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ABSTRACT 

Simple models for the genetic control of the tendency to migrate are con- 
sidered. It is shown that migration from a more favorable regime to a less 
favorable regime is selected against. The ramifications for general modifier 
theory are discussed. 

I N  recent papers, FELDMAN (1972) and FELDMAN and BALJSAU (1973a and 
1973b) have examined a series of models in which the recombination between 

two loci was under the control of a third and selectively neutral locus. The out- 
line of the model used was that of NEI (1967), although the mathematical con- 
ception was somewhat different. The results of our above-mentioned work can be 
stated as follows: If a mutant, selectively neutral modifier arises when the modi- 
fied loci are in linkage disequilibrium, it will increase in frequency only if it 
reduces recombination between the modified loci. If the modified loci are in link- 
age equilibrium no such advance is possible. 

In this note we consider a locus which modifies the migration rate between two 
populations, or between parts of a subdivided population. At one gene locus the 
populations are assumed to be in equilibrium under migration and selection. 
Mutation occurs at a locus which controls the extent to which the individuals 
migrate. We ask what is the fate of the migration-modifying mutant. This situa- 
tion may occur when the deletion of flagella reduces the amount of motion of a 
protozoan. Similarly, the strength with which hydra may be attached to sub- 
strata (and in consequence their motility) may be under genetic control 
(KANAEV 1952). I)R. UZI RITTER brought the problem to our attention with refer- 
ence to hydra. 

Model and Analysis 

We give a detailed specification of the model for the haploid case. Suppose the individuals 
are originally of the types A or a at the first locus but only B at the second. There are two p o p -  
lations, I and 11, between which individuals migrate at the rate m. Suppose that in population I 
the fitnesses of AB and aB are l+s and 1, respectively, while in population I1 these fitnesses are 
reversed. Let .z and y be the AB frequencies in populations I and 11, respectively. Suppose selec- 
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tion occurs, then migration; then the recursion system giving the frequencies z', y' in the next 
generation is 

Z' = l a  

I b  

The non-trivial equilibrium is readily seen to be given by the positive root, f, of the quadratic 

22s + z(2m+m.-s) - m = 0 2 

with p = 1-2. The equilibrium is locally stable for s > 0 and m > 0. 
Suppose that the two populations are in equilibrium (2 ,  1-2) and that mutation occurs at 

the previously monoallelic lacus B to a new allele b. Whereas b has no effect on the fitness of its 
carriers, it  alters their migration rate from m to m*. Suppose that r is the recombination fraction 
between the two loci. We now denote the frequencies of AB, Ab, aB and ab in populations I and 
I1 by zlr z,, z3, z4 and y l ,  yz ,  y s ,  y4, respectively. Suppose recombination, selection and migration 
occur in that order. Then we have 

m (y,--rDy) 

(Yl+Y2) + (l+s) (Y3+Y4) 
+ (I+s) (1-m) (z l -rDa) 

Zll = - 
(1+s) (x,+z,) + (z,+z,) 

( I f s )  (l-m*) (x9+rD,) m * ( r , + q J  1 z', = - 3 

etc., where D,  = z1x4 - zzz3, D, = y1y4 - y2y3 .  To determine the fate of the migration modi- 
fier b we determine the local stability conditions in the neighborhood of the original AB, aB 
equilibrium. If this equilibrium is unstable in the higher (i.e., six-) dimensional sense (having 
been stable in the two-dimensional sense) then b will increase in frequency. The local stability 
is, of course, determined by linearizing ( 3 )  in the neighborhood of 

( I f s )  (Z,+%) + (x3+zq) + (Yl+YJ + ( I + $ )  (YS+YJ 

x 1 = f , x 2 z z 4 = 0 , Z 3 =  (1-2) 
y 1  = 1-72, y2 = y* = 0, y 3  = 2 4 

where P is obtained from (2). If the largest eigenvalue of the resulting matrix transformation 
is greater than one in absolute value, (4 )  is unstable and b will increase, i.e. migration will be 
modified. 

RESULTS 

The local stability matrix reduces to dimension 4 and the resulting character- 
istic polynomial factors into two quadratics. The resulting four eigenvalues can 
all be shown to be less than unity in absolute value if m* > m, but the largest is 
greater than unity if m* < m. Therefore, if b reduces the migration rate of its 
carriers, it will increase in frequency. 

Diploid Models 

The problem as structured above for  the haploid case has been extended to the diploid case. 
Here the original genotypes are AABB, AaBB and aaBB. A number of migration-selection bal- 
ances are known for diploids (MORAN 1959 and EYLAND 1971) with the most complete treatment 
by KARLIN and MCGHEGOR (1972). We have studied a number of the cases considered by these 
authors. For a complete specification of the model in  the diploid case we postulate that the 
original migration rate for BB is m < i /e, that the modifier heterozygote Bb have migration rate 
m* and bb migrate at the rate m**. Clearly the initial evolution of b should be determined by 
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the relation between m and m*. A typical case is where the fitnesses of AA, Aa, ua in population 
I are l+s, 1, 1-s and in population I1 l-s, 1, l+s. Another would be where both populations 
have fitnesses 1, l-s, 1, i.e. disruptive selection. The general theory of such models was elabo- 
rated by KARLIN and MCGREGOR (1972). Insofar as migration modification is concerned in these 
models, the results are the same as for  the haploid case above. If the populations are in a stable 
migration-selection balance and if b is a selectively neutral mutation at the B locus, which 
causes Bb individuals to migrate a t  the rate m*, then b will increase in frequency if and only if 
m* < m. One of the key differences between the diploid and haploid models of modification lies 
in the effect of m**. Thus if m** > m* < m, it  is conceivable that a polymorphism be estab- 
lished for the neutral modifying locus B/b.  This has been discussed in  detail for the recombina- 
tion case by FELDMAN and BALKAU (1973a). 

DISCUSSION 

Remark I: The model analyzed above is clearly a very simple one. The quali- 
tative results, however, extend to more general selection models but the algebra 
then becomes so messy that numerical analysis is more profitable. It is our con- 
jecture that the qualitative findings will hold true when both the selected charac- 
ters and the propensity to migrate are polygenic in nature. 

Remark ZZ: For the type of selection regimes discussed above, the qualitative 
result is that there is selection to reduce the frequency of immigration into an 
environment in which most of the immigrants will be at a disadvantage relative 
to their original environment. Such data as have been reported by EHRLICH 
(1961, 1965) on the low frequency of dispersal from colonies of the butterfly 
Euphydrias editha could be explained in this way. Our analysis also makes 
precise some of the discussions by MAYNARD SMITH (1964) and VAN VALEN 
( 1971 ) concerning the evolution of dispersal, and group selection (see Remark 
I11 in the latter context). Clearly, selection for reduced migration is tantamount 
to selection for geographic isolation. Our results could then also be interpreted as 
providing a possible framework in which to set ideas on speciation (MAYR 1970). 

Remark ZZZ: The way in which the model was set up above, that is the order of 
recombination, selection and migration, may not be the most natural. KARLIN 
and MCGREGOR (1973) have examined a different migration modification mode1 
but with essentially the same results-namely, that migration reduction is favor- 
ed. In their models, selection happens after migration with the result that the 
mean fitnesses in populations I and I1 are functions of the migration parameters. 
Noting that the overall equilibrium mean fitness is a decreasing function of the 
migration rate, they then use their pomwerful mean fitness principle to prove that 
migration reduction occurs. 

Remark ZV: KARLIN and MCGREGOR (1973) have pointed out that as the original 
migration rate m becomes small the rate of increase of the modifying allele b also 
decreases. Thus it becomes increasingly difficult to stop further migration by 
selection. The same is true of recombination reduction. 

Remark V: Clearly other linear evolutionary pressures, such as mutation, will 
obey the above laws; i.e., mutation will be reduced in a population under muta- 
tion-selection balance. 
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We are grateful to Professors S. KARLIN and J. MCGREGOR for permission to cite their un- 
published results and for a number of important discussions. 
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