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ARTHENOGENESIS in the animal kingdom has been termed an “evolu- 
’tionary dead end”. This view stems from the writings of DARLINGTON (1937), 
WHITE (1948) , SUOMALAINEN (1950) , and others who suggested that only two 
genetic consequences result from such a system of reproduction: (1) complete 
homozygosity; or ( 2 )  complete heterozygosity. These authors described the 
mechanisms presumed to yield these results for several parthenogenetic species; 
unfortunately, none of these descriptions utilized rigorous mathematics to analyze 
the genetic properties of parthenogenetic populations. 

The validity of the above hypotheses was challenged by CARSON (1967a) who 
suggested that automictic parthenogenetic reproduction can maintain hetero- 
zygosity. He stated that in those species of insects (Drosophila mangabeirai, 
Solenobia lichenella, Devorgilla canescens etc.) which can restore zygoidy either 
by inhibition of meiosis I or by central fusion, loci which are absolutely linked 
to the kinetochore could be maintained in a state of permanent heterozygosity. 
Furthermore, with the addition of chromosomal rearrangements, the amount of 
heterozygosity preserved in parthenogenetic species could be increased. Thus, he 
suggested heterozygosity could be maintained in these organisms by at least two 
mechanisms: (1 ) absolute linkage to the kinetochore; and (2) chromosomal 
rearrangement. WHITE (1970), reversing his previous views on heterogeneity 
in parthenogenetic animals, appears to take a position similar to that of CARSON 
(1967a) ; however, his arguments also lack mathematical rigor. 

The mathematics needed as a basis for students of natural parthenogenetic 
populations was developed in part in a previous study (NACE, RICHARDS and 
ASHER 1970) where a model based upon a mapping function was used to estimate 
gene-kinetochore distances and “inbreeding” in parthenogenetically produced 
frogs.* It was noted that although the linkage data were derived from artificial 
parthenogenetic reproductions, the analytical model should apply to all systems 
of parthenogenesis, natural or  artificial, which restore zygoidy either by inhi- 
bition of meiosis I1 or by terminal fusion. Although the paper presented a mathe- 

1 Part of a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The 
University of Michigan Horace H. Rackham School of Graduate Studies. 

a These investigations were supported by a National Institutes of Health Genetics Training Grant 5 TO1 GMOOO71-12, 
and in part by the National Science Foundation grant GB 8187, and by The University of Michigan Computing Center. 

* The term inbreeding does not truly apply to the parasexual process described here. No term exists which describes a 
system of reproduction leading t o  increased homozygosity independent of the mechanism of reproduction. Rather than 
formulate a new term, we will use the term “inbreeding” in quotes when it  relates specifically to parthenogenetic animals. 
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matical account of “inbreeding” associated with parthenogenetic reproduction 
and confirmed previous predictions made by HALDANE (WHITE 1948, footnote 
p. 243), DARLINGTON (1937), and SUOMALAINEN (1950), it did not consider 
certain modifying factors which are known to alter the course of “inbreeding” 
in other systems (HAYMAN and MATHER 1953; HAYMAN 1953; WORKMAN and 
JAIN 1966; ALLARD, JAIN and WORKMAN 1968). To extend the arguments pre- 
sented by NACE, RICHARDS and ASHER (1970), this paper proposes to accomplish 
the following: ( 1  ) to develop deterministic models which describe rates of “in- 
breeding” for three general mechanisms of parthenogenetic reproduction; (2) 
to extend these models to include selection; and (3) to use these models to 
describe the theoretical genetic structure of parthenogenetic populations. These 
arguments, however. are restricted in this paper to one-locus models of diploid 
species which have a closed breeding system. 

THEORETICAL CONSIDERATIONS 

Mapping function: As previously demonstrated ( NACE, RICHARDS and ASHER 
1970), the mapping function developed by BARRATT et al. (1954) and normally 
used to compute linkage relationships in Neurospora crassa can also be used: (1) 
to construct linkage maps in vertebrates and other organisms in which second- 
division segregants can be detected; and (2) to obtain “inbreeding” estimates for 
parthenogenetic populations in which the homozygosity at a given generation is 
proportional to the frequency of recombination between a given locus ar?d its 
kinetochore. 

Restoration of zygoidy: In  the automictic parthenogenetic species described by 
WHITE (1948), SUOMALAINEN (1950), and by WHITE, CHENEY and KEY (1963), 
zygoidy tends to be restored by one of six mechanisms: ( 1 ) premeiotic replication 
of the chromosomes followed by a normal meiosis; (2) normal meiosis followed 
by the fusion of the first or second cleavage nuclei; (3) abnormal meiosis I 
followed by a normal meiosis I1 where kinetochore replication occurs; (4) normal 
meiosis I with meiosis I1 aberrant, or  equivalently the second polar body fuses 
with the egg nucleus; ( 5 )  abnormal meiosis I and I1 in which kinetochores repli- 
cate and two of the four chromatids are randomly distributed between a single 
polar body and the egg nucleus; and (6) inhibition of meiosis I with restoration 
of zygoidy by utilization of meiosis I1 products as the first cleavage nuclei. 

Mechanism 1: Because chromosomal pairing in mechanism 1,  as observed in 
the grasshopper Moraba Virgo (WHITE, CHENEY and KEY 1963), is usually 
restricted to daughter chromosomes, meiosis restores the egg nucleus to a genetic 
condition exactly equivalent to that of the oogonial cell, provided mutation has 
not occurred. In  this case, existing heterozygosity is maintained and is increased 
by mutation. 

Mechanism 2: As the cleavage nuclei of the moth Solenobia triquetrella 
( SUOMALAINEN 1950), which reproduces by this mechanism, are haploid and 
genetically identical, restoration of the zygoid state by fusion of these nuclei leads 
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to total homozygosity in a single generation. The equivalent of this mode of 
reproduction, inhibition of first cleavage mitosis, can be artificially induced in 
amphibians ( NACE and RICHARDS, personal communication). 

Mechanism 3: A diagrammatic representation of the restoration of zygoidy by 
central fusion is presented in Figure 1.  It  is apparent that this mechanism, which 
occurs in Drosophila parthenogenetica and D. mangabeirai (STALKER 1956; 
MURDY and CARSON 1959), is genetically equivalent to an inhibition of meiosis I 
followed by a normal meiosis 11, which is seen in the parasitic wasp Devorgilla 
canescens (SPEICHER 1937; SPEICHER, SPEICHER and ROBERTS 1965). 

Mechanism 4: The restoration of zygoidy by inhibition of meiosis I1 was used 
by NACE, RICHARDS and ASHER (1970) to obtain second-division segregants of 
frogs heterozygous for various mutant genes. Figure 2 demonstrates that this 
mechanism is equivalent to terminal fusion regardless of the cytological mecha- 
nisms involved. This type of mechanism has been recognized in D. partheno- 
genetica, D. mangabeirai, the homopteran, Lecanium hesperidium (STALKER 
1954, 1956; MURDY and CARSON 1959; SUOMALAINEN 1950), and other insect 
species. 

Mechanism 5: The restoration of zygoidy by a totally abnormal meiosis is 
represented in Figure 3. This mechanism has been observed in the moth Solenobia 
lichenella, the nematode Rhabditis monohystera, and has been suggested for races 
of the brine shrimp Artemia salina ( SUOMALAINEN 1950). 

Mechanism 6: A sixth mechanism, described by SUOMALAINEN (1950), restores 
zygoidy by inhibition of meiosis I followed by meiosis I1 which produces two 
nuclei that become the first cleavage nuclei. As in the gall wasp Neuroterus 
baccarum, cytokinesis then occurs giving rise to mosaic zygoids made up of 
homozygous AA and aa cells, or to heterozygotes ( A a ) ,  depending upon whether 
recombination occurred. 

Consideration of these parthenogenetic mechanisms reveals that the genetic 
structures of populations reproducing by mechanisms 1 and 2 can be understood 
without recourse to rigorous mathematical treatment and that they produce 
either complete homozygosity or heterozygosity as predicted by earlier descrip- 
tions. On the other hand, a description of the consequences of mechanism 6 
requires knowledge of the breeding properties of the mosaics. This is lacking at  
present. Thus, parthenogenetic mechanisms 1, 2, and 6 will not be further con- 
sidered here. Examination of parthenogenetic mechanisms 3,4, and 5, however, 
suggests the possibility of constructing models to describe the genetic structure 
of populations reproducing by these mechanisms. 

Limiting assumptions: In treating these three mechanisms, only a single locus 
with two alleles ( A  and a )  will be considered. The relative survival or fitness 
values of AA, Aa, and aa are assumed to be WAa: 1: Was. Figure 4 illustrates a 
population of parthenogenetically reproducing organisms carrying these alleles, 
and describes the way each organism contributes to the next generation. This 
contribution can be modified by selection acting upon: (1) fecundity; (2) meiosis; 
and (3)  zygoid survival (Figure 4). While the fitness of a given genotype may 



WITH RECOMBINATION WITHOUT RECOMBINATION 

CENTRAL FUSION 

PRIMARY OOCYTE 

MEIOSIS I 

0 I I @ SECONDARY OOCYTE 

i s ,  MEIOSIS E 
+ %  2 i  6 OOTIDS b @ 

CENTRAL FUSION 

ZYGOID 

AA Aa OQ GENOTYPE Ao 

Y Y Y  FREQUENCY ( I  - Y )  
7 ? I  

INHIBITION O F  
MEIOSIS I B y  PRIMARY OOCYTE (I - Y) e 

INHIBITION OF 
MEIOSIS I 1 

”SECONDARY’OOCYTE 

MEIOSIS II 

POLAR 
ZYGOID 

AA 

( I -Y)  J \ 

AA A a  0 0  GENOTYPE A 0  

v u v  FREQUENCY (I -Y )  
4 2 4  

FIGURE 1 .-Diagrammatic representation of the meiotic events of mechanism 3 (represented 
by E,  in the equations) for the parthenogenetic species, Drosophila mangabeirai, restoring zy- 
goidy in part by central fusion; and in the parastic wasp, Deuorgilla canescens, restoring zy- 
goidy by inhibition of meiosis I. Note that in central fusion the products of different secondary 
oocytes fuse and that geometric restrictions within the species involved prevent fusion of the 
two products of a single secondary oocyte. A single locus with two alleles ( A  and a) is consid- 
ered where Y is the probability of a recombination between the locus and kinetochore. 
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FIGURE 2.-Diagrammatic representation of the meiotic events of mechanism 4 (represented 
by E,  in the equations) for the parthenogenetic species Drosophila mangabeirai restoring zygoidy 
in part by terminal fusion; and for the homopteran, Lecanium hesperidum, restoring zygoidy by 
inhibition of meiosis 11. Note that in terminal fusion, the products of a single secondary oocyte 
fuse while geometric restrictions within the species involved prevents fusion of the products 
from two different secondary oocytes. A single locus with two alleles is treated as in Figure 1. 
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FIGURE 3.-Diagrammatic representation of the meiotic events of mechanism 5 in a partheno- 
genetic species, e.g., the moth, Solenobia lichenella, which restores the zygoid condition by an 
abnormal meiosis I and 11. A single locus with two alleles is treated as in Figures 1 and 2. The 
ratios are derived by assuming independent assortment of the locus and its kinetochore and are 
thus not influenced by linkage. 

be related to all three processes, it is examined here on the limiting assumption 
that selection occurs upon only one process in the life cycle of the organism, 
namely zygoid survival (process 3 of Figure 4).  

The following additional limiting assumptions have also been made. First, 
given a gene-kinetochore distance (z), a mapping function [expressions (1) and 
(2) in NACE, RICHARDS and ASHER (1970)l is assumed to predict the frequency 
of heterozygotes (Aa)  produced in each generation. This frequency is propor- 
tional to the frequency of recombination ( y )  and assumes no selection upon either 
process 1 or 2 (Figure 4) .  Second, it is assumed neither mutation, migration, nor 

STAGE GENOTYPE GENERATION 

ADULTS AA A a  a a  n 
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ADULTS A A  A a  aa Ir3 n + t  
FIGURE 4.-A schematic representation of a parthenogenetically reproducing population at 

the n and n + 1 generations showing that selection may affect: (1) fecundity; (2) meiosis; and 
(3) zygoid survival. 
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cross-fertilization influences gene frequencies, i.e., that these are closed breeding 
systems. 

Model I: As mechanisms 3 and 4 occur simultaneously in several species (D .  
parthenogenetica and D.  mangabeirai) , independently in other species (Devor- 
gilla canescem and L. hesperidum), and have or can be induced in still other 
species (Ram pipiens etc.), model I has been constructed to describe populations 
which reproduce by either or both mechanisms 3 and 4. Considering such par- 
thenogenetic populations, the initial genotypic frequencies are given by: 

P, = frequency of A A  at generation n 
Qn = frequency of aa at generation n 
R, = 1 - P, - Qn = frequency of Aa at n 

The frequencies of homozygotes and heterozygotes in successive generations, 
then, are described by the following equations derived from a consideration of 
Figures 1,2, and 4: 

P,+l a 
Qn+l 

R n + i  a 
where 

y = the probability of recombination at locus A,  a corrected map 
distance (z) from its kinetochore 

E,  = proportion of eggs developing by mechanism 4 (Figure 2) 
E, = proportion of eggs developing by mechanism 3 (Figure 1 ) 
E, = 1 - E, 

WAa = proportion of A A  surviving 
W ,  = proportion of aa surviving 
WA, = proportion of Aa surviving = 1 

The equilibrium equations describing a population reproducing by either or 
both mechanisms 3 and 4 with zygoid selection can be developed using techniques 
presented by HAYMAN (1953), WORKMAN and JAIN (1966), and ALLARD, JAIN 
and WORKMAN (1968) to describe mixed selfing and random mating systems. 
At equilibrium, when the values of P, Q, and R are the same for each successive 
generation (n,  n+l, . . . , i ) ,  the condition Pn+,/P,  = Q,+l/Qn = Rn+,/Rn must 
hold. This yields the following equations derived from equations ( I ) ,  (2), and 
(3) : 

Letting 
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K i  Ei(1 - y ) / 2  f & ~ / 4  (6) 

K ,  = Eiy + E, ( 1 - y /2 )  (7) 
and substituting these values and equations (4) and (5) into Pi 4- Qi + Ri = 1, 
the equation for heterozygosity at equilibrium (Re,)  is given by: 

Thus, the frequency of heterozygotes at equilibrium is proportional to: (1) the 
fitness of both homozygotes (assuming WA, = 1) ; (2) the proportion of eggs 
reproducing by central or terminal fusion (mechanisms 3 and 4) ; and (3) the 
probability of recombination, which is itself related to the distance of the locus 
from its kinetochore. As the value for the fitness of both homozygotes approaches 
the value for K ,  from zero (WAA 3 K ,  and W,, 3 K,) which is determined by 
specific values of E,, E,, and y, Re, approaches zero, and the population ap- 
proaches complete homozygosity. 

Using these expressions, equilibrium phase diagrams (Figure 5) similar to 
those developed by HAYMAN and MATHER (1953) and used by HAYMAN (1953) 
and by WORKMAN and JAIN (1966) to describe mixed selfing and random mating 
systems can be developed for a strictly parthenogenetic species. These phase 
diagrams describe the genetic structure of all populations having varying values 
of WAA and W ,  for a constant value of K,. For a given value of WAa and Was, 
the phase diagram indicates whether the population at equilibrium will be com- 
pletely homozygous (A and B of Figure 5) or will sustain heterozygosity ( C  and 
D of Figure 5). The positions of the boundaries separating the four areas of a 
given phase diagram are dependent upon the value of K, chosen for analysis. As 
noted above, this latter value is in turn dependent upon the values of E,, E,, and y .  

The three straight lines of this figure represent the first set of boundary con- 
ditions separating populations which are completely homozygous (A and B, 
Figure 5) from each other and from those maintaining heterozygosity (C and D) . 
These boundary conditions result from allowing Req+ 0 in equations (4) and 
(5) and are given by: 

WAA = K ,  (9) 

W ,  = K ,  (10) 
WaA = W,, (where WAA and W,, > K 2 )  (11) 

Within the boundaries defined by (9) and (1 0) , the values of either WAA or 
W,, go from K ,  to 0 while Re, takes on values of 0 to 1 (Figure 5, right column). 
As WAA or W,, take on these values, a second boundary (the hyperbolic curve 
between C and D, Figure 5) is passed which satisfies the Hardy-Weinberg equi- 
librium and is derived by substituting equations (4) and ( 5 )  into 4PQ - R2 = 0, 
a restatement of the Hardy-Weinberg equation. This boundary, given by: 
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FIGURE 5.-Equilibrium phase diagrams for Model I, with corresponding values of Re, (equi- 

librium heterozygosity) for one linkage distance (I = 20 map units), one value of the coefficient 
of coincidence (k = l . O ) ,  and three values of central fusion ( E ,  = 1.0, .5, 0). Area A indicates 
populations that are totally homozygous for A ;  B-homozygous for a; C w i t h  less heterozy- 
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of central fusion (E2 = 1.0, .5, and 0), and two values of the coefficient of coincidence (k = 1.0 
and .2) are considered. 
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(12) 

separates area C which represents populations with less heterozygosity than 
would be found in a Hardy-Weinberg population, from D representing popula- 
tions of greater heterozygosity. 

Thus equations ( 4 )  through (12) represent the genetic structure of all possible 
parthenogenetic populations which reproduce by either or both mechanisms 3 
and 4. The phase diagrams, Figures 5 and 6, are visual representations of some 
of these populations where specific values have been chosen for E,, E,, and y. 
Some sample values of equilibrium heterozygosity (Reg)  for these phase diagrams 
are given in the right column of Figures 5 and 6 and in Figure 7. 

Although representing a wide range of conditions, these diagrams do not 
consider two extreme conditions described by the equations: (1) absolute linkage 
( y  += 0) ; and (2) independent assortment of the locus and kinetochore ( y  -+ %). 
As absolute linkage has been stated to maintain heterozygosity in species repro- 
ducing by central fusion (CARSON 1967a), these extremes will be treated sepa- 
rately for central and terminal fusion. 

The equilibrium conditions for a population reproducing solely by central 
fusion, derived by setting E, = 1 and E,  = 0 in equation (6) and (7) and substi- 
tuting these values into equation (8), is given by: 

Kz (Kz - Wua> 
w,,(4Kl2 - 1) + K ,  WAA = 

1 
(13) 

$ 1  Wuay Re, = + 
The influence of absolute linkage upon equilibrium in such populations can be 
observed by allowing y -+ 0 in equation (13). If WAA and W ,  < 1 ,  then Re, += 1. 
On the other hand, if WAA and W,, = 1, the amount of heterozygosity a t  equi- 
librium will be exactly the same as at the initiation of “inbreeding,” since hetero- 
zygotes no longer contribute to the proportion of homozygotes produced each 
generation. 

The equilibrium condition for genes that segregate independently from their 
kinetochores is derived by substituting y = 2/3 into equation (13) and is given by: 

W A A ~  
4 (  1 - y / 2  - WAA) 4 (  1 - y /2  - Was) 

From this equation, we see that Re, may have values from 1 + 0 as WnA and W,, 
take on values from 0 -+ 2/3. 

The equilibrium condition for a population reproducing solely by terminal 
fusion, derived by setting E, = 0 and E ,  = 1 in equation (8), is given by: 
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The influence of absolute linkage upon such populations can be observed by 
allowing y + 0 in equation (15). Regardless of the value of WAA and WUa which, 
however, must be less than y to maintain heterozygosity, Re, + 0 \as y + 0. Thus, 
for populations which reproduce by terminal fusion, absolute linkage leads to 
complete homozygosity. For genes that segregate independently from their kine- 
tochores, the equilibrium condition which is derived by substituting y = e/3 into 
equation (15), is identical to equation (14), demonstrating that central and 
terminal fusion produce the same result for independently segregating genes. 

From the previous considerations of equations (13) and (15), we see that close 
linkage has an opposite effect upon equilibrium depending upon whether the 
populations reproduce by central or terminal fusion. These equilibrium values 
are also influenced by the effect of chromosome interference (1 - k) on y.  In- 
creased interference lowers the probability of double recombinations occurring 
between a given gene and its kinetochore and thus increases y .  It is evident, there- 
fore, from a consideration of Figures 1 and 2, that increased interference will 
increase the frequency of homozygotes in species which reproduce entirely by 
central fusion, and decrease the frequency of homozygotes in species reproducing 
entirely by terminal fusion. Clearly the genetic composition at each partheno- 
genetic generation, and thus the rate of gain of homozygosity as well, is dependent 
upon y ,  and y is dependent upon both interference and linkage. It is therefore 
necessary to determine what proportion of central and terminal fusion minimizes 
the influences of interference and linkage on the population structure, as stated 
either in terms of the frequency of homozygotes or heterozygotes. This value of 
central fusion ( E 2 )  can be obtained by letting k (the coefficient of coincidence) 
take the values k, and k, which give the values yl and y ,  for a given value of z 
(linkage). These values of y yield two different values for K ,  (equation ( 7 ) )  
and are expressed by: 

Kz.’ =z Eiyi + Ez (1 - y i / 2 )  

Kz” = Ely, + E,  (1 - y2/2) 
(16) 

Setting K,’ = Kz”, eliminating the y values and solving for E,, where E,  = 1 - E,, 
we find that E,  = 2J3. This means that interference has no effect upon the levels 
of homozygosity when central fusion ( E 2 )  occurs in 2 /3  and terminal fusion 
(E , )  occurs in 1J3 of the eggs. Similar arguments can be stated concerning the 
relationship of linkage (x) with respect to y ;  consequently, this proportion elimi- 
nates the influence of both linkage and interference upon the levels of homozy- 
gosity. 

From these considerations, we may describe parthenogenetic populations 
which reproduce by either or both mechanisms 3 and 4 by the following (model 
I) : (1  ) equation (8) represents the general equilibrium conditions for Re, under 
all conditions; (2) if all progeny have equal fitness, the population will be com- 
pletely homozygous at equilibrium; (3) if the gene is absolutely linked to the 
kinetochore and the population reproduces by central fusion (mechanism 3), 
Re, + 1 where W,, and W,, < 1, or, Re, = R, where W A A  and W ,  WA, = 1 ; 
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(4) if the gene is absolutely linked to the kinetochore and the population repro- 
duces by terminal fusion (mechanism 4 )  , the population will be totally homozy- 
gous at equilibrium; ( 5 )  as y + 2/3,  which represents independent segregation 
of a gene and its kinetochore, the equilibrium value of heterozygotes is given by 
equation (14) and applies to all populations reproducing by either or both mech- 
anisms 3 and 4; (6) all equilibrium states can be represented by equilibrium 
phase diagrams derived from equations (8) through (12)  ; ( 7 )  where E, = %, 
linkage and interference have no effect upon equilibrium states; (8) these equi- 
librium states are independent of the initial values of P (frequency of A A ) ,  Q 
(frequency of uu) , and R (frequency of Au) . 

Model I I :  If a population reproduces by mechanism 5 in which zygoidy is 
restored following completely abnormal meiotic divisions (Figure 3 )  and zygoid 
selection occurs (Figure 4,  process 3 ) ,  the recurrent equations are given by: 

The equilibrium equations from such a population with Waa = 1 derived as were 
equations (4), ( 5 ) ,  and ( 8 )  are: 

RiWaa 
Qi = 6 (2 /3  - W,,) 

A comparison of equations (14) and (20)  shows that for individual loci the equi- 
librium values for mechanism 5 are equivalent to the values for mechanisms 3 
and 4 where y + K. The boundary conditions of the phase diagrams for ,this kind 
of parthenogenetic reproduction at Re,  = 0 are given by: 

WA, = 2/3  
W,, = 2/3  
W A A  = Waa (where WAA and W,, > 2 / 3 )  

and the boundary which satisfies the condition of Hardy-Weinberg equilibrium 
is given by: 

2 - 3W,, 
3 - 4 w , ,  WAA = 

The single phase diagram described by these equations is given in Figure 8. 
From these considerations, the following conclusions can be made concerning 

popdations reproducing by mechanism 5 (model 11) : ( 1 )  equation (20)  repre- 
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sents the general equilibrium conditions for Re, under all conditions; (2) if  
W A a  = W a a  = Wa, == 1, the population at equilibrium is completely homozygous; 
( 3 )  linkage and interference play no role with respect to the equilibrium; (4) the 
equilibrium of any population can be represented by a phase diagram where 
boundary conditions are given by equations (21) and (22). 

Population structures: The deterministic models I and I1 describe the genetic 
structure of populations of parthenogenetic species which restore zygoidy: ( 1 ) 
by mechanism 3 (Figure 1) ; (2) by mechanism 4 (Figure 2) ; (3) by either or 
both mechanisms 3 and 4; and (4) by mechanism 5 (Figure 3).  These models 
plus the mapping function and the recurrent equation (equations (I) ,  ( 2 ) ,  and 
(4), NACE, RICHARDS and ASHER 1970) for the calculation of successive fixation 
indices ( F )  were used to determine the genetic structures of several partheno- 
genetic populations at equilibria conditions defined for each of these populations 
by equations (8) (model I) and (20) (model 11). 

RESULTS A N D  DISCUSSION 

Model I: The results of calculations for parthenogenetic populations of model I 
are as follows. In the absence of selection, the gain in homozygosity occurs at  a 
very rapid rate in forms reproducing with central fusion (E2), terminal fusion 
(E , ) ,  or a combination of these mechanisms (Table 1 and Figure 9). These results 
confirm previous predictions made by many investigators and repofled in papt by 

TABLE 1 

The influence of interference (1 - k) upon the rates of increase in homozygosity in partheno- 
genetic species reproducing by either or both central and terminal fm-on as indicated 

by the fixation indices (F) at each generation for a locus 20 m a p  units 
from the kinetochore 

w,, = w,, = w,, = 1 

E,*= 1.0 .7 .5 .3 0 
E, = 0 .3 .5 .7 1.0 

Generations k = 1.0 .2 1.0 .2 1.0 .2 1.0 .2 1.0 .2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 

.om ,000 

.699 .628 

.910 ,861 
973 ,946 
392 381 
,997 ,993 
.999 ,997 

.999 

.om 
,535 
,783 
,899 
,953 
,978 
.990 
,995 
.998 

.WO 
,435 
.745 
,871 
.935 
,967 
,983 
.992 
,996 
.998 

,000 
,425 
.669 
.810 
,891 
,937 
,964 
,979 
.988 
993 
.996 

,000 
.407 
.648 
,791 
,876 
.S27 
,956 
.974 
,385 
.991 
.995 
.999 

,000 .ooo .ooo 
.315 .319 .I05 
.531 .535 .278 
,679 .68+ .387 
,780 .784 .479 
.843 .853 .557 
,897 .go0 .623 
.929 ,932 .680 
.951 .954 .729 
.967 .96S .769 
.977 .978 .804 
.999 .999 362 

.992 

.ooo 

.I86 

.318 
,461 
.56l 
.613 
.710 
.764 
.SO8 
.843 
.873 
.98 + 
.998 

* E ,  = the proportion of eggs reproducing by terminal fusion; E ,  = the proportion of central 
fusion; k = the coefficient of coincidence. 
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I Wnn = w,, = . 5  

2 Wnn =.6 We, = . 2  
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W 
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W 
AA 

FIGURE 8.-Equilibrium phase diagram with corresponding values of Re, (equilibrium het- 
erozygosity), fixation indices (P), and the frequencies of the gene A (p) for various partheno- 
genetic populations reproducing according to mechanism 5 (model 11, Figure 3). 

NACE, RICHARDS and ASHER (1970). They are true for all loci in species which 
reproduce by terminal fusion regardless of linkage. For those populations repro- 
ducing by central fusion, all loci wil l  also become completely homozygous, except 
those absolutely linked to the kinetochore. In practice, however, even these loci 
may become homozygous as altered adjacent nucleotides (in bacteria) show 
approximately .001 percent recombination (GUEST and YANOFSKY 1966). 

The rate at which this homozygosity is attained is shown in Figure 9, which 
indictates that populations reproducing by central fusion approach complete 
homozygosity more slowly than do those using terminal fusion or those repro- 
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2 - W A A . . Z O  W o o ~ . l 5  

a d  

.6. - .6 . 
. 4 .  .4. PI 

. 2 .  fl . 2 .  F.P 

PI P2 

.e 1 

0 .  

(E2' 0 ) - . 2  
- .4.  

- . 6 .  

I . W A A . . 5 0  W * . 4 5  
2 - W A A = . 3 0  W o o - . 2 5  

o n  
.e 1 

0 .  
.\ 5 - . 2 .  

- . 4 .  f l  

- A .  

P 
.6 . .6 . 

. 4 .  P2 

FI 

.4.  % 

.2 ' F I  . 2 .  

0 .  0 .  

- . 2 .  
- . 4 .  

F, P 

F 

FZ 

(E*= .SI-. 2 . 
- . 4 .  

-.6 '1 r -.6 7 1 
0 S I O  I 5  2 0  25 0 5 I O  I5  20 25 

.e 1 

I - W A A = . 6 0  W o e = . 5 5  
2 W A A .  .40 W o o  = . 3 5  

.e 1 

II -.e < I O  I5 2 0  2 5  
0 5 IO I5  20 25 0 5 

-.e 

F 

I 
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- 

0 5 Ib Ib do i s  
GENERATIONS 

(X = 5 0 )  
FIGURE 9.-The approach to equilibrium of parthenogenetic model I populations as indi- 

cated by the fixation indices (F) and the frequency of the gene A (p) for two valu& of linkage 
(z = 20 and 50 map units), three values of central fusion (E, = 1.0, .5, and 0), one value of the 
coefficient of coincidence (k = 1.0), and various values of W,, and W,. f i e  dashed line 
(WAA = W,, = 1) represents the gain in homozygosity where the gene A segregates independ- 
ently of its kinetochore or where E, = 1/3 and E, = 2/3. 



386 J. H. ASHER, J R .  

ducing by selfing (Table 10; NACE et al. 1970). Table 1 also demonstrates that 
interference has a different effect upon the rates of “inbreeding” depending upon 
the mode of reproduction. In the case of populations using central fusion (E, = 1 ) , 
interference enhances the rate of gain of homozygosity; in terminal fusion (E, 
1 ) , this rate is retarded (Table 1 ) .  However, as derived from equation (16) and 
seen in Table 2, neither interference nor in fact linkage affects the gain in homo- 
zygosity when the proportion of central fusion in model I is y3 (E ,  = %). The 
rate of gain of homozygosity in such a population is equivalent to the rate either 
in model I where y approaches e/3 (independent segregation of the gene and 
kinetochore), or in model I1 (compare the dashed curves in Figures 8 and 9) .  
Considering model I, the homozygosity gained each generation (1 - y for termi- 
nal fusion and y /2  for central €usion), with few exceptions, greatly exceeds the 
mutation rate, thus mutation is not a force which codd maintain heterozygosity 
in these parthenogenetic species. 

If, on the other hand, parthenogenetic reproduction is accompanied by a sig- 
nificant heterozygote advantage or by experimental selection for heterozygosity 
(as with the establishment of “congenic” strains of amphibians, NACE 1968; 
NACE, RICHARDS and ASHER 1970), heterozygosity can be maintained in partheno- 
genetic populations as it is in selfing and mixed selfing and random mating popu- 
lations (HAYMAN and MATHER 1953; HAYMAN 1953; WORKMAN and JAIN 1966; 
ALLARD, JAIN and WORKMAN 1968). The amount of heterozygosity maintained 

TABLE 2 

The influence of interference and linkage upon population equilibria as indicated by values of 
W,, and W, at the boundary where Re, = 0 as in the equilibrium plme diagrams 

(Figure 5 )  for ten linkage values (x), six values of central (E,) and terminal 
fusion (E,) and two values of coincidence (k) 

E = 1.0 .8 .6 .333* .2 0 -1 
-E2 = 0 . 2  .4 .666 .a 1.0 

linkase 
distance 

units 
in map 5 = 1.0 .2 1.0 . 2  1.0 .2  1.0 .2 1.0 .2  1.0 .2 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

-093 .098 .265 .269 .437 .439 .667 -667 -781 .780 .954 -951 
.173 .194 .321 .335 -469 .472 .667 .667 .765 .761 .914 .903 
-242 .285 .369 .400 .497 .514 .667 .667 .752 .743 .879 .875 
.301 .375 .411 .461 .520 .549 -667 .667 .740 .726 .a50 .a14 
.352 .455 .446 .519 .541 .582 .667 .667 -720 .709 .824 -772 
-396 -533 .477 -573 .558 .613 .667 .667 .721 .693 .802 .734 
-433 .604 .503 .623 .573 .642 .667 .667 .713 .679 .783 .698 
-466 .669 .526 .668 -586 -667 .667 -667 .707 .666 .767 .666 
.494 .724 .546 -707 .598 -690 .667 .667 .701 .655 .753 -638 
.518 .707 .563 -739 .607 .708 .667 .667 .696 .646 -741 .615 

* A value of E ,  = 1/3 has the effect of eliminating the influence of linkage and interference 
(1 - k )  upon the strength of selection needed to maintain heterozygosity (Req > 0) in partheno- 
genetic species reproducing by model I. 
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is dependent upon: (1 ) linkage and interference; (2) proportion of central and 
terminal fusion; and (3) degree of selection. Sample equilibrium phase diagrams 
have been presented in Figures 5 and 6 which describe numerous conditions lead- 
ing to the maintenance of heterozygosity in parthenogenetic populations repro- 
ducing according to model I. The fitness values of the homozygotes needed to 
maintain heterozygosity at any level are given by WAA and Wa, < K,.  Table 2 
gives these values of fitness where Re, = 0. Smaller values than these will allow 
heterozygosity to be maintained. In terms of the coefficient of selection (S = 
1 - W ) ,  these values indicate that selection against homozygotes with intensities 
of San and Sa, > .05 to .91 could maintain heterozygosity under the conditions 
described in Table 2. Thus a comparison of these values and those indicated in 
Figures 5 ,  6, and 9, shows that central fusion requires a smaller selection co- 
efficient (SAA and Sa, = 0 to .33) to maintain a given level of equilibrium hetero- 
zygosity than is required by terminal fusion (SAa and Sa, = 1 to .33). The 
approach to this equilibrium is represented by the curves of Figure 9, which 
describe the progress of inbreeding at successive generations for sample model I 
populations. It is noted that equilibrium is attained rapidly (within 10 to 15 
generations for the examples given). 

Model II: As in the case of central and terminal fusion, parthenogenetic re- 
production using la totally aberrant meiosis (Figure 3, model 11) leads to complete 
homozygosity in the absence of selection (Figure 8).  With selection, however, 
heterozygosity can be maintained. As in the case of model I where y +  e/3 or 
where E, = 2/3, the coefficient of selection needed to maintain heterozygosity in 
model I1 must be SAA and S,, > .33. Thus with respect to the ability to maintain 
heterozygosity, it would appear that reproduction by mechanisms 4 and 5 would 
be evolutionarily more costly than would reproduction by mechanism 3. 

Evidently, heterozygosity can be maintained in at least three ways in an auto- 
mictic parthenogenetically reproducing species: (1 ) by absolute linkage to the 
kinetochore in species which restore zygoidy by central fusion; (2) by chromo- 
somal rearrangements; and (3) by selection. 

Evolutionary implications: The abandonment of sexuality has in general been 
considered an evolutionary detriment. This conclusion stems from the idea that 
asexual reproduction necessarily eliminates the genetic plasticity that would 
allow adaptation to new environmental conditions. According to this idea, auto- 
mictic parthenogenetic reproduction, representing the strongest form of natural 
“inbreeding,” should eliminate this genetic plasticity in a very few generations. 
Species using this mode of reproduction should therefore represent evolutionary 
dead ends, as they should lack genetic plasticity. 

The data of Table 2 challenge this view and show that for central fusion, loci 
within 10 map units of the kinetochore can be maintained in a heterozygous 
condition when SA, and Sa, > .09. This value is not considered excessive when 
compared to selection coefficients observed in various populations of random 
mating animals (S = .3 and .7) (DOBZHANSKY 1947) and in populations of self- 
ing and random mating plant species ( S  = .3 to .7) (WORKMAN and JAIN 1966; 
ALLARD, JAIN and WORKMAN 1968). In order to maintain heterozygosity for 
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these same loci in populations reproducing by terminal fusion, SA, and Sa, > .8. 
Such values, though high, are in the range reported for plant inbreeding systems 
(WORKMAN and JAIN 1966; ALLARD, JAIN and WORKMAN 1968) and may be 
tolerated by parthenogenetically reproducing animal popullations. 

Thus, two general conclusions may be drawn regarding parthenogenetic popu- 
lations: (1) heterozygosity can be maintained where overdominance exists; and 
(2) populations reproducing by central fusion can sustain heterozygosity at a 
lower cost to the population than can populations reproducing by other partheno- 
genetic mechanisms. 

From these conclusions several predictions can be made. First, if an organism 
has a higher fitness by having a portion of its genome heterozygous, then within 
a given population, parthenogenetic reproduction by central fusion should have 
a selective advantage over reproduction by terminal fusion. Thus we would 
expect more species to have evolved the parthenogenetic mechanism of central 
fusion or its equivalent inhibition of meiosis I than to have evolved the other 
mechanisms of parthenogenesis considered in this paper. Second, provided selec- 
tion favors heterozygosity, these populations should be polymorphic for some 
loci, probably those more closely linked to the kinetochore. This prediction: (1 ) 
contradicts the statement that these species represent evolutionary dead ends; 
(2) confirms CARSON’S opinion (1967a) concerning the ability of central fusion 
to maintain heterozygosity; and ( 3 )  suggests selection in addition to absolute 
linkage and chromosomal rearrangement (CARSON 1967a) as a third way of 
maintaining heterozygosity in parthenogenetic species. 

Several experiments can be suggested to test these predictions. First, partheno- 
genetic species could be surveyed cytologically to determine whether central 
fusion occurs more frequently than other automictic reproductive mechanisms. 
Second, populations of parthenogenetic species could be surveyed to determine 
whether genetic polymorphism exists. If a population lacks chromosomal rear- 
rangements, the level of heterozygosity observed could be used to determine 
directly the values of W,, and W,. Given the theoretical and actual genetic 
structure of these parthenogenetic populations, one can then ask whether or not 
selection favors parthenogenetic populations which have many polymorphic loci. 

The above considerations allow the description of the genetic structure of pre- 
existing parthenogenetic populations. These models could also be used to describe 
the gene flow associated with the evolution of parthenogenesis in bisexual species. 
CARSON (1 967b) has experimentally studied this evolutionary process by develop- 
ing various strains of Drosophila which have a very high incidence of spontaneous 
parthenogenesis. This step in the evolution of a parthenogenetic species can be 
described in terms of models I and 11. By substituting 7 (NACE, RICHARDS and 
ASHER 1970) for y in these models, the number of genes involved in the selection 
for parthenogenetic reproduction can be estimated. Additional steps in this 
evolutionary process can be described if models I and I1 are generalized to include 
mixed modes of reproduction, parthenogenesis accompanied by random or  sibling 
matings, as well as the ploidy values of the species involved. These generalizations 
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will be developed at a later time and will include both one- and two-locus models. 
Thus, the data presented here indicate that automictic parthenogenetic repro- 

duction can sustain varying degrees of genetic plasticity provided selection favors 
the heterozygote. This plasticity would be maintained at a cost which is higher 
than that typically required for sexually reproducing species. However, the suc- 
cessful use of parthenogenesis must balance at least three factors: (1) selection 
favoring asexual reproduction itself; ( 2 )  selection favoring general genetic plas- 
ticity; and (3) cost of maintaining this plasticity. If these asexually reproducing 
species are evolutionary dead ends, they are so because they cannot maintain 
the appropriate balance of these factors. 

Artificial parthenogenesis: The previous considerations have been restricted to 
natural parthenogenetic populations. These findings, however, equally apply to 
bisexual species which, by laboratory manipulations, can reproduce by partheno- 
genesis. If the aim of the research is to produce ‘?inbred” strains (NACE 1968; 
NACE, RICHARDS and ASHER 1970), the most effective means of reproduction is 
terminal fusion or inhibition of meiosis 11. Alternatively, fusion of cleavage 
nuclei or inhibition of first cleavage could b? used, but because severe “inbreed- 
ing” depression in the first generation leads to low productivity (NACE and 
RICHARDS, personal communication), this mechanism cannot be efficiently applied 
to the organisms studied, at least in the initial generations. The sequential appli- 
cation of inhibition of meiosis I1 and inhibition of first cleavage, however, should 
minimize this problem. 

As an “inbreeding” system, inhibition of meiosis 11, in the absence of selection, 
leads to complete homozygosity faster than do other conventional breeding sys- 
tems used to develop inbred strains of mice and other vertebrates. With selection, 
this mode of reproduction would lead to the development of “congenic” strains. 
At present, the application of such an artificial breeding system to vertebrates 
has been successful only in amphibians (KAWAMURA 1939; KAWAMURA and 
NISHIOKA 1967; NACE and RICHARDS 1969; NACE, RICHARDS and ASHER 1970; 
MORIWAKI 1963), although PURDOM (1969), whose work was considered in NACE, 
RICHARDS and ASHER (1970), has attempted an application to fish and gives 
reference to others who have attempted it. 

The author wishes to express his deepest thanks to Dr. GEORGE W. NACE for placing the re- 
sources of the Amphibian Facility at the author’s disposal, and to Dr. NACE and Dr. CHARLES 
F. SING for their critical evaluations and guidance during the preparation of this manuscript. 

SUMMARY 

It has been claimed that parthenogenesis in animals is an evolutionary dead 
end, as the animals should lack genetic plasticity. To test this claim, this paper 
presents a rigorous mathematical treatment of the gain in homozygosity in diploid 
parthenogenetic species which restore zygoidy by: (1 ) central fusion (inhibition 
of meiosis I) ; (2) terminal fusion (inhibition of meiosis 11) j and ( 3 )  by a totally 
aberrant meiotic division. The models generated consider: (1) linkage and chro- 
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mosome interference; (2) mechanisms of restoring zygoidy; and (3) selection 
against homozygotes.--In the absence of selection all populations become com- 
pletely homozygous. This state is usually attained in less than 10 generations. In 
the presence of selection with heterozygotes at an advantage, equilibrium hetero- 
zygosity is maintained at various levels depending upon: (1) strength of linkage; 
(2) mode of reproduction; and ( 3 )  intensity of selection.-Populations which 
use central fusion as a mechanism of restoring zygoidy should be able to sustain 
equilibrium heterozygosity at a lower cost to the population than do partheno- 
genetic populations using any other mechanism. A mechanism using a mixture 
of 2/3 central fusion and $4 terminal fusion has the effect of eliminating the in- 
fluence of linkage and interference upon the rates of gain of homozygosity and 
values of equilibrium heterozygosity. The evolutionary and experimental impli- 
cations of these findings are briefly considered.-There then appear to be at 
least three ways in which heterozygosity can be maintained in parthenogenetic 
forms considered at this time: (1 ) absolute linkage to the kinetochore in species 
restoring zygoidy by central fusion; (2) chromosomal rearrangements; and ( 3 )  
selection. These findings appear to contradict the general opinion that partheno- 
genetic species represent an evolutionary dead end because of their inability to 
maintain genetic plasticity. 
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