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AS pointed out by FISHER (1930), a majority of mutant genes which appear 
in natural populations are lost by chance within a small number of genera- 

tions. For example, if the mutant gene is selectively neutral, the probability is 
about 0.79 that it is lost from the population during the first 7 generations. With 
one percent selective advantage, this probability becomes about 0.78, namely, it 
changes very little. In general, the probability of loss in early generations due to 
random sampling of gametes is very high. 

The question which naturally follows is how long does it take, on the average, 
for a single mutant gene to become lost from the population, if we exclude the 
cases in which it is eventually fixed (established) in the population. 

In the present paper, we will derive some approximation formulas which are 
useful to answer this question, based on the theory of KIMURA and OHTA (1969). 
Also, we will report the results of Monte Carlo experiments performed to check 
the validity of the approximation formulas. 

APPROXIMATION FORMULAS BASED O N  DIFFUSION MODELS 

Let us consider a diploid population, and denote by N and Ne,  respectively, its 
actual and effective sizes. The following treatment is based on the diffusion models 
of population genetics (cf. KIMURA 1964). 

As shown by KIMURA and OHTA (1969), if p is the initial frequency of the 
mutant gene, the average number of generations until loss of the mutant gene 
(excluding the cases of its eventual fixation) is 

- 

In this formula, 
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is the probability of ultimate fixation of the mutant gene (cf. KIMURA 1957, 
1962), and 

where 

G(z) = exp (-2 Io” ( ~ a x / v a p l  , (3) 

and M ,  and vSx are respectively the mean and the variance of the rate of change 
per generation of the mutant gene frequency z. In the present paper we will be 
concerned with mutant genes that are either deleterious or selectively neutral. 

Let s’ and s’h be respectively the selection coefficient against the mutant homo- 
zygotes and heterozygotes such that 

M 6 X  = -sfz(l-x){h+(1-2h)~} . (4) 
Also, we will assume that the sole factor causing random fluctuation in gene 
frequency is the random sampling of gametes in reproduction so that 

v, = z(l--x)/(2Ne), ( 5 )  
where N ,  is the “variance” effective number. Then, if the mutant allele is repre- 
sented only once at the moment of its appearance, the average number of genera- 
tions until extinction may be obtained by putting p=1/(2N) in formula (1) in 
which Ma. and Vaz are given respectively by (4) and (5). However, the resulting 
formula contains integrals that can not be reduced in general to elementary 
functions. So, we will consider separately three cases, namely, 1 ) neutral muta- 
tions, 2) semidominant deleterious mutations, and 3)  completely recessive dele- 
terious mutations. In the following, we will denote by io the value of t 0 ( p )  at 
p=l/(2N). 

1) Selectiuely neutral mutations: In  this case, s” = 0 and therefore M ,  = 0, 
giving G(x) = 1, u ( p )  = p and $ ( f )  = 4Ne/{.$(1-[)}. Thus, formula (1) with 
p = 1 / (2N) reduces to 

as given by KIMURA and OHTA (1969). Writingto for 6 (1/ (2N) ) and assuming 
that 2N is much larger than unity, we obtain, with good approximation, 

- N 
t o  = 2 (+) log, (2N). (7) 

2) Semidominant deleterious mutations: In this case, h=1/2 and, we will denote 
by sfl the selection coefficient against mutant heterozygotes such that Ma:= 
-sflx( 1-2) = - (s’/2) x( 1 -z) . Then, it can be shown that, if s ’ ~  ( > O )  is small 
but 4N, sfl is large, we obtain approximately 

where y is Euler’s constant, 0.577 . . . . Note that?, in this case depends mainly 
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on selective disadvantage (dl) but not on population numbers as long as the ratio 
N , / N  remains constant. This formula may also be expressed as 

- 
t o  = 2 (5) {loge(2N) - log,(2Nes’) + 1-y} , ( 8’) 

3 )  Completely recessiue deleterious mutations: In this case, h=O and it can be 

N 
where s’ = 2 ~ ’ ~  (2N,s’>>l) . 

shown that, if 2N,s‘ is large, we obtain 

(9) 1 Y 
2 2 

- 
to = 2 ($) { log,(2N) - - loge(2N,s’) + 1 - -} 

as a good approximation, where s’ is the selection coefficient against mutant homo- 
zygotes. 

EXPERIMENTAL CHECK O N  T H E  APPROXIMATION FORMULAS 

BY T H E  M O N T E  CARLO METHOD 

In order to check the validity of the approximation formulas (7), (8) and (9), 
Monte Carlo experiments were performed using TOSBAC 3400 and IBM 360 
computers. 

These experiments cover the cases of neutral, semidominant deleterious and 
completely recessive deleterious mutations, using the following scheme. In each 
generation, the gene frequency was changed deterministically using the formula 

AX = - S’X ( 1 -x) { h f ( 1 -2h) x} /W,  
where Z=l-2hs’x ( 1 -x) -dxz. Sampling was performed by generating pseudo- 
random numbers, X (O<X< 1 ), using the subroutines RAND in TOSBAC 3400 and 
RANDU in IBM 360. In one of the two programs, this was done at the gametic stage 
and in another at the zygotic stage. Each experiment was continued until fixation 
or extinction of the mutant gene occurred and the number of generations required 
was recorded. 

Table 1 shows the comparison of the results of Monte Carlo experiments and 
those of the analytical solution for the case of neutral mutations. Two hundred 

TABLE 1 

Comparison of theoretical and Monte Carlo results for the auerage number of 
generations until extinction of a neutral mutant gene 

Population size* 
We) 

Theoreticalf 
result 

Monte Carlo$ 
result 

10 
20 
30 
40 
50 

100 
200 

6.3 
7.6 
8.2 
8.9 
9.3 

10.6 
12.0 

7.2 
6.5 
8.0 
7.3 

11.4 
14.1 
13.6 

* Actual and effective sizes assumed equal, N e  = N .  
+ Computed using text formula (6).  
$195-200 replications to obtain each experimental value. 
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trials were made to get each experimental value, although actual replication 
ranged from 195 to 200 because mutant genes became fixed rather than lost in a 
few cases. As seen from the table, agreement between the Monte Carlo results 
and the theoretical predictions is satisfactory. When 2N, is large, the variance 
for the time until extinction becomes large, and the agreement tends to become 
less satisfactory. This will be discussed in the next section. 

In  Figure 1, the results for the semidominant deleterious mutations are shown 
for various degrees of disadvantage. The curve represents the theoretical predic- 
tions and the dots represent the results of Monte Carlo experiments. The two 
agree with each other fairly well. The effective and the actual population numbers 
are different in these experiments, i.e., N=75 and N,=50. Each experiment 
was repeated 50 times, except for the case of s’=O, for which 500 replications 
were made. This is because a larger variance is expected for neutral mutations 
than for disadvantageous mutations, Almost all deleterious mutations disappear 
within a few generations. On the other hand, neutral mutations sometimes in- 
creased, persisting in the population for quite a long time until extinction occurs, 
hence creating a much larger variance. 

The results for completely recessive deleterious mutations are shown in Fig- 
ure 2. Theoretical values are given by the curve and the experimental results by 
dots. Two hundred replications were made to get each experimental value, except 
for the case of s’=O, for which the same experimental value as given in Figure 1 
was plotted. There are more fluctuations in these experimental results than in 
the previous case of semidominance, but the agreement is satisfactory. It may be 
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FIGURE 1.-The relationship between the average time until extinction Go) of a single 
mutant gene and its selective disadvantage (s’) for the case of semidominant deleterious muta- 
tions. In this figure, the curve represents analytical results (from text formula 8’) and the dots 
represent the results of Monte Carlo experiments, in which N,=50 and N=75 are assumed. 
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FIGURE 2.-The relationship between the average time until extinction Go) of a single 
mutant gene and its selective disadvantage (s') for the case of completely recessive deleterious 
mutations. The theoretical values (from text formula 9) are represented by the curve and the 
results of Monte Carlo experiments by dots. In the experiments, Ne=50 and N=75. 

S 

noted that for recessive mutations the time until extinction decreases only very 
slowly with the increase of disadvantage. 

DISCUSSION 

Since a majority of mutations are expected to be either deleterious or at best 
neutral, it may be easily imagined that the average time until extinction Go),  
as studied in the previous sections, has an important bearing on the frequency of 
rare molecular variants in the population. Actually, it can be shown that if a gene 
(cistron) consists of a large number of codons, we have 

I , / N  = 2uY0 , (10) 
where I ,  is the number of temporarily segregating codons (i.e., number of differ- 
ent kinds of rare molecular variants) in a population of actual size N and effective 
size Ne,  and U is the mutation rate per gene per generation. This formula was 
used to estimate the mutation rate per codon in human hemoglobin genes 
( KIMURA, unpublished). 

Recently, there is growing evidence for suggesting that random fixation of 
selectively neutral mutations is playing an important role in molecular evolution 
(KIMURA 1968, 1969; CROW 1969; KING and JUKES 1969). So it may be appro- 
priate here to consider in some detail the behavior of selectively neutral mutants 
in a finite population. 

As shown in the present paper, as well as in our previous paper (KIMURA and 
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TABLE 2 

Variance of the number of generations until extinction for neutral mutationst 
with various population sizes* 

Variance 

Population size’ From text From Monte Carlo 
( N e )  formula (11) experiment 

10 120 192 
20 262 167 
30 413 320 
43 561 23 7 
50 714 1207 

100 1490 2966 
200 3060 2327 

* N ,  = N is assumed. 
t A single mutant gene is assumed at the start. 

OHTA 1969), the time until extinction ( to )  is fairly short for neutral mutants in 
the sense that it has a small mean value. Namely, the average number of genera- 
t:ons until extinction is about 2(Ne/N) log, ( 2 N ) .  On the other hand, it has a large 
variance relative to the mean. In fact, as shown in the APPENDIX, the variance of 
the number of generations until extinction (excluding the cases of eventual fixa- 
tion) is 

If both N and N e  are very large, this gives the approximate standard deviation 

Var(to) = 16(N,’/N) - [2(Ne/N)l0ge2N]~. (11) 

u(to)  4Ne/fl (12) 

which is much larger than the mean. 
Table 2 shows some results of Monte Carlo experiments to check formula ( 11 ) . 

The agreement between theoretical predictions and the experimental results is 
fairly good. In  Table 3 a frequency distribution of the length of time until 
extinction is presented, based on Monte Carlo experiments. 

When we treat problems of molecular evolution, however, the time until fixa- 
tion is more important than that until extinction. I t  was shown in our previous 
paper (KIMURA and OHTA 1969) that it takes about 4Ne generations for an 
individual mutant to reach fixation (excluding the cases of extinction), if it is 
selectively neutral. We show in the APPENDIX of this paper that the variance of 
the number of generations until fixation is approximately 

Var(t,) -4.58 Ne2 (13) 

so that the standard deviation is about (2.14)Ne. Thus, the standard deviation 
is roughly half of the mean. 

We would like to thank Dr. ROBERT H. MAC ARTHUR and Dr. HENRY E. SCHAFFER for reading 
the manuscript and correcting the English. 
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TABLE 3 

Frequency distribution of the number of generations until extinction of a single 
neutral mutant gene that appeared in a population of N e  = N = 200 

70 7 

Frequency (percent) 
(based on 200 replicates) Nuniber of generations 

1 42 
2 12.5 
3 11.5 
4 5 
5 2.5 
6 3 
7 1.5 
8 3 
9 1.5 

10 0.5 
11-20 7 
21-30 2 
31-40 1.5 
41-50 1.5 
51-60 0 
61-70 0.5 
71-80 0 
81-90 1 
91-100 1 

161-170 0.5 
201-210 1 
241-250 0.5 
521-530 0.5 

100 0 

SUM MARY 

The average number of generations until extinction of an individual mutant 
gene in a finite population (actual size N ,  effective size N e )  was studied using 
diffusion models; approximaZion formulas were given for neutral, semi-domi- 
nant and recessive deleterious mutations. Monte Carlo experiments were per- 
formed to check the validity of these formulas.-In addition, the variance of 
the time until extinction was studied for neutral mutations. It was shown that for 
such mutants, the standard deviation of the number of generations until extinc- 
tion (excluding the cases of fixation) is roughly 4 N e / d m ,  and this is much 
larger than the mean which is 2(Ne/N)loge2N. On the other hand, the number 
of generations until fixation of a neutral mutant (excluding the cases of extinc- 
tion) has a mean of approximately 4Ne and a standard deviation of roughly 2N,. 
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APPENDIX 

Variance of the number of generations until extinction, with special reference 
to selectively neutral mutations 

Let u,(p,t) be the probability that a mutant allele becomes lost from the population by the 
tth generation, given that its initial frequency is p. Also, let 

and 

Then 

and 

respectively, represent the mean and the mean square of the number of generations until extinc- 
tion of a mutant allele whose initial frequency is p. In the above formulas, u , ( p ) = u , ( p , ~ )  
stands for the probability of eventual loss. 

For a selectively neutral allele, it can be shown that u,(p , t )  satisfies the following partial 
differential equation 

a ,  p ( i - p )  azu 
at 4 ~ ,  a p 2  ’ 
- _ _ ~ -  

where N e  is the “variance” effective number of the population. 
Differentiating both sides of this equation with respect to i, multiplying the resulting terms 

by t2, and then integrating both sides with respect to t from 0 to 00, we obtain 
m a*, p(i8-p) a 2  J 0 a t 2  4 ~ ,  a p 2  

- S , ( P )  . t* -dt = ___ 

Assuming that t*au(p, t ) /at  vanishes at t=w, the left hand side of this equation is reduced to Assuming that t*au(p, t ) /at  vanishes at t=w, &e left hand side of this equation is reduced to 
-2T,(p), which is equal to 8Nep log,p, according to KIMURA and OHTA (1969). Thus we have 

(A3) d2 1% P -S,(p) = (32 Ne*) - 
dp2 1 -P 

The solution of this differential equation which satisfies the boundary conditions, 

and 
S(0 )  != 0 (A4) 

turns out to be as follows: 

- 
lim t o 2 ( p )  ’= finite, 
P+ 1 

SO(p)=32N,*{ plog,p- (1-p) 1 *dx} 1 -x  
~ ~~ 

(For the meaning of these boundary conditions, readers may refer to KIMURA and OHTA 1969). 
Thus the mean square time until extinction is 

- P log P to=(p)=32Ne* [ -- * d x ]  , 
1-P 0 1-x 

since u, (p )  = l , -p  for a neutral allele. 
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The variance of the number of generations until extinction may then be obtained from 

V a r { t 0 ( p ) } = t , 2 ( p ) - { ( t o ( p ) } 2 ,  

in which i o ( p ) =  -4N,(p log,p)/(l-p). 
If the mutant allele is represented only once at the moment of its appearance, we may put 

in the above formulas. Writing to for to(1/2N), we obtain 
P = 1/(2N) 

to = 2(Ne/N)log,2N (A8) 
and 

- 
t o 2  = 16 Ne2/N (A9) 

approximately. 

that 
fo(1-P) = t l ( P ) ,  

i.e., loss of one allele is the same event as fixation of the alternative allele, where t l ( p )  is the 
time until fixation of an allele whose initial frequency is p .  

lo 6 

Formula (A7) also gives the mean square time until fixation of a neutral allele, if we note 

Since 
1 logx z-2 

&E--  

and 

we obtain 

and 

limt,(l--e) = 4N,, 
E ’ O  

z-2 
limt0*(1--E) =32Ne2(-- l ) ,  
e+ 0 6 

Var{t,} = tm- io2(1)z4.58 Ne2, (A121 
where t ,  is the number of generations until fixation (excluding the cases of extinction) of an 
individual mutant gene. 


