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HE general genetic incompatibility model can be described by specifying 
Twhich, among the types of mating considered possible, are allowed to occur. 
This encompasses the original self sterility mechanisms in Nicotiana (EAST and 
MANGELSDORF 1925), the “pollen elimination” and “zygote elimination” models 
of FINNEY (1952), heterostyly in Primula (BODMER 1960, MORAN 1962) and 
those models involving; assortative matings as proposed by WATTERSON (1959), 
NAYLOR ( 1962) and WIDRKMAN ( 1964). 

Since these incompatibility systems have been found so widely in nature, the 
question of what polymorphic equilibria can be expected from a given model is 
quite an important one. However, the stability of, and rate of approach to these 
equilibria are just as important from an evolutionary point of view. Historically, 
it has been the practice to demonstrate the stability or otherwise of genetic systems 
such as incompatibility models by local linear analysis (see OWEN 1953 and 
WORKMAN 1964). Mathematically, the fact that such a local linear analysis 
produces one eigenvalue greater than unity is not sufficient to guarantee insta- 
bility. In fact it may merely mean that a trajectory can move away from the 
fixed point in one direction and return along another. This fact seems to have 
been misunderstood in the literature. 

Recently high speed computation has been used in a large number of models 
to show that starting from special initial genotype frequencies, some fixed point 
can be reached. In this note we consider certain incompatibility systems intro- 
duced by FINNEY and more extensively pursued by Scum (1 964) as a basis for 
some models of polygenic sex determination. These models fit quite comfortably 
into the broader class of incompatibility systems mentioned above. SCUDO has 
determined the equilibrium points (or in some cases families of equilibrium 
points) and, using numerical methods, has verified that for special initial geno- 
type frequencies some of these equilibrium points could be reached. In  this paper 
we have chosen some of SCUDO’S models and attempted to ascertain their complete 
equilibrium behavior; that is the determination of the equilibria themselves, the 
rates of approach and domains of attraction to the equilibria. Our objective is to 
carry out a complete mathematical analysis of these models highlighting certain 
qualitative implications which may have some evolutionary significance and 
which are not obvious, from numerical computations. These conclusions are 
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further reinforced by those obtained in the companion paper (KARLIN and FELD- 
MAN 1968) in which we consider some related models due to WORKMAN and 
NAYLOR, as well as their “zygote elimination” modifications. 

MODELS AND RESULTS 

The incompatibility mechanism used here can be viewed in two ‘ways. First, 
one can suppose that all conceivable matings take place, but that the offspring 
produced from certain specified matings are inviable. Second, the genotypes can 
be considered to be partitioned into two sets, with matings possible only between 
individuals in different sets although at random within this restriction. In the 
terminology of FINNEY (1952) the models are of the zygote elimination type. 
For a biological justification of this formulation, see SCUDO (1964). 

The first model treated here (due to FINNEY) is extremely simple. It is included 
for purposes of comparison with the later models. We allow three genotypes AA, 
AB and BB, but the only matings producing viable offspring are those between 
a homozygote and a heterozygote. Alternatively, the genotypes can be partitioned 
as in Table 1, with matings possible only between members of different sets. If 
the frequencies of the AA, AB and BB in the nth generation are respectively un, 
U,, wn with uo, uo, wo being those in the initial population, we obtain the follow- 
ing recursion relations 

(1) (ii) Tn-l U ,  = uS1 vel + wn-l U,-, 

where T,, is a normalizing constant inserted to keep everything in terms of 
frequencies . 

0 bviously 

(i) 

(iii) 

Tn-l un = u,-~  v , -~ 

T,, wn = wel un-l 

U0 - p., say, . . . =-- U n  - un-1 - 
Wn wn-1 W O  

and un = 1/2 for n 2 1. It follows that 

f o r n 2  1 P 1 
Un = 2(l+p) ’ wn = 2(l+p) . .  

Thus, after one generation, the population has reached one of a possible conti- 
nuum of equilibrium points, the exact point depending on the initial constitution 
of the population. (It is interesting to compare this result with the HARDY-WEIN- 

Significant changes occur when a third allele is incorporated into the above 
model. We consider two cases according to whether the third allele C is introduced 

BERG law.) 

TABLE 1 

Model I 

Set 1 Set 2 
AA BB AB 
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into set 1 (model 11) or set 2 (model 111). In model I1 the incompatibility is 
specified by the following table: 

HOIMOZYGOTE x HETEROZYGOTE MATINGS 

TABLE 2 

Model I1 
~~ 

Set 1 

genotype AA BB BC AC CC 
nth generation frequency W n  2, Yn Z, 

initial frequency U0 WO xo Yo =o 

Set 2 

AB 
un 
U0 

Once again matings are considered to take place only between individuals in 
different sets. The relations connecting genotype frequencies over successive 
generations are 

Vn-1 yn-1 

2 (ii) Tn-l un = uW1 u,,-~ + 
un-1 xn-1 TG1 ion = u,-~  wn-l + -- 2 (iii) 

un-1 X n - l f  un-1 yn-1 
2 

U n - I X n - l +  vn-1 yn-1 

2 

(iv) T,-l xn = 

(v) Tn-1 yn= 

(vi) z n = O  f o r n >  1 ,  
where Tn-l = ~ U + ~ ( I - L ~ ~ ~ )  is a normalizing factor. Notice that U n  + W~ = Um 
and x, = yn for n 2 1. Hence 

n U0 +- - un- - _- f i ~ n - 1  +-=- k z  + 1 = .  . . =- 
xn xn-1 2 xn-z 2 5 0  

1 

and 
Wn __ n WO +-. __ __ - 
x n  2 xo 

Therefore xn -+ 0 and then yn -+ 0, so that U ,  + vn + wn = 221, + 1 or On += i / .  
Since 

U0 n - '+ - 
Un - xo 2 
Wn W O  n -+- 

5 0  2 

- 1  a s n + c o  -_ - 

we have un + %, w, + ?4. The ultimate structure of the population is therefore 
ue = we = x, ue = % and is independent of the initial makeup of the population. 

It is intuitively obvious that the allele C will eventually disappear. It is not 
evident that the addition of the third allele fundamentally alters the potential 
equilibrium configuration of the population. In fact, the previous continuum of 
fixed points is reduced to the single point ue = we = %, ue = s. What is perhaps 
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more important is that the rate at which the equilibrium is approached is 
drastically altered. In model I the equilibrium point (which depends on the 
initial conditions) is achieved in one generation. In  model I1 the third allele 
disappears at an algebraic rate (i.e., the frequencies of the genotypes BC and AC, 
X n  and yn in the nth generation, diminish like l/n as n increases) which means 
that the equilibrium frequencies are attained very slowly; in terms of the allele 
C, its frequency takes approximately 100 generations to decrease to 1% and 
1000 generations to decrease to 0.1 %. 

This reduction in the rate of approach to the equilibrium point seems to us to 
have some biological significance. Firstly, in a multiallelic system obeying similar 
mating laws to those postulated here, it can be inferred that although an allele 
(like C) may eventually disappear it will exist in the population for long periods 
of time. Conceivably, over this long duration, environmental or other changes 
could occur which might then give the allele in question an advantage, permit- 
ting it to become established. Secondly, if one observes a multiallelic population 
such as that in the second model it is quite likely that the observation will be 
made while the population is in a state of transition to a configuration containing 
far fewer alleles than actually noticed. 

The incorporation of the third allele into model I to form model I1 causes 
profound changes in the equilibrium behavior, as shown above. It is interesting 
and a priori not obvious that these changes are influenced by the manner in which 
the third allele is introduced. The tliird model, specified by Table 3, illustrates 
this point. Again matings are permitted only between members of different sets. 
The only change from model I1 is the set to which C has been added. It is possible 
to maintain a status quo with, for example, only AA in Set 1 and AB and AC in 
Set 2. In fact there are three families of equilibrium points, and the initial con- 
ditions determine which is reached. The equilibrium behavior differs profoundly 
from that of the previous model. The following is a brief discussion of the mathe- 
matical results obtained. The mathematics is more complicated, but since it may 
be of use in the analysis of other genetic models, it has been included in the Section 
“Analysis of Model 111.” 

From Table 3 the recursion relations connecting the genotype frequencies 
over successive generations are 

(i) 
(ii) Tn-l W, = ( U n - 1 4 -  ~ - 1 )  

(iii) 

Tn-1 Un = Un-l(Un-1 -t yn-1) 

Tn-l un = ~ , - 1 ( ~ , - 1  4- z+I) -f Wn-1 (Un-1 f yn-1) 

Set 1 
genotype AA BB 

nth generation frequencies U R  Wn 
initial frequencies uo w ~ ,  

TABLE 3 

Model 111 

Set 2 
AB AC BC cc 
U, Yn I n  Zn 

U 0  Yo 20 z o  
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( 3 )  (iv) Tn-1 ~n = u-1 (yn-1-f- xn-1) 

(v) Tw, x n  = mn-1 (yn-1- t  xn-1) 

(vi) zn = 0 n L 1  
where Tn-l = 2( U,-, + ,w,-~)  ( u,-~ 4- zn-, + yn-l) is a normalizing factor. 

points : 
From the relations i(3) it is easy to establish three families of equilibrium 

F,: we= $$, ue +x, $$, 

F,: ue 4 we = i / ,  ue = $$. 
F,: ue = 1/, Ue + ye = i / ,  

We prove that the vector (un, w,, U%, x,, y,) always converges as n+ 00,  even 
though there exist three continua of equilibria. More importantly we have deter- 
mined precise domains of attraction to the respective equilibria. 

The task at hand is to prove convergence, and to ascertain which of these 
families of equilibria is reached. The result is sensitive to the nature of the initial 
frequencies. For example, if uo/wo 5 1, yo/xo I 1 with uflyo/wflzo < 1 then the 
population will ultimately reach a point belonging to the family F,; the exact 
point depends on the precise initial conditions. The rate of approach, which is 
geometrically fast with ratio 2ve, also depends functionally on the initial fre- 
quencies. ( wn converges to $$ geometrically with rate 20, means that for n large 
enough I w, - $$ 1 decreases by a factor 20, per generation. Generally geometric 
convergence is much faster than algebraic, especially for low frequencies. It is 
possible, however, if the rate is close to 1, for geometric convergence to be quite 
slow. This is the case in Table 5. The limiting equilibrium always satisfies 
Ue > 0, x, > 0; which affirms specifically that all three alleles are always present. 
We establish in the following section, that whereas ue is bounded away from 
zero independently of the initial frequencies, ze can be arbitrarily small. This 
implies that the geometric rate of approach may involve a factor close to 1 in 
which event the equilibrium is attained relatively slowly. Under the initial con- 
ditions wo/uo 5 1, xo/yD I 1 and wozo/uoyo < 1 corresponding results obtain; 
convergence takes place to a point of F,, with both the precise limiting equilib- 
rium and the rate of approach depending on the initial conditions. 

I t  is striking that a stable situation can exist in which one allele is present at an 
extremely small frequency. Table 5 describes a concrete example in which this 
case arises. The computation in Table 5 further demonstrates the care required 
in interpreting data. A cursory glance at the table might lead one to surmise that 
the genotype AC is disappearing when in fact it has become stabilized at a very 
low frequency. Of course the mathematical theory dictates that xe > 0 so that a 
correct interpretation of i he table is unavoidable. 

NOW since y n / x n  = un-l/wn-l, the result described above also resolves the case 
where for some n, (un/wn - 1) and (u,+l/wn+l - 1 )  are of the same sign (see 
Tables 4, 5 ) .  The remaining possibility is that (&n/wn - 1 ) is a sequence alter- 
nating in sign. In this case ‘we establish (see “Analysis of Model 111” below) con- 
vergence to the special equilibrium point ue = we = %, U ,  = $$, a member of F,, 
and convergence then occurs at an algebraic rate. 

The genotype frequencies effectively entail 4 independent variables. Theoret- 
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ical considerations indicate that the case of alternation mentioned previously is 
possible only if the initial vector of genotype frequencies belongs to a hypersur- 
face of dimension less than 4. The case U, = wo, y o  = xo (which implies un = w,, 
Yn = xn for every n) can be regarded as a case of degenerate alternation. 

In every case convergence takes place to one of the families F,, F,, F,. From 
the previous paragraph, it is obvious that the initial conditions determine the 
precise equilibrium attained. This is in sharp contrast to model I1 where the 
single equilibrium ue = we = x, U ,  = is ultimately achieved albeit very 
slowly. On the other hand, by including the allele C in the set with the hetero- 
zygote, the equilibrium U, = we = ?A+, ve = 1/2 seems to become almost irrelevant. 
It is surprising and somewhat puzzling that the change from model I1 to model 111 
should alter the equilibrium behavior so profoundly. 

Tables 4 and 5 illustrate concretely the dependence of the equilibrium be- 
havior on the initial conditions. 

Analysis of Model ZZZ. For a complete analysis of this third model we have to 
consider various types of initial conditions. Consider first the case 

Then, from (3) (i) and ( 3 )  (ii), 
un ~ W I  -<- 
W n  Wn-1 

SO that { un/wn} is a bounded decreasing sequence of positive numbers and hence 
U n / w n  tends to a limit a 2 0. Since yn/xn = uwl/wn-l we have yn/Xn 1 *Y also. 

+ 
We now argue by contradiction; suppose (Y > 0, and consider 

un-1 Xn-13 wn-1 yn-1 - u-1 - 
xn + yn z n - i +  yn-1 ( U n - l f  wn-1) (zn-1 + yn-1) (4) 

un-1 yn-1 -+- 
- 0-1 + Wn-1 xn-1 

(1 +-)(1+”) un-1 

- 
5-1 + yn-1 

Wn-1 xn-1 
But the last term on the right hand side is bounded away from zero, since 01 > 0. 
Hence there exists an integer N and a positive constant C such that for n 2 N ,  
we have on iteration, 

( 5 )  

where D ( N )  is a constant depending only on N .  This last term converges to zero 
a s n - , ~ . T h u s , z , + y , ~ O s o t h a t z , ~ O ,  yn+O.Now 

(6) 
and hence we may conclude that U,, + urn - U ,  + 0. Moreover, since 4- wn -I- 
D~ + 1, we infer that un + wn -+ 1/2, U ,  .+ 1/2. Again, from (4) there exist posi- 
tive constants E and F such that for n large enough (yn 4- Xn)/vn 2 (nE + F)-l .  

Since the harmonic series diverges and un + 1/2, we have ( y n  -I- 2,) = W .  NOW 

U n  + w n  - un !=1-++1, Yn -1 - 2-1 

yn - X n  yn-1 Xn-1 

m 
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TABLE 4* 

111  

An example of Model III with ul/wl > 1, u2/w2 > 1 and fast conuergeme 

n= 0 
1 
2 
3 
4 
5 
6 
7 
8 

43 

.300000 
,246874 
,326206 
,358842 

.I 3905 97 
,41614 
,433580 
,448572 
,460310 

.m96 

. 1 m  

.Of33437 
,079747 
.067511 
.055 908 
.045250 
.036014 
,028382 
.022185 

.000001 

. 2 o m  

.335416 
,344824 
.363879 
.370658 
.375119 
.377554 
,378956 
.379763 

.380870 

." 
,083333 
.Of33480 
.041207 
.OB951 
.020681 
.a15028 
.011050 
.008196 

.oooooo 

.1%000 

.24!3999 

.185740 

.168558 
,153884 
. 1 W 4  
.137821 
.I33037 
.129543 

,119130 
~~~~~~~~~ ~ 

In this case convergence is at a geometric rate and the equilibrium lies in F2. Differences 

* We are indebted to M[r. Markus Nabholz for assistance with the computations of Tables 
< 10-6 are neglected. 

4 and 5. 

TABLE 5 

An example of Model I I I  with ul/wl < 1, u2/w2 < 1 and slow convergence 

n= 0 
1 
2 
3 
4 
5 
6 
7 
8 

50 

500 

1000 

1250 

1756 

.20100000 
.16331249 
.I 8405 95 8 
,19535440 
,20272563 
.20768693 
.21Z 17187 
.21?166836 
,21547356 

,1958O4.05 

,01006937 

.OMk21620 

.00003 i 37 

.OoO~OOO63 

.19900000 

.16997916 

.19093572 
,20468927 
.21397646 
.22092495 
,22637185 
,23082391 
.23457858 

.29483422 

,48977055 

,49978042 

.49996813 

.49999935 

.2o0Oo0oo 

.333374Q9 
,37502031 
,39997032 
.41663077 
.42852188 
.43743947 
,44437303 
.44991802 

,48968814 

,49615028 

,49615360 

.49615360 

.4Q615360 

.21000000 
,16583333 
.I2749234 
,101 82653 
,08527812 
,073361 77 
.06443901 
,05749771 
.05 19627 

,01166596 

.00392839 

.00384808 

.00384664 

.00384639 

.19000000 
,16749999 
.I2249203 
.09815947 
.08138900 
.06950443 
,06057777 
.05363696 
,0480864 

.00780761 

.00008 139 

.oooO0167 

.oooO0024 

.o0O00000 

In this case the equilibrium is in P , .  Note that z, is extremely small and that the geometric rate 
of convergence (2vJ is very close to 1. This accounts for the slow rate. Differences less than 10-8 
are neglected. 
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m 
[ ( x ,  - yn>/(xn + yn)] + (~-a)/(I ,+a) so that z ( 5 ,  - yn) = CO, also. An de- 
mentary calculation, using ( 5 ) ,  reveals that 

But since z+ is bounded away from zero and 2 ( X k  - y k )  diverges, we invoke a 
well known theorem on infinite products to conclude that u,/wn + 0 contradict- 
ing the original assumption. Therefore un/wn+ 0, yn/xn+ 0 so that un+ 0, 
yn -+ 0. From equations (3), un + w,, 2 1/2, and since yn + 0 we have U,, 3- xn 
2 1/2 for n large enough. But 

+ 1 + + l  2ym-1 
%-1+ xn-1 

x n  + v n  - 
W n  WT&-1 

&-' and the fact that {un/w,} so that wn + 1/2, U, -I- xn + 1/2. From (4) - - - 
is a decreasing sequence, we have, for every k, 

Yn-1 - 
Xn-1 Wn-z 

Uk-i uk-z  (7)  c(%+"""'I 5 4 -  - <-f-  

(8) C [2 z uk-1+2] +A I----- Vn 

wk-1 w k - 2  x k + Y k  xk-1 +yk-l w k - 1  wk-2 

where C = (1 f ( u0/m) )-'. Summing over IC, from 1 to n, we have 

I- U0 + 2 ;  %+E 
n-1 

w k - 1  xo xo + yo x n + y n  xo +yo k=l m-1 xo k=l 

From (8) we see that un is bounded away from zero. If we can show that 
2 (uk/w7$) < CO then (8) would imply that lim u,/x, exists, and since un -k x,  -+ 1/2 
we would have lim xn > 0. We now prove that $ u k / z l ) k  < CO. Assume, to the 
contrary, that Z u k / z &  = 00. From (3)  (i) and (3) (ii) we have, with some re- 
arrangement, 

n 

n 

u n  - ~ n - 1  - ( U + l / w n - l )  ( ~ n - z / w n - Z  - 1) 
w n  wn-1 ( V , - l / X , - l )  + 1 

( U + l / w n - l )  I (E-l) 

- -- 

Now un/wn J 0. Hence for any E > 0 there exists N such that for n 2 N 
U, - Un-1 

W R  Wn-1 ( u n - l / s n - i )  + 1 * 

- -  (9) 
Returning to (8) we see, since Z diverges, that 

Vn u k  

X n  
-isof theorder Z - 

w k  
k=l  

Summing both sides of (9) over n, the sum of the left hand side is a telescoping 
series, and remains bounded, while the right hand side, by virtue of (IO) and an 

elementary theorem on divergent series (i.e., Z an = CO and A ,  = Z a k  implies 
I: ( a n / A n )  = m), diverges to - W .  This produces the required contradiction so 
that I: Uk/z l )k  < 

We have therefore established that if uo/m0 I 1, yo/zo I 1, U ~ ~ ~ / W O X ~  < 1 
then there is convergence to a member of the family we = 1/2 n e  -4- xe = 1/2; 
U, > 0, xe > 0. By completely symmetrical considerations when wo/uo I 1, 

?a 

k=O 

must prevail and consequently xe > 0. 
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xo/yo I 1, woxo/uoyo < 1 the limit equilibrium has the form ue = 1/2, ue + ye  = 

TO obtain the rate of convergence to a fixed point of the form We = 1/2, ue 4- xe 
1/2; ue > 0, Ye > 0. 

= 1/2 we examine 

Hence the rate of convergence of un is geometric with ratio of decrease approxi- 
mately 2ve per generation. It is then not difficult to show that w,+ 1/2 and 
vn + x, -+ 1/2 with convergence occurring at a geometric rate. 

The above analysis resolves the case where for some n, ( (ZL,+~,'W+~) - 1) and 
( (u,/wn) - 1 ) are both nonzero and of the same sign. Consider now the circum- 
stance that the signs of these two quantities alternate continually as n+ W. 

Suppose uo/wo < 1, yo/xo  > 1. This of course means yl/xl < 1 and ul/wl > 1. 
Then ul/wl = ( y l / x , )  ( vo+y0)/ (uo+zo) > 1. Obviously ( vo+yo) /( vo+xo) < yo/xo 
(since xo < yo)  and therefore (yl/xl) (yo/zo) > 1. Again 

(11) 

Hence 

so that y2 /xz  - 1 < yo/xo - 1. By induction (y2,/xZn - 1) is a decreasing se- 
quence. Similarly (1 -- yzn+l/xsn+l) is a decreasing sequence. Suppose that 
lim ( Y p n / x Z n )  = 1 4- CY and lim (y2n+l/xz,+l) = 1 - with CY 2 0, /I 2 0. Then 
we can use equation (4) to assert that for n large enough, 
n-+ ;a n-+ rr 

where y is a positive constant.-It follows that Y, / (x ,  f y,) 2 n y  and therefore 
xn + yn -+ 0 as n .+ m.  From (6) we conclude that un + 1/2. 

Consider again 

The second factor on the right tends to 1 and yn/xn = u , - ~ / w ~ - ~ .  Passing to the 
limit in (12) and applying the findings of the previous paragraph, we obtain 
1 + (Y = 1 - p and hence (Y = p = 0. This ensures that 11 - yn/xnl + 0. From 
(3)  (i) and (3) (ii) we infer that U ,  - w, -+ 0. Hence since un/wn + 1 the fixed 
point is ue = we = 1/4, ue = 1/2. Since the domains of attraction to stable sets 
must be open sets, general topological considerations dictate that thc point (1/4, 
1 /2, 1 /4) is unstable in model 111. 

The very special case where uo = w,,, yo = xo is one in which the third allele 
disappears. In  this case = w, and y, = xn so that 
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Hence y / v ,  + 0 algebraically so that y,, -+ 0, x,, + 0. Also ( u,+w,) /U, = 1 since 
x , + ~  = Y,+~. Therefore U, + w, + U ,  + 1 with U, + w,, + 1/2, v,, + 1/2 and since 
U ,  = w, we must have ue = 1/4, we = 1/4, ve = 1/2. Note that the rate of ap- 
proach here is algebraic (see equation (13) ). We have s h m ,  therefore, that in 
every case convergence to an equilibrium point takes place. 

DISCUSSION A N D  SUMMARY 

The analysis itself has led to a number of conclusions which could not have 
been discerned solely by numerical computation. 

(i) T h e  addition of the third allele in models I1 and I11 could be expected to 
alter the equilibrium behavior from that in model I. However, the manner in 
which the allele is introduced influences this behavior in an unexpected way. 
In model 11 where the allele C is in the set with the two homozygotes AA and BB 
there is a single equilibrium, 1/4 AA + 1/2 AI3 4- 1/4 BB, which is stable and is 
reached very slowly. When the allele C is in the set with the heterozygote AB, 
three continuous families of equilibria result; U ,  = 1/2, U e  -I- ye = 1/2; we = 1/2, 
U e  X e  = 1/2; Ue -I- We = 1/2, ve = 1/2. The third continuum of equilibria effec- 
tively reduces to the single point ue = we = 1/4, ve = 1/2 in the sense that this 
is the only equilibrium of the family which can be attained. At points in the first 
two families, all three alleles are represented. The rate of approach to these 
equilibria is geometric with rate approximately 2ve. The equilibrium Ue = We = 
1/4, U ,  = 1/2 can be attained only if the initial frequency vector belongs to a 
lower dimensional hypersurface. It is therefore an unstable equilibrium in the 
classical sense. I t  is quite surprising that the seemingly small alteration of the 
basic model from I1 to I11 should be responsible for the marked differences in 
equilibrium behavior between the two models. 

(ii) In model I1 (and in the degenerate case uo = wo, yo = x,, of model 111) the 
allele C disappears slowly. In most models where the mating system entails a 
form of selection, the rate of loss of an allele is very slow, usually no faster than 
algebraic. In the present context, this has two qualitative implications. First, the 
third allele will exist in the population for long periods and therefore be subject 
to environmental or other influences which could conceivably give it an advantage 
at a later stage such that this allele might then become established. The second 
implication is a more practical one. In the field several alleles may be observed 
at low and apparently constant frequencies. If the mating scheme of the popula- 
tion approximates that in the models here, it may be that the population is not at 
“polymorphic equilibrium” but in a state of slow transition to a configuration 
containing fewer alleles. This could explain the existence of a large number of 
alleles in a population. The analysis was carried out for the case of 3 alleles. The 
presence of a larger number of alleles in a population with this mating behavior 
would slow the approach to an equilibrium state even more. 

(iii) In model 111 we have shown that it is possible to maintain a polymorphic 
equilibrium with the third allele, C, at an extremely small frequency. Such 
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equilibria are usually attributed to a balance between selection and other pres- 
sures such as mutation. 

(iv) I t  is evident from model I11 that in discussing equilibrium properties, 
numerical computations have to be used cautiously. In model 111, for example, 
the precise fixed point depends on the initial conditions. We have given an 
example (Table 5) in which, at equilibrium, one genotype frequency is so small 
that at first glance it might be assumed to be effectively zero. However, the 
mathematical analysis establishes that this genotype frequency is positive at 
equilibrium. 

In the paper, “Further Analysis of Negative Assortative Mating,” another class 
of mating systems is examined. While we are most particularly interested in the 
qualitative findings outlined above, we believe that the mathematical approach 
used here may be applied profitably to other investigations of genetic models. 
There are, of course, many models which do not succumb to an analysis as com- 
plete as that available for the models considered here. For these computations 
can be of some help in indicating the transient behavior of the population. On 
the other hand wherever a mathematical analysis is possible, as in the models 
above, much more can lbe learned. 

SUMMARY 

In  the usual two allele model with matings permissible only between homo- 
zygotes and heterozygotes it is well known that a continuum of equilibria exists. 
In  this paper i t  is shown that the introduction of a third allele as originally 
proposed by SCUDO produces either a single equilibrium or  3 families of equilibria 
depending on whether the genotypes containing the third allele are taken with 
the original homozygotes or heterozygote. Complete analyses of the models are 
given including the domains of attraction and rates of approach to the various 
equilibria. The type of mathematical analysis presented may prove useful in the 
treatment of other genetic models. 
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