniques: FISHER'S method of maximum likelihood scoring and the method of 

a 

A 

k k  

a=1 I = C  
Z 
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steepest ascent. Both procedures were accomplished with the aid of the high speed 
digital computer facilities at Yale University. See RAO (1952) and BAILEY (1961 ) 
for a more detailed description of maximum likelihood scoring as it was used here. 
The technique is essentially as follows. A trial vector of w's, is chosen. We 
used either the vector whose components are all unity or else the vector which 
resulted from the technique of steepest ascent which is described below. The 

and the information matrix I are then computed at W(l) .  Let S values of - a W t m  
be the vector whose elements are the aL/awz,. For notational convenience, let us 
renumber the adaptive values so that each is indexed by a single subscript. If L 
is the logarithm of the likelihood function, then the elements of the FISHER infor- 
mation matrix are defined by 
(7) 12, = E(-a2L/awzaw,); z,m=1,2, . . . ,N. 
It can be shown (see the above references) that the ZZ, can be represented as 
simple functions of the expected allele frequencies p i  ( t s )  and of their derivatives 
api ( t , ) / aw~ (i=l, . . . ,k;s=l, . . . ,n;Z=I, . . . , N ) .  These are given by 
( 7') 12, = Zsn (SI i (api ( t s  1 /awl ) (api ( t s  ) /aw,> /pi ( t 8  1 7 

where n ( s )  is the number of genes sampled at time t,. Then the improved vector 
of estimates is given by 

W(2) = W(1) + 1-18. 
We then re-evaluate S and 1 at W ( 2 )  and repeat the process above to give W ( 3 ) .  
The iteration is continued until the elements of S are close to zero. The last set 
of estimates is used to evaluate the information matrix and to obtain the approxi- 
mate covariance matrix I-'. The expected values of the allele frequencies are 
generated from the known initial frequencies of the alleles and the final set of 
estimated adaptive values. 

For the populations with two or three alleles, this method of scoring was very 
efficient in locating the maximum of L. For k=4 or 5 ,  however, the successive 
values of W(n) often did not converge. The method of steepest ascent was used in 
these cases. Beginning at a trial value W(I) ,  the vector of derivatives, S, is formed. 
Then the next estimate is given by 

W ( 2 )  = W( ' )  + constant . S, constant > 0. 
The constant at  each stage is determined by various inner criteria, depending 
on whether or not a maximum point of L is being approached. This method of 
steepest ascent is patterned after that used by KRUSKAL (1964) ; his article details 
ways of choosing the constant at each step. For a more general review of steepest 
ascent see SPANG (1962). The approach by steepest ascent was usually continued 
until the Euclidean length of the vector S was reduced to about one percent of the 
value it had in the first few steps. Then the scoring technique was attempted. If 
the scoring method still did not lead to convergence, the process was halted and 
the last set of estimates from steepest ascent was used to obtain the information 
matrix, as well as the expected values of the allele frequencies. 

Both of these maximization techniques are liable to converge to a merely local 
maximum of the likelihood function, since we were not able to prove rigorously 
that the likelihood must have a unique maximum. A more thorough approach 

a L  
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would be to start with several widely differing values of W(l) and see that the 
same final estimates are reached. We have not done so, but we expect that the 
large sample sizes involved would produce a relatively smooth likelihood function 
with a single maximum to which our estimates will converge. Three hundred 
genes were typically sampled from each of the populations for which we devised 
this procedure, at each of seven to twelve different generations. Convergence to 
some other critical point, such as a minimum or a saddle point, is not a danger, 
since at each step the value of the log likelihood is printed out to ensure that the 
desired maximization is actually taking place. 

I t  is more probable that there should be no clearly defined maximum than that 
the maximum be local only. Where the scoring technique is successful, its very 
success indicates that the maximum is quite well defined. The scoring technique 
was not usually effective, however, for large numbers of alleles. Each vector of 
adaptive ralues defines a point in an N-dimensional simplex, where N is the 
number of independent adaptive values being estimated. The likelihood is a func- 
tion of these points, and it may attain a maximum or near-maximum along a line 
or a plane or even a higher dimensional subspace in the N-dimensional space. All 
that can be said in this case is that the data point equally toward any of the points, 
or vectors of adaptive values, on the subspace. Of course, vectors which contain 
negative adaptive values are biologically meaningless and are excluded from the 
outset-they correspond to points in the space not on the simplex. This consider- 
ation can reduce the uncertainty in the choice of the maximum likelihood esti- 
mates. This topic is developed further below (p. 443).  

The fit of the expected allele frequencies generated from the maximum likeli- 
hood estimates of the adaptive values to the allele frequencies actually observed 
can be appraised by a chi-square statistic for goodness of fit. There are (k-1)n - 
k (k+ 1 ) /2 4- 1 degrees of freedom for a population with k alleles and samples at 
n times after the initiation of the population. 

We have checked our computer program in the following way. Several sets of 
artificial data were produced using formula (1) with known adaptive values. 
These data were then used as input to the estimation program. The original 
adaptive values were returned as output to an accuracy of at least one percent in 
all cases. 

TABLE 1 

Analysis of selection in two-allele population number 204 of PAVLOVSKY and DOBZHANSKY (1966) 
~~ ~~ ~~ 

Estimated Standaid Correlation matnx 
Genet\ pe adaptive values deblations AR/AR AU/PP PP/PP 

AR/AR 1.203 ,016 1.000 ,909 --.963 
AR/PP 1.156 ,027 .909 1.000 -.988 
PP/PP ,641 .w2 -.963 -,988 1.000 

A chi-square statistic for goodness of fit of the observed gene frequencies was computed under 
the hypothesis that the estimated adaptive values were the true fitnesses. Estimation of two 
independent fitnesses from frequencies observed at 12 generations left 10 degrees of freedom. The 
value of the chi-square was 4.9. 



442 W I L L I A M  H. D U  M O U C H E L  A N D  WYATT W. A N D E R S O N  

TABLE 2 

Analysis of selection in three-allele population number 215 of PAVLOVSKY and 
DOBZHANSKY (1966) 

Estimated Standard Matrix of correlations 
Genotype adaptive values deviations ST/ST ST/AR ST/PP AR/AR AR/PP P P P P  

ST/ST ,506 1.907 1.000 -1.000 -.924 .999 -.986 -.941 
ST/AR 2.166 3.041 -1.000 1.000 .918 -1.000 ,989 .938 
ST/PP 1.115 ,234 -.924 ,918 1.000 --.912 ,855 ,861 
AR/AR .383 2.231 ,999 -1.000 --.912 1.000 --.990 -.938 
AR/PP 1.289 ,705 -.986 ,989 ,855 --.990 1.000 ,904 
PP/PP ,542 .I96 -.941 ,938 ,861 --.938 ,904 1.000 

A chi-square statistic for goodness of fit of the observed gene frequencies was computed under 
the hypothesis that the estimated selective values were the true fimesses. Estimation of five 
independent fitnesses from observed frequencies at 10 generations, each generation contributing 
two degrees of freedom, left 15 degrees of freedom for the chi-square. The contributions to the x2 
statistic from computations involving each of the three allele frequencies are given. along with 
the total x2. 

Contribution of ST 13.0 
Contribution of AR 14.3 
Contribution of PP 9.7 

TOTAL 37.0 

TABLE 3 

Analysis of selection in four-allele population control I1 of ANDERSON et al. (1968) 

Estimated Standard Correlation matrix 
Genotype fitness deviation ST/ST ST/AR ST/CH S T P P  AR/AR AR/CH ARRP CH/CH CH/PP PP/PP 

ST/ST 
ST/AR 
ST/CH 
ST/PP 
AR/AR 
AR/CH 
AR/PP 
CH/CH 
CH/PP 
PP/PP 

1.56 .98 
1.38 .90 
1.06 .54 
1.12 .93 
.87 .60 

1.05 1.38 
1.49 .81 
1.09 3.81 
.I7 5.85 
.20 7.32 

1.00 .99 
.99 1.00 
.94 .92 
.97 .97 
.76 .70 
.90 .92 
.28 .29 

-.98 -.97 
.99 .98 

-1.00 -.99 

.94 

.92 
1.00 
.88 
.82 
.73 
.45 

-.88 
.93 

-.96 

.97 

.97 

.88 
1 .oo 
.77 
.94 
.08 

-.99 
.98 

-.96 

.76 

.70 

.82 

.77 
1.00 
.53 
.04 

-.74 
.81 

-.79 

.90 

.92 

.73 

.94 

.53 
1 .OO 
.OO 

-.95 
.90 

-36 

.28 -.98 

.29 -.97 

.45 -.88 

.08 -.99 

.oo -.95 
1.00 -.09 

-.09 1.00 
.I8 -.99 

-.33 .96 

.a4 -.74 

.99--1.00 

.98 -.99 

.93 -.96 

.98 -.96 

.81 -.79 

.90 -.86 

.I8 -.33 
-.99 .96 

1.00 -93 
-.99 1.00 

In the chi-square statistic for goodness of fit, estimation of nine independent fitnesses from 
frequencies observed at 8 generations, each generation contributing three degrees of freedom, left 
15 degrees of freedom for the chi-square. 

Contribution of ST 12.7 
Contribution of AR 27.1 
Contribution of CH 7.1 
Contribution of PP 6.4 

Total 53.4 
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Examples: Tables 1, 2, and 3 show some results of analyses of data from the 
literature. It is clear that the sizes of the standard deviations of the adaptive values 
increase dramatically with an increase in the number of alleles. This increase is 
not altogether surprising, since the number of adaptive values being estimated 
increases in proportion to the square of the number of alleles. Of particular 
interest are the very high correlations between the estimates. These correlations 
are typically extreme, close to plus or minus one, in all of the thirty populations 
we have investigated. It is these large correlations which make more information 
available about the adaptive values as a whole in a population than is indicated 
by the large standard deviations. We will elaborate on this point later. 

Data from the two allele populations we have analyzed usually fit the model 
satisfactorily, as evidenced by the chi-square tests of goodness of fit between 
observed and expected allele frequencies. The populations with three or more 
alleles usually do not yield estimates which account satisfactorily for the data. 
Interactions between genotypes and frequency-dependent selection are probably 
factors in the departure of the data from our model of change governed by con- 
stant adaptive values. Unrecorded changes in the environment during the course 
of the usually long experiments may alter adaptive values and produce irregu- 
larities in the data for which no simple model can account. More complex models 
would be difficult to formulate analytically, but once formulated, they could be 
analyzed by adaptation of the techniques we have used. The model we have 
assumed promises to give a fair first approximation to the true situation, and it 
may be used to see how we should proceed to set up more intricate models. The 
size of the contribution of each allele to the goodness-of-fit chi-squares indicates 
roughly which alleles are influenced most by interactions, frequency-dependent 
selection, and the other factors which depart from our simple model. 

The Problem of Indeterminancy: In the case of 4 or 5 alleles, our program 
fairly often indicated that the function L(data1 W ) ,  given by ( 3 ) ,  was maximized 
at a point where one or more of the adaptive values was negative. Such an esti- 
mate is, of course, meaningless both biologically and statistically. These negative 
estimates could be accounted for by sampling error or they may point to a possible 
defect in the mathematical model which supposedly governs the experiment, as 
already noted. We should ask: For what non-negative values of the wz is the like- 
lihood function maximized? Properly, this involves a nonlinear programming 
approach to the problem of maximizing L, and we have made no attempt to do 
this. But we have been able to use the “formal” (negative) estimates and their 
information matrices to obtain other, non-negative, estimates of the adaptive 
values for which the value of the likelihood is virtually identical. This fact is the 
basis for the earlier statement that the likelihood forms a “ridge” or a “plateau” 
in the N-dimensional space. Also, the large standard deviations coupled with the 
extreme correlations in the FISHER covariance matrices show that the experiments 
yield very little information concerning certain linear combinations of the fit- 
nesses. This corresponds to the uncertainty as to where, along the ridge, the point 
representing the true adaptive values lies. 

This uncertainty is a disappointing outgrowth of our analyses. It indicates that, 
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in many cases at least, a single experiment can never enable one to estimate every 
adaptive value accurately. Just why this should be so is not clear, although certain 
special cases seem explicable. These cases rest on the fact that once an equilibrium 
in allele frequencies is reached, estimation of the adaptive values is no longer 
possible. There are only k-I degrees of freedom involved in observing the allele 
frequencies at any one generation. In  order to estimate the N independent fit- 
nesses, several generations must be observed. If an equilibrium in the allele fre- 
quencies obtains, then the successive generations contribute no new information 
for purposes of estimation. Thus, for example, if k=5 and an equilibrium were 
established before the fourth set of observations, then at most 3 .  (k-I) = 12 
degrees of freedom would be available for estimation, insufficient to estimate the 
N=14 parameters involved. 

The idea of a partial equilibrium of allele frequencies is important also. If 
alleles Ai and Ai are such that p z ( t )  = apj(t), a > 0, a independent of t from 
some time on, then let us say that alleles Ai and Ai have reached an equilibrium 
with respect to each other. Consider equation ( 1  ) , assuming that such a partial 
equilibrium holds between AI and A,, say. In  this case, the fitnesses w,,, w12, m2 
occur in ( 1 ) only in the combinations 

s, ( t )  = p1 ( t )  pz ( t )  WlZ + Pl ( t )  
S,(t)  = p , ( t )  p z ( t )  w12 + pz’(t) w22 . 

& ( t )  = P 1 2 ( t )  (awl2 + w11) 
s, ( t )  = p12 ( t )  (awl, + a2wzz). 

w11 

We assume that for every t, p , ( t )  = a p l ( t )  so that 

This shows that the three parameters w,,, wl, and w,, only enter the likelihood 
equations in the two expressions awl, + w,, = z,, say, and awl, + a2wzz = z2, and 
so any triple (wl,, w,,, w,,) which preserves z,  and z,  will not change the likeli- 
hood equation. Thus in the case stated, with p z ( t )  = a p l ( t ) ,  w,,, wlz, and wZ2 
are confounded with each other, and only z, and z,  can be estimated. This would 
produce a “ridge” on the likelihood surface in the N-dimensional space. 

There are even further considerations. Suppose that wli = wzj, i = 1,2, . . . , k. 
In this case, no matter what the initial allele frequencies p, (0), . . . , p k ( O )  were, 
it can be seen from (1  ) that the frequencies p ,  ( t )  , p ,  ( t )  will remain in the ratio 
a0 = p ,  (0) /pl ( 0 ) .  Thus if A, and A, are observed to be in a partial equilibrium 
with each other including the zeroth generation, then one of two cases exist: 
Either wlj = wzi, i = 1, . . . , k, or the initial value of a, a. = pz(0)/pl(O) just 
happened to be that at which A, and A, are in equilibrium with one another. 
The first case, that alleles A, and A, act identically for purposes of selection, is 
a priori much more probable, assuming that p l ( 0 )  and p 2 ( 0 )  were chosen by 
the experimenter without regard to any considerations bearing on such a partial 
equilibrium. Therefore, in such circumstances, there is a strong case for estimating 
the wij under the restriction that wlj = w2j for every j or, equivalently, treating 
A, and A, as different manifestations of the same allele, and, by adding the 
observed frequencies of A, and A,, reduce the problem of estimation to that of 
k-I alleles rather than k. This assumption will usually greatly reduce the vari- 
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TABLE 4 

Analysis of selection when a pariial equilibrium has occurred. Five-allele population DDT-2 
of ANDERSON et al. (1968) 

Estimate (1) Estimate (2) Estimate (3) 
Genotype Fitness St. dev. Fitness St. dev. Fitness St. dev. 

ST/ST .97 13.0 1.36 1.60 1.477 .267 
ST/AR 2.06 29.2 1.72 2.03 1.522 .410 
ST/CH 1.71 12.1 1.34 1.49 1.404 ,111 
ST/PP 1.57 32.3 1.45 2.43 1.4.04 ,111 
ST/TL 1.27 16.2 1.34 1.49 1.404 ,111 
AR/AR 137 17.7 1.59 1.76 1.751 ,273 
AR/CH .79 17.1 .99 1.37 1.079 ,055 
AR/PP 1.08 10.2 1.22 2.27 1.079 .055 
AR/TL 1.15 17.0 .99 1.37 1.079 ,055 
CH/CH .74 219. .49 5.11 .476 .058 
CH/PP .20 196. .73 10.4 .476 .058 
CH/TL .42 35.4 .49 5.11 ,476 ,058 
PP/PP .66 155. .OO 16.1 ,476 .058 
PP/TL .36 37.4 .73 10.4 .476 ,058 
TL/TL .75 20.4 .49 5.11 .476 ,058 
x’ 30.1 31.2 34.0 

d.f.* 22 27 31 

(1) Maximum likelihood estimates with no special assumptions. 
(2) Estimates made under the assumption that alleles CH and TL act alike. 
( 3 )  Estimates made under assumption that alleles CH, PP and TL act alike. 

* Frequencies were observed at 9 generations, each generation contributing four degrees of 
freedom. 

ances of the estimated adaptive values, since the parameter space is reduced by k 
dimensions. Table 4 presents an example of the use of this method. 

In more general cases, where such partial equilibria have not been observed, 
the phenomenon of a “ridge” on the likelihood surface has still been observed. In 
these cases, if it is desired to use some point on the ridge as an estimate of the 
vector of adaptive values, it is, of course, necessary to use a point which is also 
on the simplex, i.e., where every adaptive value is nonnegative. Among such 
points, unless there are a priori considerations, there is very little reason to 
choose one point on the “ridge” over another. The situation would be quite dif- 
ferent if two independent experiments were made, under identical conditions 
except for different initial allele frequencies. Then, although each experiment 
would have associated with it a “ridge” of ambiguity, the combined experiments 
would point strongly toward the adaptive values represented by the intersection 
of the “ridges.” But in single experiments, with large numbers of alleles, it must 
be kept in mind that any single vector of estimates for the fitnesses cannot ade- 
quately describe the results of the experiment without all of the associated 
covariances. 

Combining and comparing vectors of adaptive values from different ppula-  
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tions: When a n  experiment is replicated and more than one vector of estimates 
is obtained for the same adaptive values, a combined or averaged set of estimates 
will usually be desired. The average is formed by weighting each vector of esti- 
mates by its information matrix. If independent experiments yield the vectors 

f i(z), . . . as estimates of the adaptive values, and if the information mat- 
rices are Z ( l ) ,  Z(z), . . . respectively, then the besiaverage isA 
(8)  

To prove this, assume that the likelihood function of the nth experiment is Fell 
approximated by the multivariate normal distribution with mean vector W@' 
and covariance matrix [Z@)]-l. Then the nth log likelihood is, up to an additive 
constant, 

LW = - i /e (W-f+(n)>t Ifn) (W-*(nj>, 

where the prime denotes transpose. (See, for example, RAO (1952) for more 
information about the multivariate normal distribution.) Since the experiments 
were assumed to be independent, L*, the logarithm of the likelihood of the com- 
bined experiments, is the sum of the Lfn); 

L* = - (W-W(n))/l(n) (W-ii/(n)>. 
The maximum likelihood estimate for the combined experiments, W*, is found by 
equating the vector derivative of L* with respecito W to the zero vector. 

--dL/dW = X n P  (W*-W(n)) = 0. 
From this it follows that 

Z,,l(n) W* == Znl(n)@(n) 

W* = [ z n l ( n ) l - l  Xnz(n)&(n) .  

W* = (P +Z@) + . . .)-1 (WW(1)  +Z(Z)W(Z) + . . .), 

The last line is identical with equation (8). Also, since Zfn) is defined as E[--d2 
L(n)/dW2], then I*  = E ( -d2L*/dWZ) = Z,P, since both expectation and dif- 
ferentiation are additive. The covariance matrix for the averaged set of estimates 
W* is thus C* = Z * - l =  ( Z ( l )  + Z(2) + . . .)-I. 

Using the assumption of normality, useful statistics for comparing adaptive 
values from the same and different populations can be derived from W and I .  
For example, in the population described in Table 1, the estimates of the fitnesses 
of genotypes labeled A R / A R  and AR/PP are fill = 1.203 and Glz = 1.156, re- 
spectively. If the PP gene were completely recessive, then wll would equal w12. 

We can base a statistic on the hypothesis that this is so. From Table 1, the vari- 
ance of Gll, V(Gll) = .0162 = .000256, V(Glz) = .0272 = .000729, and the 
covariance of Gll and OlZ is Cov(Gll, GI,) = (.909) (.027) (.016) = .000393. 
Then the standard deviation of fill I- G12 is given by 

0(2211-G1z) = [V(G,,)  + V(22lZ) - 2 cov (2211, 2212)]% 
= C.000256 f .OW729 - .000786] % 
= .014. 

The observed value of Gll-Glz is .047, a figure which is .M7/.014 = 3.3 standard 
deviations away from zero. This is strong evidence that wll is actually larger than 
wlz so that the PP allele is not wholly recessive. 

In  many cases, one must decide whether selection as a whole has operated dif- 
ferently in differently treated populations. Each vector of adaptive values defines 
a point on an N-dimensional simplex, where N is the number of independent 
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estimates of the adaptive values. This point is an overall representation of selec- 
tion in the population. To see whether selection has been different in different 
populations means we must test the differences between the two vectors of 
adaptive values. The effect of the high correlations among the estimates is to 
concentrate the “confidence region” around the point in the vicinity of a straight 
line or some higher dimensional subspace. The large standard deviations mean 
that the location of the point along this line cannot be stated very precisely. But 
the overall performance of the population is quite likely represented by a point 
somewhere close to the straight line. Thus, differences in the total selection be- 
tween populations can be much easier to demonstrate than differences between 
individual adaptive values. 

As an example, consider the data in Table 3 for a population with four alleles. 
Comparing the standard deviations with the estimates themselves, there is little 
evidence that the vector of estimates is significantly different from the vector 
whose elements are all unity. This vector of ones represents a total lack of selec- 
tion. Assume that the estimated adaptive values are normally distributed with 
covariance matrix I - I .  Then we may construct a test of the hypothesis that the 
actual adaptive values are all equal to unity. Denzte by 1 the nine-dimensional 
vector, all of whose elements are unity, and by W the vector of the first nine 
adaptive values in Table 3. Denote by I the FISHER information matrix of the 
adaptive values. The standard deviations and correlations of Table 3 were ob- 
tained by inverting I and using the relation 2 ,  , lwij = 10 to compute the lastzow 
and column of the covariance matrix. Under the hypothesis, the vector W is 
normally distributed wiih mean 1 2nd covariance I-l, so the product 

will be distributed as a chi-square variable with nine degrees of freedom. In  our 
example the actual value of the chi square is 516, making it unthinkable that no 
selection occurred. Of course, a glance at the observed gene frequencies for this 
population, given in the accompanying paper, also makes it obvious that some 
selection has occurred. 

A similar test can be made of the hypoLhesis :hat vectors of adaptive values 
from different populations are equal. Let W(l), P, P )  be the vectors of 
estimates and the information matrices foc the tyo  populations. Then we want 
to test the hypothesis that the vector 6 = W(1)-W(2) has as its mean the vector 
whose elements are all zeros. The covariance matrix of 8 will be given by* 

and 6 will be normally distributed on the assumption that 
Therefore the product 

8’ HS = x 2  

will have a chi-square distribution with number of degrees of freedom equal to 
the number of independent adaptive values being estimated (k(k+1)/2-1). This 
technique was used to test for the effect of two insecticides on selection in poly- 
morphic populations of Drosophila pseudoobscura in the accompanying paper. 

(W-l)’Z(W-I) = x 2  

H-1 = 1(1)-1 + 1 ( 2 ) - - 1  

and I?(?) are. 

* One must be very careful when attemptmp to inveit such ill-conditioned matrices as seem to arise in this problem. 
All matnx inversions mere done in double precision anthnietic, which carries 16 significant figures. 
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Advice to the Experimeder: This study has implications for the design of ex- 
periments on selection. The first is that unrealistically large sample sizes are 
needed to measure adaptive values accurately when as many as four or five alleles 
are present. It might be better to conduct several experiments with different 
combinations of the alleles taken two or three at a time. Little or no information 
about selection can be extracted once an equilibrium of the allele frequencies is 
reached. I t  is better to run two shorter experiments than to continue one long 
experiment after an equilibrium has been reached. If it seems desirable to con- 
tinue the experiment to ensure that an equilibrium is in fact maintained, the 
sample sizes can be reduced, and the time between samples increased, for the 
latter part of the experiment. It is the changes in allele frequencies which allow 
us to estimate adaptive values. Hence, the initial frequencies should be chosen 
as far as possible from the experimenter’s best guess for the equilibrium fre- 
quencies. Also, different replications of an experiment should start off with 
widely different initial frequencies. Little extra effort is required to check 
whether the genotype frequencies fit the multinomial distribution predicted by 
the Hardy-Weinberg law. Since the mathematical model for selection assumes 
so heavily that they do, a check with a simple chi-square test can prevent an 
unjustified analysis. The programs we have written for extracting the maximum 
likelihood estimates of the adaptive values and their covariance matrices, and for 
combining and comparing selection in different populations, are available from 
us. 

This research was supported in part by the United States Army, Navy, Air Force and NASA 
under a contract administered by the United States Office of Naval Research. The authors wish 
to thank PROFESSOR LEONARD J. SAVAGE, Department of Statistics, Yale University, for his many 
suggestions and discussions concerning this paper. 

SUMMARY 

An analysis of selection is described in the case of experimental populations 
which are segregating for alleles at a single gene locus. Iterative procedures for 
obtaining the maximum likelihood estimates of adaptive values are described. The 
resulting vectors of estimated adaptive values and their corresponding FISHER 
information matrices are used to test the differences in selection between differ- 
ent populations. Examples of the procedure are presented, and suggestions to 
future experimenters are included. 
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