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I N  this series of papers the behavior of multiple allelic systems in populations 
subject to selection, genetic sampling, and mutation is to be systematically 

explored. The first paper (LATTER and NOVITSKI 1969) dealt with the effects of 
directional selection for a quantitative character in small populations, given an 
infinite base population with multiallelic variation similar to that described by 
KIMURA (1965). KIMURA’S model postulates (i) that mutation can give rise to a 
very large number of alleles at each locus influencing the expression of the 
quantitative trait; (ii) that the genes are additive in effect on the character; and 
(iii) that the optimal phenotype is fixed, with fitness decreasing in proportion to 
the squared deviation of an individual’s genotypic value from the optimum. 
KIMURA has shown that with small mutational changes, the allelic effects at a 
given locus are normally distributed at equilibrium in a large population. In this 
paper computer simulation techniques are used to extend KIMURA’S model to 
populations of finite size, where the expected number of alleles segregating per 
locus is not necessarily large. 

Contributions to the theory of centripetal selection have been made by many 
authors, including FISHER ( 1930), WRIGHT ( 1935), HALDANE ( 1954), ROBERT- 
SON (1956), KOJIMA (1959), LATTER (1960), LEWONTIN (1964), JAIN and 
ALLARD (1965) and SINGH and LEWONTIN (1966). The emphasis of these studies 
has been the examination of deterministic equilibria for a variety of genetic 
models; in no case have the joint effects of genetic sampling and mutation been 
considered. 

KIMURA and CROW (1964), EWENS (1964), WRIGHT (1966) and KIMURA 
( 1968), have discussed the maintenance of isoallelic variants in finite popula- 
tions in the absence of selection. The level of heterozygosity in such a population 
at equilibrium is expected to be approximately 

where N is the effective population size and ,A the mutation rate, the number of 
possible allelic states being assumed to be very large (KIMURA and CROW 1964). 
EWENS (1964), WRIGHT (1966) and KIMURA (1968) have given approximate 
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algebraic expressions for the number of alleles expected to be segregating at 
equilibrium, showing the number to be a function of both N and Np. KIMURA 
has also presented a set of computer simulation results for comparison with the 
predicted values. 

(i) to examine the effects of centripetal selection on a multiallelic system in 
finite populations; 
(ii) to draw comparisons with the infinite population theory of KIMURA (1965) 
on the one hand, and that developed for neutral isoallelic variation in finite 
populations on the other; and 
(iii) to discuss the relevance of the results to recent studies of enzyme poly- 
morphisms in Drosophila, man, and mice (SHAW 1965; LEWONTIN 1967; HARRIS 
1969; SELANDER and YANG 1969.) 

The objectives of the present study are: 

SELECTION FOR A FIXED INTERMEDIATE OPTIMUM IN LARGE POPULATIONS 

Consider a metric character z with the following probability density function 
among juveniles: 

1 exp [- ---I (z-X) f(z) =-- d w  2 UZp 

where 5 denotes the mean and dP the phenotypic variance. 
The mean reproductive fitness +(z) of individuals with phenotypic value x 

will be supposed to decrease with deviation from the optimum according to the 
relation 

where the optimal value of 1: is taken to be zero, with a relative fitness of unity. 
The scale constant U( specifies the rate at which fitness declines with deviation of 
z from the optimum. The mean fitness of the population, relative to that of the 
optimal phenotype, is then given by 

where 2 = u~~ + U’,. If differences in reproductive fitness are a matter only of 
differential survival, the variable z after selection is distributed with mean 

- uf and variance uf *. The deviation of the mean from the optimal 

value, and the phenotypic variance of the trait, are therefore reduced by the 

same factor - 2.  We will call this factor the coefficient of centripetal selection, 

denoted by 
c = + u2f)-1 (4) 

with a scale of values ranging from zero (no selection) to unity (absolute selection 
of the optimal phenotype alone). The product Ch2, where h‘ is the heritability of 

b-1 (-1 

c1 
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the metric trait, corresponds operationally to the definition of homeostatic 
strength proposed by ROBERTSON (1956), viz., the proportional return of the 
mean in one generation, following a period of directional selection away from 
the optimal value. 

In a population with mean at the optimum, the coefficient of centripetal selec- 
tion is simply related to the parameter I defined by HALDANE (1954) to measure 
the intensity of natural selection for the optimum. The expression relating the 
two parameters is 

so that C is approximately equal to 2 I at low selection intensities. 
Selective values under centripetal selection: Suppose the genotypic configura- 

tion A,A, at a given locus is present in the population with frequency p.pj. If the 
total contribution of the locus to the phenotypic variance is small, we may con- 
sider the subpopulation of values of the variable z, for those individuals with 
configuration A,A,, to be normally distributed with mean d,j and variance uZp. 

The contribution of subpopulation A,Aj to the succeeding generation is then 
proportional to 

I = - 1/2 log, (l-C) ( 5 )  

from equation (3) , which we may take to be approximately given by 

(7) 
d2ij 
U2P 

= 1 - I/ 2 C -  

at low intensities of selection. The mean of these approximate selective values is 
- X ~ i p j  w*ii w* = 

233 

= 1 - % c [ZZ + U"] / UZp (8) 
where uZg denotes the total genotypic variance contributed by the A locus. The 
expected frequency of allele Ai in the progeny of surviving individuals is then 

p'i = [E pipj w*ijl / E* 
i 

where ai 
which all allelic effects are additive, i.e., di j  = 2 + ai + aj, we have 

3 pj ( d i i  - f) and ~i = 3 pi (dij - 5) '. For the particular case in 
3 

For the purposes of computer simulation, equations (9) and (10) are the most 
useful expressions for the changes in allelic frequencies from generation to gen- 
eration. For algebraic manipulations, however, a more satisfactory expression is 

For a model involving additive allelic effects this becomes 

so that the frequency of the allele Ai will increase whenever 

A pi = p i  [ 1/2 c ( ff2g - 22ffi - K i )  / U Z p ] .  

A pi 

(11) 

(12) 

(2 + a i )2  < p k  (2 + ak)z. (13) 

pi [ 1/2 c (1/2 uZg - 22ai - & ' i ) / ~ ~ p ]  

k 
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The predicted change in the mean of the population due to changes in allelic 
frequencies at the A locus, under the assumption of additive allelic effects, is 
given approximately by 

A G = 2  x a i  A p i  
i 

= C [ r ( -  uZg) - pi a 3 i ] / ~ 2 p  
z 

from (12).  Summing over all segregating loci gives 

where h2 is the heritability of the character, provided the sum of the p i  a3i 

can be neglected, i.e., that there is no overall tendency to directional skewness of 
the distributions of allelic values. 

Single locus models: Models involving a single locus under centripetal selec- 
tion are of particular interest, since they may be used to represent natural selec- 
tion for an optimal level of the catalytic activity of a specific enzyme. The fore- 
going theory can readily be applied to such models by an appropriate redefinition 
of the parameter C. With a single locus contributing all the genetic variance in 
the measured variable 5, the relative selective value of the genotype AiA, can be 
seen from equation ( 3 )  to be proportional to 

A 3 = -5C h? 

z 

provided the intensity of selection is low, where u2? denotes the nongenetic var- 
iance in the character. Equations (7)  to (13 )  are then valid for the single locus 
model, if C is taken throughout to be equal to C = uZp (de f uZf) - l .  Equation (14 )  
will be a valid approximation provided the d,, are small by comparison with Of .  

Changes in genotypic uariaiice d u e  to selection: Selection for a fixed inter- 
mediate optimum is expected to lead not only to the maintenance of the popula- 
tion mean in the vicinity of the optimum, but also to changes in the level of 
genotypic variability within the population. For a multiallelic locus with additive 
allelic effects, the change in genetic variance from one generation to the next due 
to selection is expected to be 

A (U2,) = 2xAp2a2, -2[EAp,al.l2 

where Ap, is given by equation (12 ) .  Substitution leads to the general expression 
2. z 

C C 
n U2P 

A (U”,> = 7 r ($2 - 2% - Y4) - % - (2% + Y d 2 I  

where p r  = xpzar, .  For the particular case in which the mean is at the optimum 
and the a, are normally distributed, we have Z = 0, p 3  = 0 and p4 = 3p2, ,  so that 

With a single locus model we can equate u ~ ~ ~ u ~ ~  to h2, the heritability of the 
metric trait, and the total phenotypic variance can be seen to be reduced by a 
fraction 1/2 Ch4. For a model involving n identical loci, the corresponding 
reduction is ( l /2n)Ch4,  ignoring complications due to departures from gametic 
equilibrium. 

It is clear from the foregoing that the changes in genotypic variance due to 

% 

A (U’,) - u2 9 r% c~z,/~pPl (15) 
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selection will in general be complex, even for a single locus model, since the 
assumption of normality of allelic effects cannot hold strictly for more than one 
generation. In particular it is apparent that the changes depend on the number of 
loci contributing to the total genotypic variance in the metric trait, direct evi- 
dence to this effect having recently been provided by the computer simulation 
study of ALLEN and FRASER ( 1968). 

THEORY UNDERLYING THE COMPUTER SIMULATION PROCEDURES 

The first objective of this study is a quantitative assessment of the impact of 
centripetal selection on a multiallelic locus in finite populations. An understand- 
ing of this phenomenon requires the examination of changes in at least four 
parameters as selectior, and random sampling proceed, viz.: (i) the number of 
alleles segregating; (ii) the mean level of heterozygosity; (iii) the mean geno- 
typic variance contributed by the locus; and (iv) the drift variance, defined as 
the variance among means of replicate populations. The second objective is to 
describe quantitatively the accumulation of mutational variability in populations 
subject to centripetal selection, in terms of the same four parameters. 

The only satisfactory technique for such a comprehensive study is that of 
computer simulation, aided wherever possible by algebraic treatment. We will 
begin by elaborating the theory given in the previous section to take account of 
the effects of finite population size, thereby providing a frame of reference for 
the numerical results obtained by computer simulation. The theory necessary 
for the simulation of mutation in finite populations under centripetal selection 
will then be presented, and an approximate formula derived for the equilibrium 
genotypic variance. 

Changes in variance in finite populations: The theory presented in the preced- 
ing section involves no restrictions as to the number of loci contributing to vari- 
ation in the quantitative trait under selection. However, for multilocus models 
the genotypic variance due to the A locus, dg, was assumed to be small relative 
to the total variance, u ~ ~ ,  and the coefficient of centripetal selection, C, was 
assumed to be sufficiently small for equation (7)  to be a satisfactory approxima- 
tion. With single locus models only the latter restriction is necessary. 

An approximate expression can be given for the expected total change in uZg 

in finite populations, following t generations of weak centripetal selection and 
random sampling in a population with mean initially at the optimal value. The 
expected change in genetic variance in one generation is approximately 

for low intensities of selection. We are here making use of the fact that the 
decline in heterozygosity due to random sampling is expected to be a fraction 
1/2N per generation (KIMURA 1955): for a locus with additive allelic effects 
the genetic variance is expected to decline by the same fraction (LATTER and 
NOVITSKI 1969). 
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Equations (15) and (16) are based on the assumption of normality of the 
distribution of allelic effects ai. If this requirement is satisfied in the initial 
population, and changes in the moments p3 and p4 with time are negligible, 
we may derive an approximate formula for the magnitude of do as a function 
of t ,  viz., 

- t  - - t  

uz0 = (g2u2,)eZN[1 + NCg2 (1 - e  ")I-' (17) 

where g 2  denotes the initial value of u ~ ~ / u ~ ~ .  If time is measured in units of t / N ,  
we may then expect the rate of decline in genetic variance to be dependent 
primarily on the value of the parameter combination NCg2. 

Variability due to mutation: The following model is to be used exclusively in 
this paper to simulate the production of new genetic variation in a population 
due to mutational changes. Following KIMURA and CROW (1964) and EWENS 
(1964), it will be assumed that the number of allelic states at the locus is suffi- 
ciently large for each new mutant to represent a novel allele. We will consider 
only loci with additive allelic effects on the metric trait under selection, the 
existing alleles Ai having frequencies pi, i = 1,2, . . . , n, and effects ai, coded so 
that xpiai = 0. 

Denote the probability of a mutational event by p, assumed to be the same for 
all alleles Ai.  Then if uZ9, uz0* d2note the additive genetic variance due to the A 
locus before, and after, respectively, the occurrence of mutation in any specified 
generation, we have 

u Z o  = 2 [ &a251 

~ ' g *  = 2[Epi(I  - p ) a 2 i  + X p p i  (a'i + U'm)]  

i 

and 

z i 

= uzo + 2pU2$% (18) 
where the changes in allelic effect Sai due to mutation are independent of ai, 
and have expectation zero and variance uZm. If the allelic effects ai are normally 
distributed, equations (16) and (18) may be combined for a population with 
mean at the optimum to give the following rough approximation for a finite 
population: 

where it is assumed for simplicity that the sequence of events in each generation 
is (i) measurement, (ii) selection, (iii) random sampling, and (iv) mutation. 

The equilibrium variance due to this locus, Gz0, is then expected to be given 
by the relationship 

1 [ dl + (4NC*) (4Np) -1 ] - 
6 Z g  - .- - 

2u2, 4NC* 

where C* = C U ' ~ / U ~ ~ ,  
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provided the distribution of allelic effects remains close to normal throughout 
the approach to equilibrium. This can be expected to be a valid assumption only 
for small values of C*, i.e., for weak selection. For C* = 0 or (4NC*)  ( 4 N p )  
small by comparison with unity, equation (20) becomes 

GZg = 4Npuzm (21) 
As N tends to infinity, equation (20) becomes identical with the solution given 
by KIMURA (1965) for a population with mean at the optimum, viz., 

CENTRIPETAL SELECTION I N  T H E  ABSENCE OF MUTATION 

In this section we present numerical results for single locus models of centri- 
petal selection in populations of effective size N ,  in the absence of mutation, for 
a range of values of the parameter combination NCg2. In each population a 
series of 2N alleles is supposed to be segregating initially, each with frequency 
pi  = 1/2N, and allelic effects ai are sampled at random from a normal distribu- 
tion with mean at the optimum (zero) and variance s g z .  A separate sample of 
ai values is chosen for each replicate run. The regimes concerned are listed in 
Table 1. 

The computer simulation procedure involves two steps each generation: (i) a 
transformation of the vector of allelic frequencies, making use of equation ( lo) ,  
to simulate the effects of centripetal selection; and (ii) random sampling from 
a multinomial distribution with parameters 2N; p'i, i = 1, 2, . . . n, where n 
denotes the number of alleles segregating, and the pti denote the transformed 
allelic frequencies. 

The statistics for  regimes without selection are summarized in Table 2. Over 
the range of population sizes from N = 10-100, the mean number of alleles 
segregating after N ,  2N, and 3N generations can be seen to depend on the value 
of N ,  since the initial number of alleles is directly proportional to N .  However, 
after 3N generations the differences in allele number among the regimes are 
small. The levels of heterozygosity, additive genetic variance and drift variance 
are in agreement throughout the table with expectations of 1 - F =  [ 1- (l/2N) ] t ,  

(1 - F ) g 2  and 2 Fg2,  respectively. This provides a check on many aspects of the 
computer program. 

Table 3 sets out corresponding data for those regimes involving centripetal 
selection in addition to random sampling, the order in the table being that of 
increasing values of NCg2 from 0.5 to 20.0. Three important conclusions can be 
drawn from the data of Tables 2 and 3: 

1. Comparisons of regimes with the same value of NCg2 ,  but differing in the 
individual component parameters, support the view that population behavior 
is largely determined by the value of NCg2. Of 36 such differences throughout 
Table 3, only one is statistically significant at the .05 level, and a second com- 
parison is on the borderline. 
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TABLE 1 

Regimes involved in the study of elimination of allelic variation 
by centripetal selection in the absence of mutation 

Designation Population Coefficient of I n i t i a l  genetic’ Value of 
NCg2 - of regime* s i z e  (N) select ion (5) variance (g*)t 

D(l0) 10  0.00 1 .0  0.0 

D(20) 20 0.00 1 .o 0.0 

D(50) 50 0 .oo 1.0 0.0 

D(lO0) 100 0.00 1.0 0.0 

DS (10,O. 5) 10 0.10 0.5 0.5 

DS (20,l. 0) a 20 0.50 0.1 1.0 

DS (20,l .O)b 20 0.05 1.0 1.0 

DS (50,5 .O) 50 0.10 1.0 5.0 

DS (100,5 .O) 100 0.50 0.1 5.0 

DS (50,lO. 0) 50 0.20 1.0 10.0 

DS (100,lO .O) 100 0.10 1.0 10.0 

DS (100.20 .O) 100 0.20 1.0 20.0 

* D(N) denotes a regime of genetic drift alone, with effective population size N ;  DS (N , z )  
denotes a regime involving drift and centripetal selection, with population size N and z = NCg2. + Expressed as a fraction of the initial phenotypic variance. 

2.  Figure 1 illustrates the response to increases in the value of NCg2 shown by 
the four observed statistics, viz., mean number of alleles segregating, mean 
heterozygosity, mean genetic variance within populations, and the variance 
among means of replicate populations, i.e., drift variance. Observations for 
regimes with the same value of NCg2 have been averaged in preparing the figure 
from Tables 2 and 3. Only the data following 2N generations of selection are 
illustrated, but the comparisons are similar at any point throughout the 3N 
generations of selection which have been studied. 

At values of NCg2 > 1 .O, centripetal selection can be seen to lead to a reduction 
of well over 50% in the drift variance after 2N generations, and the genetic 
variance due to segregation within the populations is comparably reduced with 
NCgz > 5.0. However, both the number of alleles segregating and the mean 
level of heterozygosity are scarcely affected by regimes with values of NCg2 up 
to 20.0. Observations of mean levels of heterozygosity, or of numbers of alleles 
segregating, are therefore unlikely to be sensitive indicators of the selective 
forces operating in a finite population. 
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3. The frequency distributions of number of alleles segregating in replicate 
populations under centripetal selection (Table 3) are not detectably different in 
this study from those under genetic sampling alone (Table 2). It is well known 
that stable equilibria are possible under centripetal selection in large populations 
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with a single locus segregating, the two-allele configuration being stable when- 
ever the heterozygote is closer in genotypic value to the optimum than either of 
the two homozygous genotypes (ROBERTSON 1956). We can infer from the 
results presented here that this phenomenon has not led to any appreciable 
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FIGURE 1.-The sensitivity of four population parameters to differences in the value of NCg2, 
based on the data of Tables 2 and 3 for 2N generations of selection in the absence of mutation. N 
denotes breeding population size, C is the coefficient of centripetal selection, and g2 the initial 
contribution of the locus to the total phenotypic variance. 

retention of allelic variation with NCg2 < 20, given initially a set of multiple 
alleles with effects normally distributed about the optimum. 

It is of some interest to check on the accuracy of equation (1 7) in predicting 
changes in the level of genetic variance due to alleles with initially normally 
distributed effects. Table 4 shows the predicted and observed values after N gen- 

TABLE 4 

Comparison of obserued Ievels of genetic uariance within populations with those predicted by  
equation (17). The data refer to a period of N generations of centripetal selection in 

the absence of mutation, there being initially 2N alleles with effects 
normally distributed about the optimum 

Value of Genetic variance Predicted 
NCg? observed' variance* 

0.5 
1.0 
5.0 

10.0 
20.0 

0.55 k .04 
0.46 t .02 
0.22 f .02 
0.15 k .01 
0.07 f .01 

0.51 
0.44 
0.20 
0.12 
0.07 

* Expressed as a fraction of the initial genetic variance, g2. 
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erations of selection. For the range of values of NCg2 tested, the predicted values 
somewhat underestimate the residual genetic variability, since equation (1 7) 
ignores changes with time in the measure of kurtosis of the distribution of allelic 
effects. After 2N and 3N generations of selection in the absence of mutation, the 
predicted values are quite appreciably less than those observed. 

POPULATIONS IN MUTATION-SELECTION EQUILIBRIUM 

Our objective in this final section is the simulation of essentially equilibrium 
populations under centripetal selection, genetic sampling and mutation, dealing 
only with single locus models. The expected number of mutant alleles per gen- 
eration is 2Np, and the actual number has been determined each generation as 
a random Poisson variate with the same expectation. The mutational events 
have been allocated at random to the existing alleles, with probabilities equal 
to the allelic frequencies after selection and genetic sampling. The effect of a 
new mutant has been determined as ai + 6ai, where ai is that of the parent 
allele concerned, and 6ai is a random normal value with zero mean and variance 
2%. Selection and random sampling have been simulated in the manner indicated 
in the previous section. The program has been checked to establish that new 
mutants are introduced into the population according to Poisson expectations, 
and that the mean probabilities of extinction for neutral mutations (C = 0.0) are 
those predicted by existing theory (Table 5 ) .  

The regimes of Table 6 have been chosen to represent a series of populations 
with values of N ,  the breeding population size, ranging from 100 to 1,000, with 

TABLE 5 

Observed and expected numbers of new mutants per generation, and the probabilities of 
extinction observed for neutral mutations: N = 500, 2Np = I 

- 
No. of Frequency Probability of extinction 
mutants Observed Poisson Generation Observed" Theoretical* 

0 366 368 1 0.353 0.368 

1 339 3 68 3 0.601 0.626 

2 203 184 7 0.784 0 . 7 9 0  

3 73  61 1 5  0 .894  0.887 

4 1 4  15 3 1  0.947 0 . 9 4 1  

> 5  5 4 63 0.975 0 .970  - - - 
1,000 1,000 

* Observed probabilities based on 1000 observations; theoretical probabilities following FISHER 
(1922). 
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the parameter combinations NC* and Np held constant. All populations began 
with a single allele of optimal or suboptimal effect, and a period of a t  least ION 
generations was allowed for mutational variability to accumulate under centri- 
petal selection before the survey period began. The “equilibrium” populations 
have been characterized in terms of the four parameters studied in the previous 
section, viz., the number of alleles segregating, n,; the level of heterozygosity, 
H ;  the within-population variance, 2,; and the drift variance, Z2, estimated as 
the mean squared deviation of the population mean from the optimum. The 
total genetic load has also been estimated by the formula given in the footnote 
to Table 6. 

The average number of alleles segregating in these populations is virtually 
identical in each case with the number predicted by WRIGHT (1966) for multiple 
alleles without selection, i.e., 

where 4Nv has been taken to be 0.0001 for purposes of calculation. In  the 
present instance, with 4Np = 1 .O, a simpler prediction equation is 

n, = log, ( 2 N )  (for 4Np = 1 .o) 
as given by EWENS (1964) and KIMURA (1968). The predicted values of n, for 
populations of the same size as those in Table 6 are 5.30, 6.21, 6.91, and 7.60, 
respectively. We must therefore conclude that the mean number of alleles 
segregating in these equilibrium populations is little affected by the centripetal 
selection imposed (Figure 1 ) . 

The observed mean values of H ,  u~~ and f2 in Table 6 do not change significantly 
as population size is increased with NC* and N p  constant, the overall mean values 
being H = 0.419 .015, 2, = 0.287 f .043 and z2 = 0.195 k .022. The corre- 
sponding predicted values of H and dg for isoallelic variation in the absence of 
selection are 0.500 (CROW and KIMURA 1964) and 1.000 (equation (21)). Both 
parameters are therefore significantly reduced by centripetal selection, but the 
reduction in variance is appreciably greater than that in heterozygosity. These 
simulated “equilibrium” populations therefore reinforce the conclusions of the 
previous section as regards the differential sensitivity of n,, H ,  and uZg to centri- 
petal selection. 

The statistics of Table 7 describe the impact of centripetal selection on the 
simulated populations in more detail. The single locus model we are exploring 
inevitably gives rise to pairs of alleles for which the heterozygote is superior in 
fitness to the two homozygous genotypes concerned (ROBERTSON 1956). Our aim 
is to determine the importance of this phenomenon in maintaining segregation 
over appreciable periods of time: the statistics for heterotic polymorphisms in 
Table 7 have therefore been restricted arbitrarily to those which persisted in the 
population for at least N generations. 

The mean selective advantage of the heterozygote in these polymorphisms 
can be seen to be inversely related to N ,  as was to be expected (KIMURA 1968). 
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and N p ,  though the available data are as yet too few to test the statement crit- 
ically. 

On an evolutionary time scale, the parameter of greatest interest is the rate 
of amino acid replacement in the protein corresponding to the predominant 
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allele, expected to be N p  over a period of N generations for isoallelic variation 
in the absence of selection (KIMURA 1969). The parameter p here refers to the 
rate of spontaneous mutation leading to single amino acid changes in the protein 
concerned. The rate of amino acid replacement in the simulated populations has 
been calculated from the number of mutational changes differentiating the final 
predominant allele from that in the initial population. The observed values appear 
from the limited data of Table 7 to be independent of N for given values of NC* 
and N p ,  averaging less than 0.12 replacements per N generations. The value of 
N p  for these regimes is 0.25. In populations of breeding size N = 5000, therefore, 
with a mutation rate of 5 x we would expect an intensity of centripetal 
selection of C* = 5 x to be sufficient to at least halve the rate of amino acid 
replacement in the course of evolution. 

Allelic variation in natural populations: Surveys of naturally occurring elec- 
trophoretic variability in Drosophila pseudoobscura consistently show approxi- 
mately one-third of loci to be polymorphic, with mean levels of heterozygosity 
close to 0.12 (LEWONTIN and HUBBY 1966; PRAKASH, LEWONTIN and HUBBY 
1968). The data of O'BRIEN and MACINTYRE (1969) indicate somewhat higher 
values in D. melanogaster, and appreciably less variability in D. simulans. 
HARRIS (1969) has summarized the results of human population surveys for 
electrophoretic variants in 20 randomly chosen enzymes, showing one-third of 
the loci to be polymorphic in European and African populations, with a mean 
level of heterozygosity of 0.072. For blood group loci in the English population, 
the mean frequency of heterozygosis has been shown by LEWONTIN (1967) to 
be close to 0.15. 

U 

v) 
v) 
Ly 

c 
Z 
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\ -1 
/ 

A A ~  
21 

w 
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-2 -1 0 +1 + 2' 
ENZYME ACTIV ITY 

FIGURE 2.--Selective advantage of the heterozygote for a pair of alleles with additive effects 
on the scale of enzyme activity. Numerical values refer to a polymorphism arising in the regime 
of Table 8, with a mean heterozygote superiority in fitness of 0.31%. Units of enzyme activity 
are defined by reference to the magnitude of the mutational variance, 0 2 , ~  = 1.0, and expressed 
as deviations from the optimum. 
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These observed levels of polymorphism and heterozygosity can readily be 
duplicated by simulation based on the single locus model which has been studied 
in this paper. The model in its simplest form assumes additive allelic effects, a 
heterozygote having a level of activity equal to the mean of the activities of the 
corresponding homozygotes (Figure 2).  The rate of decline in fitness with devia- 
tion from optimal activity is specified by the magnitude of the parameter C* 
(Table 6),  and the rate of mutation to novel alleles is denoted by p. The data of 
Table 8 indicate that values of NC* = 5.0, and N p  = 0.05, lead to an estimated 
mean level of heterozygosity of 0.122 -t .016, and an overall probability of 
polymorphism of 0.300 

These two statistics are accurately estimated, and come very close to the ob- 
served values in populations of Drosophila and man. The expected number of al- 
leles segregating in a population of size 500 is 2.32 based on equation (23), in 
excellent agreement with the value of 2.16 2 .09 in Table 8. The level of hetero- 
zygosity observed is roughly 75% of that expected for completely neutral isoallelic 
variants. 

The stability of the polymorphisms arising by mutation under this regime can 
also be gauged from the statistics in Table 8. Approximately 50% of the poly- 
morphisms detected in a contemporary population would be expected to be 
heterotic on the basis of this model, with a duration of roughly 2.5-5.0 N genera- 
tions in the life of the populaiion. With a breeding population size of 500, the 
mean superiority in fitness of the heterozygotes in these heterotic polymorphisms 
is predicted to be 0.25 +- .08o/c. 

.026 at equilibrium. 

DISCUSSION 

The behavior of simulated populations under selection for a fixed optimal level 
of gene activity, with continual spontaneous mutation to novel alleles, has been 
interpreted in this study largely in terms of the parameters N p  and NC*, where 
C* = C U ~ , / U ~ ~ .  These arise in the derivation of an algebraic expression for the 
equilibrium genetic variance in a population of breeding size N ,  with mutation 
rate p, coefficient of centripetal selection C and mutational variance u2m (equa- 
tion (20) ) . Extensive tests of the effects of centripetal selection in finite popula- 
tions in the absence of mutation have shown that the parameter NC accounts for 
observed changes in both genetic variance within populations (do), and the 
variance of replicate population means (?) . Variation in N for constant NC has 
been shown to be without detectable effect on these statistics (Table 3) .  The more 
limited data for populations in equilibrium under a regime of centripetal selection 
and mutation, where N has been varied with N p  and NC* held constant, point 
to the same conclusion (Table 6). Both sets of data clearly show the relative in- 
sensitivity to centripetal selection of the mean number of alleles segregating, n,, 
and to a lesser extent mean heterozygosity, H ,  by comparison with the two vari- 
ance parameters uzO and T 2  (Figure 1 ) . 

Equation (23 )  can therefore be used to predict the mean number of alleles 
segregating in equilibrium populations at intensities of centripetal selection such 
as those involved in the simulation experiments reported in this paper. The data 
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of Tables 6 and 7 indicate that the formula predicting the mean level of hetero- 
zygosity in the case of neutral isoalleles, viz., H = 4 N p / (  1 + 4 N p ) ,  provides a 
useful upper limit to the level expected under centripetal selection. The compari- 
sons of Table 9 also suggest that the solution of equation (20) can be treated as 
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an upper limit for the average genetic variance in an equilibrium population un- 
der centripetal selection and .mutation, being considerably more useful than either 
the prediction for an infinite population (equation ( 2 2 ) ) ,  or that for neutral 
genetic variation (equation (21)). This enables us to calculate a probable upper 
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limit to the inbred load, L,, in such an equilibrium population, expected to be 

LI = x C *  uZg (for uZm = 1.0) (24) 

It should be noted that equations (20) and (24) imply that the inbred load in a 
small population at equilibrium will be less than that in a large population with 
the same value of C* and p. Preliminary simulation results (LATTER, unpub- 
lished) bear out this prediction. However, the total load, L = ' / C *  (3 f uzg),  

is greater in the small populations than in the large, due to the increased drift in 
the population mean away from the optimal level of activity. KIMURA, MARU- 
YAMA and CROW (1963) have shown the mutational load in small populations to 
be usually greater than that in a large population, using a conventional two- 
allele model with forward and back mutation rates. 

It has been demonstrated in the final section of this paper that equilibrium 
computer populations with N = 500, NC* = 5 and N p  = 0.05 come remarkably 
close to simulating the pattern of allelic variation in natural populations of man 
and Drosophila, recently discovered by electrophoretic techniques. The most ex- 
tensive data are those of PRAKASH, LEWONTIN and HUBBY (1969) for D. pseudo- 
obscura, showing an average level of heterozygosity of 12% in North American 
populations of the species, with an average of 42% of loci showing polymorphism. 
If the two loci associated with inversions in the third chromosome are excluded, 
the figures become 11 % and 36%, respectively (cf. Table 8). We may interpret 
the single locus model of centripetal selection used in this paper in terms of nat- 
ural selection for an optimal level of the catalytic activity of a given enzyme, with 
spontaneous mutation to alleles of above and below optimal activity. Such a model 
is almost certainly too simple, and variations on the same theme remain to be 
explored, particularly those involving (i) low levels of migration between neigh- 
boring populations; and (ii) selection for optima which change from generation 
to generation in a random or cyclic fashion. 

There are two properties of the mutation-centripetal selection model which 
make it particularly relevant to the survey data on electrophoretic variants which 
are now being collected in man, Drosophila and mice. On the one hand, we have 
seen that heterotic polymorphisms are found in the populations of Table 8 with 
a probability of the order of 0.15, accounting for roughly half of the polymor- 
phisms observed. These heterotic polymorphisms are maintained over something 
like 2.5-5.0 N generations on the average, by a mean heterozygote advantage of 
approximately 0.25 %. Separated populations may therefore be expected to main- 
tain a stable pattern of allelic frequencies at many loci over considerable periods 
of time, and a small degree of migration between such populations would rein- 
force this tendency to stability. More accurate estimates of these parameters must 
be provided by future simulation experiments, together with a more thorough 
exploration of the process of population differentiation. 

The second important feature of the model is that it appears to provide an an- 
swer to the dilemma posed by SVED, REED and BODMER (1967), concerning the 
expected drop in fitness on inbreeding in a natural population. They point out 
that if large numbers of loci are maintained as heterotic polymorphisms, the de- 
cline in fitness with inbreeding should be extremely rapid. With a multiallelic 
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model involving centripetal selection and mutation, we have seen that the regime 
of Table 8 leads to a probability of approximately one-third that a given locus 
will be found to be polymorphic at any point in time. Of these, roughly one-half 
are expected to be heterotic, and the mean inbred load per locus can be estimated 
from equation (24) to be L, == 2.40 x 0.85 x IO4. If we take the rate of 
inbreeding depression in Drosophila to be (-2.88 * 0.16) F ,  as calculated from 
Table 3 of LATTER and ROBERTSON (1962) for the Kaduna cage population of 
D. melanogaster, the number of loci concerned can be estimated to be 12,000 * 
4,300. If the estimate if inbreeding depression is based only on the fitness of 
surviving inbred lines in LATTER and ROBERTSON’S experiment, the figure be- 
comes (- 2.30 * 0.13) F, and the estimated number of loci is 9,600 * 3,400. 

The studies of O’BRIEN and MACINTYRE (1969) suggest that the Kaduna cage 
population is no less polymorphic than natural populations of D. melanogaster, 
but the average level of heterozygosity in this species may be higher than that in 
D. pseudoobscura. The number of loci suggested by our simple calculation is 
therefore likely to be an overestimate, ar?d is as yet imprecise. The figure never- 
theless appears to be of the right order, as judged by current estimates of the num- 
ber of loci in Drosophila (LEWONTIN and HUBBY 1966), and indicates that further 
exploration of the model is warranted. 

SUMMARY 

The maintenance of isoallelic variation under centripetal selection in finite 
populations has been studied by means of computer simulation. A single locus 
model of natural selection for an optimal level of gene activity has been used, with 
continual mutation to alleles of above or below optimal activity, not previously 
represented in the population.---The mean number of alleles segregating at the 
locus, and the mean level of heterozygosity, have been shown to be far less sensi- 
tive to centripetal selection than parameters measuring genetic variability be- 
tween and within populations. The variance parameters in equilibrium popula- 
tions have been shown to depend primarily on the values of the parameter 
combinations NC and N p ,  where N denotes breeding population size, C is the 
coefficient of centripetal selectim defined in this paper, and p is the rate of mu- 
tation to novel alleles. A prediction equation involving NC and N p  has been de- 
rived which gives an upper limit to the expected genetic variance within popu- 
lations, and consequently the inbred load involved.-Populations in mutation- 
selection equilibrium have been analyzed to determine the mean levels of hetero- 
zygosity, and the duration and frequency of heterotic polymorphisms. The com- 
puter results have been compared with experimental data on the frequencies of 
electrophoretic enzyme variants in natural populations of Drosophila pseudoob- 
scura and man, and with an estimate of the inbred load measured under competi- 
tive conditions in D. nzslanogasler. 
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