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ABSTRACT 

Models of variance components and their intraclass correlational equiva- 
lences are developed for genes falling into various categories of subdivisions 
within a population. Estimable functions are elaborated demonstrating that 
intraclass correlations can be estimated only relative to that for the least related 
genes in the informational system. The effects of different types of subdivisions 
-and of ignoring them-on the parameters are demonstrated. Small sample 
estimators are formulated for all of the parameters by three different methods, 
including both a weighted and an unweighted method of analysis of the varia- 
tion among subpopulations. How estimators change with assumptions about 
the parameters is illustrated. Various tests of hypotheses are outlined in x 2  and 
P-test terminology. Discussed are factors which may affect the correlations 
and the manner in which their effects are manifest, hopefully in clarification 
of some of the misconceptions that have arisen in this connection. 

I N  a previous paper ( COCKERHAM 1969) I pointed out the role that coefficients 
of inbreeding and coancestry play in the variance of frequencies of neutral 

genes. In a parallel development a linear model of effects was introduced with a 
corresponding decomposition of total variance into components of variance. Com- 
ponents of variance were manipulated to produce intraclass correlations, which 
in turn were shown to correspond to functions of the coefficients of inbreeding 
and coancestry. It was emphasized that when applied in analyses of data on gene 
frequencies, the coefficients must be given correlational definitions to include all 
causative factors affecting them, not just those due to drift and mating system. 

General relationships between components of variance and intraclass corre- 
lations were demonstrated, and formulated for an analysis of a sample of obser- 
vations from a single subdivision and of equal-sized samples from several sub- 
divisions of a population. A formulation not well known was given for unequal 
sizes of samples for the subdivisions, the thought being that no one would have 
difficulty in adapting analyses to unequal sample sizes by some of the usual 
methods. Various tests of hypotheses were formulated in x2 terminology, and some 
tests of hypotheses, it was pointed out, could be phrased in IT-test terminology. 

I have had sufficient feedback to indicate that to some readers some of my 
notions appear strange, that the models and analyses may be alright for balanced 
experiments but not for unequal-sized samples, and that such large sample theory 
is not applicable in practice where sample sizes are often small. On review, part 
of the confusion may have stemmed from my lack of emphasizing and elaborating 
certain points, and lack of relating procedures directly to other published ones. 
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The purposes of this paper are to correct some of these 08missions, to formulate 
alternative analyses for  unequal sample sizes, to emphasize differences between 
hypothesis testing and estimation, and to discuss the correlational parameters as 
they relate to causative factors. 

Since 1 shall be referring to COCKERHAM (1969) repeatedly I shall use a short- 
hand notation (1969). The main, but actually trivial, development in that paper 
was the designation of the gene-each and every gene-not the frequency of a 
class of genes or of genotypes, as the observational unit. Then, by providing a 
measure of frequency, 1 or 0, for each gene there obtained the metrical situation 
subject to treatment by all appropriate modern statistical theory and methods. 
The rest followed automatically, including the small sample estimation and 
testing of hypotheses. 

BACKGROUND CONSIDERATIONS 

Two of the most noted and widely used developments in population genetics 
theory are WRIGHT’S F-statistics and “WAHLUND’S Principle.” In  WRIGHT’S 
F-statistics I include not just F I T ,  FIX and F S T  (WRIGHT 1951) but all those 
(WRIGHT 1943, 1946, 1965 and others) defined for specific classes of gametes. 
PROFESSOR WRIGHT has repeatedly pointed out their correspondence with all 
types of structuring of individuals within populations, such as in systems of 
mating or in various kinds of subdivisions as may happen in natural populations. 
He has repeatedly stressed their general correlational nature whenever applied 
to populations, regardless of the factor (s) leading to the correlations. 

Then why ever introduce M A L ~ O T ’ S  (1948) probabilities of identity by des- 
cent in this vein? One reason was to rebut statements to the effect that these proba- 
bilities could not lead to negative correlations, and it was demonstrated that they 
could do so even for neutral genes in a randomly-mating dioecious population 
where the probabilities apply exactly. However, it was pointed out that when 
applied to real populations these parameters, too, must be given general corre- 
lational definitions for realism. Then why distinguish them from WRIGHT’S 

correlations? For purposes of clarity, most distinctions being small and some 
negligible. WRIGHT defines correlations for genes in terms of those in gametes. 
For example, for individuals A and B it is for genes in the gametes from A with 
genes in the gametes from B. I use the average of the correlations of genes of A 
with genes of B. The two correlations are identical (with regular meiosis and this 
is not a point at issue). The distinction in this case only emphasizes that the 
present treatment is of genes as constituted in individuals. A real difference can 
arise when applied to a group of individuals. The average of the correlations of 
genes among distinct individuals is often different from that of the average of all 
correlations of genes in a sample of gametes from them. 

I found in the treatment of a single hierarchy of subpopulations (groups, 
1969) that it was only necessary to define two correlations-simply, that between 
genes within individuals, F ,  and that between genes of different individuals in 
the same subpopulation, O. Another correlation, entirely a function of these two, 
is that between genes within individuals within subpopulations 

f = (F  - O ) / ( l  - 6) = (pb ,  1969) . 
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These three correlations manipulate just as the P-statistics, and obviously 
F = F I T ,  f = F I s  and 0 = F s T  for all intents and purposes. Another distinction is 
that F and 6 have not been defined relative to some standard, although they 
become so in practice and F I T  and F s T  are defined relative to a total. This matter 
is best discussed later. 

Turning now to “WAHLUND’S Principle,” it is most often presented as a form of 

where 2‘ is the expected or average value (E in 1969), p k  is the gene frequency 
for the kth subpopulation and u2 is the variance among the frequencies. This 
rather old principle involving moments was not new at that time in application 
to many areas, including genetics. WAHLUND (1928) showed, among other 
things, the role that variance due to differences in gene frequencies among sub- 
populations played in the total genotypic frequencies from amalgamating the 
subpopulations. More important, however, he extended the subdivision concept 
to isolates within subpopulations with the identification of an additional source 
of variance, and, by analogy, on to a third subdivision and another source of 
variance. This development can be construed to be the identification and defini- 
tion of components of variance as we know them today for populations with 
various levels of subdivisions. 

I simply extended the variance component concept to include the component, 
U:, due to variation of genes within individuals and the component, 3, due to 
variation of genes among individuals within subpopulations (1969). Then, desig- 
nating the component of variance due to differences among subpopulations as U:, 

these three components which sum to the total variance, 2, were related to the 
correlations as follows: 

I pi= (€ p k ) Z  + U;& 

’k 

Components Correlational Covariance 
of variance equivalences equivalences 

IT; = (O--O,)pq = cova-covg 

U; -COvab ff; = (I--P)pq - 

Total ffz = (I--0,)pq = U; -cov, 

= (P--O)pq = COVab-COVa 
(1) - 

- 

( p  is gene frequency and q = I-p) 

Covariances, Cou’s, of genes were also introduced (1969) since they provide a 
rationale for the correlations. The covariance representation was found very 
useful (COCKERHAM 1963) for the analyses of relatives for quantitative charac- 
teristics. The covariances are for genes with themselves, Covab for distinct 
genes of the same individual, Cou, for genes of different individuals in the same 
subpopulation, and Cou, fo r  genes in different subpopulations. 

Another correlation, O,, among genes in different subpopulations is introduced 
in the model (1) corresponding to Cov,. This is for the least related genes, least 
related in the sense that they are farthest apart in the hierarchy. If the model 
properly represents our sphere of information, then for practical purposes for 
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representation and estimation, since Og is not estimable, we set p’q’ = (1 - -Gg)pq  = 
U ~ ,  0‘ = ( a - ~ ~ ) / (  1-0, I and F’ = (F-&,)/( 1-Og) so that U:= O’p’q’, U ; =  

(F’-6’) p’q’ and ufo = (1--F‘)p‘q’, and it is the primed parameters that are estim- 
able. Note that if Gg = 0 then the primed and unprimed parameters are the same. 
In either case f’=(Ft--o’)/(1--0’) = (F-G)/(l-&) = f  is the same. Thus in 
practice the model is reduced to accommodate the parameters estimable from the 
information or data available, and the estimable correlations are always relative 
to the correlation of genes farthest apart (generally least related and least corre- 
lated) in the informational system. While in practice one drops the primes, 
introduction of these primed parameters points out the result of enforcing the 
constraint that Gg = 0 when it actually is not zero. 

If 0, is not zero, to estimate it requires information on unrelated subdivisions 
among which the genes are not correlated. Then, there is available a component of 
variance, U:, due to differences among unrelated subdivisions with U: = 6,pq .  
The estimable correlations are now og, 0 and F as well as those formed by them, 
f, F’ and o’, while with information on only one subdivision of related subpopu- 
lations it is only the latter three that are estimable. 

In theory involving inbreeding and drift one generally determines the param- 
eters or correlations relative to unrelated genes-that is genes among completely 
unrelated subdivisions tracing separately back to the noninbred and nonsub- 
divided founder population. I think this is what PROFESSOR WRIGHT means when 
he says relative to the total for  FIT and FST. From a practical standpoint in the 
analysis of observations one need only define those correlations necessary to 
characterize the observed structure and relative to the correlation of the most 
distantly related genes. Only with ancillary information can one relate back to 
some founder population or to more distantly related populations. 

Now suppose there were actually subdivisions, isolates, within subpopulations 
but otherwise model (1) with 0, = 0 is correct. New components of variance 
are introduced, U &  due to differences among individuals within isolates and uiz 

due to isolates within subpopulations. Correspondingly, 6,  is the correlation of 
genes between individuals within the same isolate and 6, is the correlation of 
genes between isolates in the same subpopulation. The new model equivalences 
are 

- -  

Components Correlational 
of variance equivalences - 

BzPq - - 
u:1 

6 2  (01-02)pq  - - 

P4 - - Total U2 
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Since 0 is the average of the correlations among all genes of different individuals 
in the same subpopulation it is an average of G1 and 6,. Let the proportion of the 
number of pairs of genes from different individuals in the same isolate to the 
total number of pairs of genes from different individuals in the same subpopu- 
lation be a. Then, O = Q  &+ (1-a)02. Using this relationship we can relate 
the components of variance for the two models 

- 
U; = cy + UZl = [.a (01-0,) + 0,l p q  = opq 

These formulations do not imply that if one just ignores isolates in theory or 
estimation that the same results are obtained as when there are no isolates. 
Rather, they show the parametrical relationships which allow the evaluation of 
ignoring isolates or subdivisions within a lower category. We have available 
using model (1) 0, F, f and the total variance as before but only F and the 
total variance are appropriate for the new situation. 

For the new model (2) ,  in addition to F,  the appropriate correlations are 

which determine other correlations: between genes within individuals within 
isolates 

between genes of different individuals within isolates within subpopulations 

f z  = (61 - &)/(I - 0,) = u,”/(u;l +U& + U;) 
and between genes within individuals relative to genes between isolates within 
subpopulations 

f S  = f l  + f z  - flfZ = ( F  -,62)/(1 - 0,) = + o~2>/(a2,1~+ U i Z  + U;) . 
These examples should be sufficient to indicate the various correlations that can 
be formulated. 

Next, consider the situation where model (1) is correct for variation within 
subpopulations, but the subpopulations fall into related groups within areas 
which are ignored in model (1 ) . The model is now 
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Components Correlational 
of variance equivalences 

(0,  - 0 4 ) p q  

(0  - 0 , ) p q  

( F  - 0)  P4 

- - 
U64 

U%, 

4 

- - 

- - 

The new components of variance are U:, due to subpopulations within areas and 
U:* due to areas. The corresponding correlations are 6, for genes of different sub- 
populations in the same area and 6,  for genes in different areas. Obviously, if 
we apply model (1) to this situation, 0, # 0. Let ,i3 be the proportion of the num- 
ber of pairs of genes among different subpopulations in the same area to the total 
number of pairs of genes among different subpopulations. Then 

- o,=pG,+ ( l - p ) & .  

Since is for the least related genes in the system it is set equal to zero, or we 
consider all the correlations modified to satisfy this constraint and Og = /3 6,. 
This leads to 

U; = ( 0 - p 0 3 ) p q  = vi, '+ ( 1  -P) U;+ 

U: = ( F - 6 )  p q  = U: 

Total u2 = (l--pO,)pq = U; - p 
If we apply model ( 1 )  to this situation only f is available, and everything else 
is measured relative to less than the total variance 

- 
U;+ U; l-ppo3 - U; @ - P O ,  

U2 1 -PO, u2 1 - PO3 
# F ,  O S = - =  Z O .  FI=---- - 

From these f can be obtained directly o r  by components of variance. 

f =  ( F ,  - 0 5 ) / ( 1  - 0,) = (R-G) / ( l  - 0)  . 
All of the other correlations and the total variance are available only by appli- 
cation of model (3 ) .  

The concern so far has been the development of a model for fitting to popu- 
lations. There may be many reasons why the model does not fit even though it 
appropriately takes into account the logical structuring of the genes. Interpreta- 
tions of estimates depend first on the goodness of fit, and of course one looks for 
reasons or interpretations for lack of fit. These considerations are left until during 



ANALYSES O F  GENE FREQUENCIES 685 

and after a treatment of estimation. Before that a few comments will be made 
about components of variance and intraclass correlations and their estimation. 

Components of variance, although not necessarily known by that name, have 
been used extensively in population genetics. For example, FISHER (1918) and 
WRIGHT (1935) examined the decomposition of the genetic variance into com- 
ponents or parts ascribable to average, dominance and interaction effects of 
genes. Variance components were finding use in other fields also, and the earliest 
papers on their estimation, to my knowledge, are TIPPETT (1931), YATES and 
ZACOPANAY (1935), DANIELS (1939) , and WINSOR and CLARKE (1 940). All the 
ingredients of variance components in a one-way classification are given by 
AIRY (1 861). A recent and comprehensive treatment of variance components 
and their estimation is given by SEARLE (1971a; also see SEARLE 1971b). The 
method of average products (1969) for estimation is treated by KOCH (1967). 
He later suggested an improvement in terms of averages of squares of symmetri- 
cal differerxes (KOCH 1968). An exhaustive survey of thz one-way classification 
was made by HARVILLE (1969). Several contributions have been made by RAO 
(1971a, 1971b, 1972). 

Intraclass correlations in terms of F-statistics and similar adaptations have 
played an extremely important role in population genetics, more so than com- 
ponents of variance. Also, the estimation of an intraclass correlation was intro- 
duced prior to that for variance components (FISHER 1925). Yet intraclass 
correlations hsve not been looked upon with much favor by statisticians and they 
are mentioned only casually, if at all, in most statistical texts. LUSH (LUSH and 
MOLLN 1942; LUSH and STRAUS 1942; LUSH 1947, 1948) develops the equiva- 
lences between intraclass correlations and variance components by application, 
including correspondence in estimation. Through the influence of the LUSH school 
both intraclass correlations and variance components have found much use in 
animal breeding theory and experimental research. The most extensive general 
treatment of intraclass correlations and their estimation appears to be by 
KEMPTHORNE ( 195 7). 

ESTIMATION AND HYPOTHESES TESTING 
I shall in general use the same notation as previously (1969), the exceptions 

being noted. For the kt" subpopulation the numbers of individuals of each geno- 
type in the sample are _ _  

A A  AA A A  Total 
Observed Nkz Nkl Nko Nk 

For summation over samples, z NFci = N i ,  Nk = N [blanks replace the (.)'s 
(1969) in summation]. Note that N ' s  here are f o r  the samples. I previously 
(1969) omitted pointing out that in estimation and testing of hypotheses the 
various N's were for  samples, and had used the same notation for size of sub- 
population. 

I shall illustrate the application of three methods of estimation: analysis of 
variance, S; average symmetrical products, LP (KOCH 1967) ; and average sym- 



686 C. C .  COCKERHAM 

metrical squared differences, !2, (KOCH 1968). Analysis of variance methods are 
of course the most familiar. Methods P and Lh are similar in approach, easy to 
apply in any situation, and adaptable to fitting to any population structuring. 
The estimators for the three methods differ only when sample sizes are unequal. 

The procedure in each method is to arrive at quadratic forms of the observa- 
tions. Then by equating these quadratic forms to their expectations in terms of 
components of variance, unbiased estimators of the components of variance are 
readily found as linear functions of the quadratic forms. In applying the methods 
we use xkil and xk:Ici2 for the two alleles of the ith individual in the kth subpopu- 
lation, where x takes the value 1 if the gene is A, and the value 0 otherwise. For 

TABLE 1 

Average symmetrical products 

Category, of Numbers 
gene pairs of pairs Average product' 

a. One subwmulation 

* & is the sample gene frequency from the k th  subpopulation and f i  = Z Nk&/N is the weighted 
average of the sample frequencies. k 
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method P we simply take the average of the products of the x's for all pairs of 
genes in the same category including the category of genes with themselves. 
These average products (P = E, 1969) are given in Table 1 for observations 
from a single subpopulation sample. With samples from several subpopulations, 
the weighted average of the sample average products is obtained, where each 
weight is the number of products in that category for  the sample. This amounts 
to adding the products in a category over samples and dividing by the total 
number of products. These pooled products and the new average product, Pa, 
for genes in different subpopulations are also given in Table 1. Then by equating 
the P s  to their expectations (bottom of Table 1) the estimators of the com- 
ponents of variance are found as linear functions of the P 's ,  e.g., Gi = Pc - Pw. 

For method B the same pairings of genes are utilized except one half of the 
square of the difference between the two x's replaces the product used in P. Of 
course B c k  and Bc for genes with themselves are zero. The other average squared 
differences are displayed in Table 2 for a single sample and for samples from 
several subpopulations. Note that the manner of pooling over samples is the 
same as for method P, and that the estimators of the variance components, 
utilizing the expectations at the bottom of Table 2, are linear functions of the 53's. 

TABLE 2 

Auerage symmetrical squared differences 

Category, of Numbers 
gene pairs of pairs (1/2) average of squared differences 

a. One subpopulation 
Z, 8, ( x k i j - x k i , j p ) 2  4N2kfikGk-Nk1 

- - Between i<*' i,i 

individuals w b k  = 2 N ~ ( N k - - I ) ~ b k  =- 4Nk(Nk-1)  4 N k  ( N k - 1 )  

( z k i i - z k i 2 ) 2  N k l  

N k  

- Within -- individuals w w k  = N k  B w k =  2Nk 

b. Several subpopulations 

Z Z Z ( ~ k i j - X k , i . j , ) '  N'S6-z N'kfikGk 
k<k' i , i '  j , j .  

- - Between 
subpopulations e ( N 2 - 2  IC N 2 , )  B a  =- 4(N2-5 N 2 k )  NZ--8 N ' k  

wbk!hbk N 2 k f i k 4 k - N l  Between - - 
4($ N'k-N) individuals 2 ( 2 N 2 , - N )  B b =  wb, 

k 

Within 
individuals N 

3 wtok!hwk N 1  
- -- 

2N 
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Analysis of variance estimators of variance components are phrased in terms 
of mean squares and their expectations given in Table 3. In pooling mean squares 
over samples the weighting factors are the degrees of freedom. For the variation 
among subpopulations and among individuals in subpopulations there is no best 
method of analysis with unequal-sized samples. Two commonly used ones are a 
weighted and an unweighted one, both given in Table 3 .  The unweighted term, 
Sf,, is simply the unweightcd variance among sample means, and its expectation 
involves the harmonic mean, Nh, of sample sizes. In contrast the expectation of 
the mean square Sa involves N ,  which is SNEDECOR’S (1946) k, average for a 
simple hierarchy. 

Each of the three methods, including both the weighted and unweighted 
analysis for method S, provides unbiased estimators of the components of vari- 
ance and of any linear functions or translations of them, 

TABLE 3 

Analysis of variance 

Source df Mean squares’ 

Within 
individuals wwk = N7$ 

Subpopulations M - 1 

Individuals N - M  

Within 
individuals N 

b. Several subpopulations 
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A A 

6; + 6; = ( F y q )  , + 6; + 6; = G2 = ( p q )  , 
where it is the entire term involving the correlation(s) and gene frequencies 
that is being estimated. The correlations are estimated as ratios of the estimators 
of components of variance and are not necessarily unbiased, 

Whichever method of estimation is used it should be noted that 

so that the estimators operate just as the parameters or the P-statistics. 
It may be verified that each method produces the same estimators for a single 

sample and for samples of equal sizes from several subpopulations. With unequal 
sample sizes only 6: does not vary among the three methods, and 6; may differ 
for the weighted and unweighted analyses. Some aspects of these differences will 
be considered after a single sample has been considered in some detail. 

One Subpopulation 

The relativity of correlations is exemplified by a single subpopulation. We 
have genes within and between individuals, and the correlation, f k  ( = P k ,  1969), 
is relative to this comparison, In  the context of what happens on the average over 
subpopulations, I f k  = ( F - G ) / (  l-o), but other subpopulations are required to 
estimate the other correlations. 

We may estimate f k  in a reasonably straightforward manner without making 
any assumptions. Each ( x k i j  - zklr j , )2 /2,  i and i' distinct, in B b k  provides an 
estimate of the variance among the least related genes in the hierarchy, i.e., 
among genes of different individuals, and ( p k q k )  = B b k  is the estimator of the 
variance. The covarianre of genes within individuals is found relative to that 
between individuals. Except for corrections for the mean these sample covariances 
are provided by q v k  and P b k ,  respectively, so that ( f k p k q k )  = p v k  - P b k ,  and 

A 

A A  

A h  

j k = - - - I -  ( f k p k q k )  - 2Nkl ( N k - 1 )  

A 

( P k q k )  4N2, $k,$k-Nk, 

Since we can compute correlations and variances without resorting to the 
analysis of variance table o r  components of variance then why do so? The main 
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reason, of course, is that it is in the context of analysis of variance and variance 
components that methods of estimation and testing of hypotheses are best docu- 
mented, taught, and most readily available. One difficulty with components of 
variance as they are usually presented is that they can never be truly negative- 
only estimates can. FISHER ( 1 9 2 5 )  noted that the lower limit on the intraclass 
correlation in a simple hierarchy was - l / ( k - 1 )  where k is the number of items 
in each class. For f the number of genes within individuals is 2 so that the lower 
limit is -1. This limit can be attained only when p = (1/2) and in general is 
limited to -q/p where q 5 p .  This dependence on frequency need cause no con- 
cern, however. I shall argue later that most likely f should be slightly negative 
on the average. Thus, it is necessary in the adaptation of variance component 
methods to recognize the acceptability of negative values for U:. 

Turning now to tests of hypotheses, there is only that concerning f k  or the 
degree of randomness with which alleles occur together. The hypothesis of most 
interest is f k  = 0 or complete randomness. While no assumptions have been made 
so far, a hypothesis involves a statement of assumptions to be tested and of course 
any test statistic involves assumptions about distributions. It was noted ( 1  969) 
that the analysis of variance in Table 3 provided an approximate F-test of the 
hypothesis f k  = 0. This test is dependent on the assumption of normality, which 
of course is not true. One problem with the F-test in this particular situation is 
that we wish to test f k  = 0 against the alternatives f k  < 0 and f k  > 0,  and would 
take the ratio of the larger of S b k  and S w k  to, the smaller; but the F-test is tabu- 
lated as a one-tailed test and modification of the probability levels of rejection is 
required. On the other hand the x2 test is two-tailed, testing deviations in both 
directions. 

Expected values are required fo r  x2 tests. Let those for the model be 

A A  A 2  zz Total 
l lk2 l l k l  rIk0 N k  7 

and With f k  general, T k l =  2 N k p k q k  ( l - f k ) ,  V k 2  = N k p k - T k &  and "ko  = N k q k - l l k i / 2 .  
One must construct expected values since gene frequencies are not known. In 
doing so it is noted that 

E$k@k = p k q k  - = p k q k  - P k q k  ( 1  f f k )  /2Nk * 

Under the hypothesis that f k  1 0,  C??j$& = p k q k ( 2 N k - 1 ) / 2 ? k 7  SO that - - 
$k@k (2Nk) '/ ( 2 N k - 1 )  , and COnSequently, ;kZ = Nk$k  -Gk1/2 ,  ?7ko = N k B k  - ?k1/2 

are unbiased estimators of the 7's ( f k  = o) ,  and are minimum variance esti- 
mators. This is the same result (1969)  but formulated differently. The result is 
the sanie as that provided by HOGBEN ( 1 9 4 6 )  and by LEVENE (1949) based 
on random pairings of genes subject to fixed gene frequencies. While the 
argument presented here is philosophically different, it is not surprising that the 
two arguments lead to the same expected values since it is only the nature of 
pairing of the genes that can be tested. A test of random pairings of genes subject 
to fixed sample gene frequencies can be made using the sample distribution pro- 
vided by LEVENE ( 1 9 4 9 )  or HALDANE ( 1 9 5 4 ) .  
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Absence of bias in the constructed expected values depends on the assumption 
f k  = 0, which seems appropriate for testing that hypothesis. If f k  # 0 

E ?;kl = 2 N k P k q k  - f k p k q k  2 N k / ( 2 N k - i )  . 
From some points of view it may be desirable to have an expected value con- 
structed such that it is unbiased for all f k .  For example, if p k  were known, then 
T k 1 =  2 N k p k q k  would be the expected value used for N k l .  Under test now would be 
deviations due to sample gene frequencies as well as random pairing. I n  any case 
one can construct expected values with f k  general which are unbiased estimators 
of 7’s for f k  = 0 

5 k i  = 2Na ( & )  = 2 N k  [$kBk N k /  ( N k - 1 )  - N k 1 / 4 N k  (Nk-1) 1 
f k 2  = Nk$k - f k 1 / 2 ,  5jko = N k B k  - 5jk1/2  

I have difficulty in rationalizing that these are appropriate expected values for 
testing f k  = 0. For one thing there is a one-to-one transform between the +’s and 
N’s; i.e., given the 5j’s one can produce the observed values. Also, they are not 
the best estimators when f k  = 0. 

SMITH (1970) arrived at a value, H ,  which he proposed to compare to its 
standard error. By identification, 

Actually, a test of H = 0 is a test of f k  = 0 and essentially this is what is involved 
in the analysis of variance B-test. SMITH noted when considering combining 
estimates from several samples that “for a more accurate study of the situation, 
some kind of variance component analysis would be desirable.” 

One of the problems in making corrections to data is that they may invalidate 
estimation procedures applied to the corrected data. For example, one may note 
that even with f k  = 0 that E 2 N k g k Q k  < 2 N k l ,  and make some correction in the 
observed values to account for this difference. Now, to turn around and ignore 
these corrections and to estimate f k ,  for example, is to compound biases gencrally, 
depending of course on the nature of the corrections. 

CANNINGS and EDWARDS (1969) made a curious development. They considered 
the sample genotypic frequencies to be fixed, and within the limits of the sample 
frequencies let the genes be randomly distributed between maternal and paternal 
gametic arrays. The expectations of these constructed but unobseruabze variables 
were evaluated; for the heterozygotes, for example, ;kl = 2 N k @ &  -k N k 1 / 2 N k .  

Everything is fixed in chis case and there is a one-to-one transform between 9’s 
and N’s just as there is for the f ’ s .  Even if we ignore the fixed nature of the terms, 
they are biased if f k  z 0, E ; k l =  2 N k p l c q k  - 2 f k p k q k .  

With separate sexes the estimated gene frequency is, of course, an average of 
the maternal, &, and paternal, @;:, gene frequencies, 4- $;)/2. If 
E flk = E $; = p k ,  i.e., if only sampling differences are involved in the differences 
between the two gene frequencies, then all of the results presented follow through 
in the same manner. Some difficulties do arise when the gene frequencies are 

= 
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truly different between the sexes, p; # p i ,  but the way to investigate this matter 
is by comparing the gene frequencies of the two sexes. 

Several Subpopulations 

There is some balance in the data, two genes per individual, so that all 
three methods provide the same estimator of 6;" which is the minimum variance 
unbiased estimator. With unequal sample sizes the estimators of ui  and ut and 
any functions of them vary among the three methods, and of u: differ between 
the weighted and unweighted analysis S. No documentation of the best pro- 
cedure is available, the main problem being that the best procedure is dependent 
upon the unknown parameters to be estimated. For example, consider the 
weighted and unweighted analysis for method S. The unweighted analysis is 
best if o'= 1 and the weighted analysis is best if 6 = 0, and the best is usually 
somewhere in between. Method P is somewhere in between. So is method a, 
and KOCH (1968)  points out that the variances of estimators of variance compo- 
nents by method 9 do not involve the mean for normally distributed x's in con- 
trast to estimators by method P. While this is a desirable property its relevance 
to the situation at hand where variances of estimators always involve p is not 
clear. One argument in favor of the unweighted analysis over the weighted one 
is that if the variation within subpopulations is heterogeneous the estimator of 

by the unweighted analysis is still unbiased. All of these considerations are 
for estimators of variance components and do not necessarily carry over to esti- 
mators of the intraclass correlations about which little is known. 

Tests of significance by x2 or F-tests are all on much less sound grounds than 
estimation. The F-test for H,, or  0' = 0 ( 1  969) appears to have, in practice, the 
one-tailed F-test orientation against the alternative of O > 0. For the weighted 
analysis it is T a b  = S , / S b  and for the unweighted analysis, Tab = 2NhS',/Sb. 
The other main hypothesis, H,, or F--o = 0, has, in practice, the alternatives 
F--o < 0 and F--o > 0. This may appear clearer in terms of f .  Since f = (F-G)/ 
( 1 - g ) ,  then l-F = ( 1 - f )  (1-0) and l-F + 2 ( F - 6 )  = (14- f )  (1-0) so that 
I S b  = ( l+f)  ( l - O ) p q ,  I S ,  = ( 1 - f )  ( l -G)pq .  Obviously, the argument on 
the mean squares reverses as f is positive or negative just as for f k  in a single 
sample. Possibly x2 tests are better for hypotheses involving variation within sub- 
populations. However, there are several ways of making x2 tests, with the best 
method generally unknown. 

How estimators vary with assumptions about the parameters of the model is 
illustrated in conjunction with arriving at expected frequencies for x2 tests of 
significance. For example for a x2 test of the composite hypothesis 0 = f k  = 0 
(all k) , i.e. all genes associated at random, we need only an estimator of pq. For 
these assumptions the three mean squares for the weighted analysis are pooled 
to provide the best estimator 

( M - l ) S a  + ( N - M ) S b  -I- N S ,  - 2NF4 
2 N T l  2N-1 (E)  =-- 
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which can also be obtained by appropriate pooling of the quadratic forms for 
methods 53 and P. Expected values are constructed as 

iw = 2Nk (z), &z = N7cp̂ - ;/<I/& i k o  = NkQ - Gi/2 
and 

with 2M-1 df. If this test is significant it may be for one or both of two reasons, 
all f k  # 0 or 0 # 0. For all f k  = 0 the cxpected values are those given previously 
for each subpopulation, 

x2 2 z k , z  2, (Nki - ;ki> '/{ki 

with M df is just the sum of the M individual x?'s fo r  f k  = 0. Before proceeding 
to 0 1 0 consider the fitting of the mean f in testing the hypothesis all fie = f. 
The expected values are 

A 
in which is utilized the unbiased estimator ( p k q k )  in each sample for p k q k  what- 
ever fie is, and f = $.,"/(6: + 6;) estimated by one of the three methods. Then, 

x2 3 = 7c, i  2 05% - ; k W ; k z  

with M-I df is a test of homogzneity of the fk)s about their mean. It corresponds 
in some ways to BARTLETT'S test of homogeneity of variances. but in this case, Of 

homogeneity of variances within subpopulations after adjusting for differences 
in gene frequencies and overall f .  

The usual method for testing 0 = 0 is to compute the interaction x2 for the 
2 X M table of gene frequencies 

f. 2Nk (p^i&-p^>' (M-1 > S a  

with M-1 df, where Sa is the mean square for the weighted analysis. There is 
also the difference x:-~ = x; - x," with M-1 df which provides a test of 0 = 0. 
Alternatively, there is the F-test, T a b  = & / A b .  Which of these tests is better is 
a matter fo r  further investigation. 

An overall test of f = 0 or F = 0 may be obtained in the following manner. 
Under the hypothesis f =0, I S b  = I S,, which implies that 

E N ,  = E 4N Z NkplkBk/ (2N-M) ,  and 
7c 
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are unbiased expected values for xt = $: (Ni - &) 2/;i with 1 df. The difference 
xiu3 = xi - x; with 1 df is also a test of 4 = 0. Alternative unbiased expected 
values are found for x,” by similar applications of methods CP and B. 

A rough measure of the importance of the sources of variation can be obtained 
by apportioning the total x: as follows: 

Source df x2 Variation 
f 1 

( f k  - f I y S  M-1 2 x, 

0 M-1 1 x2 

x 2  - 2 

x 2  - 2 
- 

One divides through by df to obtain the relative importance of each source. 
However, these mean x2 variations suffer just as do mean squares in reflecting 
the portion of the total variation due to each source. 

DISCUSSION 

It is interesting that WRIGHT’S F-statistics and WAHLUND’S components of 
variance for subdividing are in principle two sides of the same coin, although the 
latter parameterization has not been documented like the F-statistics. It is 
common (e.g., BARRAI 1971)  to work with both f and variances, f for the variation 
within subpopulations and variance for variation among subpopulations. Often 
in theory subpopulations are considered infinite ( WAHLUND 1928) .  There is 
nothing wrong with mixtures of parameterizations or of treating infinite sub- 
populations as long as matters are kept straight. I t  is actually fGs that are being 
treated in this case and f does not reflect the forces under the general label of 
inbreeding as does F. As an example, consider an array of subpopulations each 
of infinite size and characterized by f k  and P k .  Let 

p YZ z p k ,  f = gfkpkqk/Epkqk, E (pk -p )2  = 

(I in this case just replaces summation notation divided by the number of sub- 
populations if it is finite). The variance among means of subpopulations of 
infinite size and around a known mean, p ,  is the component of variance, U: = 6 p q .  
Then, letting all N k  3 for S, and Sb, 

U: = €(1-frc>pkqk = ( 1 - f )  ( 1 - 0 ) p q  = ( l - -F)pq  

and U; = (F-G)pq. By turning the relationship around 

P = f + G ( l - - f ) ,  

and even if all f k  = 0 or if they average to f = 0, F = 0. This demonstrates again 
the composite nature of F which takes into Zccount all contributions of genes 
being alike within individuals in contrast to unrelated genes in the population. 
When LI (1969)  amalgamates two isolates and shows that although each has 
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no correlation there is a correlation in the amalgamated population, it is the f’s 
that are zero, and F = o  ̂ that is produced in the total population. This point is 
stressed because f is often discussed in the context of F and they are usually very 
different in practice. 

The methods of estimation presented are small sample methods and are simply 
an adaptation of those developed in the field of statistics for variance components. 
When it was recognized that components of variance could be logically defined 
for genes within individuals and between individuals in the same subpopulation, 
the rest followed. 

I have treated the components of variance and the correlational parameteriza- 
tions in parallel. While they are equivalent parameterizations, each appears to 
have advantages of clarity in some contexts and the two together give a better 
documentation of the situation, both in theory and in estimation. It is the,com- 
ponents of variance for which unbiased estimators are available from small 
samples. The small sample estimators of the correlations are ratios of unbiased 
estimators; but no unbiased estimators of the correlations appear to be available. 

One gets the impression that some authors are trying to describe finite sub- 
populations or populations as they are exactly currently constituted, as would 
forecasters or econometricians in evaluating the production of a crop in a par- 
ticular area either before or after harvest. Sampling procedures and methods of 
treatment, generally found in textbooks under sampling from finite populations, 
are for so-called fixed populations and are different from those outlined. The 
methods outlined provide unbiased estimators (from random samples) of those 
quantities produced by applying precisely the same methods to the entire popu- 
lation or subpopulations although they be finite. In  practice, and in the context 
of the information available by these procedures, it seems appropriate to view 
natural populations as samples in time and space. 

Turning now to factors affecting the correlations, those mentioned often are 
inbreeding, selection, migration, differential fertility, assortative mating, differ- 
ences in frequencies of genes in male and female gametes, and mixtures of sub- 
divisions. In discussing these factors it is necessary to distinguish those effects 
which lead to differences among subpopulations from those effects which arise 
from what goes on within subpopulations. If genes are randomly distributed 
within subpopulations then differences among them contribute equally to F and 0 
and nothing to f .  Thus f is almost entirely a consequence of effects within sub- 
populations. 

First consider the effects of inbreeding for neutral genes. It is necessary to 
distinguish between drift inbreeding, 6, among subpopulations due almost 
entirely to finite sizes of subpopulations over time, and inbreeding, f ,  within 
subpopulations due entirely to the system of mating within subpopulations. With 
random mating and separate sexes & = Ft+l ( t  indexes generations) so that 

where ne is the effective size of subpopulations. The result is a slightly negative f .  
Random mating includes brother-sister matings and other matings of relatives. 
Any avoidance of mating of these relatives will make f more negative. Only if 

f t  = (Ft--Ft+l)/(l-Ft+i) -1/(2ne -1) 
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mates are more related than a random pair of individuals (ROBERTSON 1964), 
including parents and offspring and all the other relatives generally found in 
data, will f be positive. Inbreeding subdivisions or isolates must be continued 
largely separated over time to make f positive. The extreme form of this is obliga- 
tory self-fertilization. In essence the effect on f of inbreeding isolates, with inter- 
change among them, corresponds to the effect on 0 of subpopulations with migra- 
tion. Other types of isolates will be considered under mixtures of subdivisions. 

While the system of mating within subpopulations determines f it also influ- 
ences the rate of increase in 6 if one includes factors such as the variation in 
gametes per parent (or family sizes) and inbreeding isolates. These factors are 
discussed in detail by COCKERHAM (1970). However, 0 is a result of reasonably 
long-term effects and without historical information one cannot know the rate 
with which a particular 0 was attained. On the other hand f reflects the more 
immediate mating system. 

Selection should also be considered in two ways. One is the long-term conse- 
quences with primary effects equally on F and 0 and not f and the other is the 
consequences of the immediate effects of selection reflected primarily in f .  The 
long-term effects of selection of any sort operating consistently in the subpopu- 
lations would tend to make them more alike, and thus the effect is to reduce 0 
since it can only be measured as 0 - &,. The change, og, in the entire population 
from some founder population may be large, but information other than status 
quo is required to know or estimatz it. This conclusion must be modified if selec- 
tion is different among the localities occupied by the subpopulations. If there is 
an interaction between selection and environmental niches, different genes being 
favored, the result is to lead to differentiation among the subpopulations and to 
increase 0. Also, drift due to finite size of subpopulations may occasionally lead 
tQ fixation of different alleles. With in t~ac t ion  of nonalleles this may cause 
differentiation in selection among subpopulations and an increase in 0. Migration 
(to be discussed) would tend to avert differential fixation, however. 

The immediate consequences on f of selection for alleles at a locus were given 
by WALLACE (1958) , by LEWONTIN and COCKERHAM (1 959) and were discussed 
in detail by WORKMAN (1969). In essence, unless the viability of the heterozy- 
gote is less or equal to the geometric mean of the viabilities of the two homozy- 
gotes, the effect is to make f negative. 

I shall group the effects of differential fertility and unequal male and female 
gametic gene frequencies together, since the former (PURSER 1966) has its effect 
through the latter. Of course any long-term differential fertility effects would 
come under selection. ROBERTSON (1965) discusses the consequences of the 
unequal frequencies which have a negative effect on f. Apparently BRUCE (1910) 
was the first to notice that differential frequencies in uniting male and female 
gametes produced a decrease in homozygotes and an increase in heterozygotes. 
Interestingly enough if there is random union of male and female genes they are 
independent, but there is an excess of heterozygotes over Hardy-Weinberg fre- 
quencies (also independent) when the two frequencies differ. If only sampling 
differences are involved then there is no problem, as was pointed out previously, 
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when small sample methods are used. If a consistent difference in gene frequen- 
cies between the sexes is suspected, as might result from differential selection, 
then a comparison of the gene frequencies of males with that of females provides 
the most pertinent information. Differential fertility is more difficult to study and 
requires an analysis of parents and children. 

Assortative mating will make a positive contribution to f and disassortative 
mating will make a negative contribution to f. The analyses considered herein 
really provide no direct information on the mating system. An analysis of mates 
is required to produce direct information on this point. It is a simple matter to 
adapt these small sample methods to the analysis of mates. 

Mixtures of subdivisions do not always have the effects imputed to them. I shall 
consider the two types, isolates within subpopulations (model 2) and areas of sub- 
populations (model 3 ) .  There can, of course, be many types of isolates within 
subpopulations. First, consider the isolates to be families, i.e. parents and children 
and possibly some other close relatives such as grandparents. The analysis can 
be partitioned accordingly to etimate a:, and u:~ and the correlations (model 2). 
Now, if there is, in general, random mating in the subpopulations, the members 
of the f-milics will be much more related than they are inbred, and f l  = (P-Gl)/ 
(l-Gl) could be reasonably negative, say -.15. On the other hand immediate 
family members will also be much more related than member; of different 
families, and f 2  = (&-&)/( 1-&) will bi: reasonably positive. The net effect of 
- ignoring family structure is to average these two f's, f = (F-%)/(l-G) where 

is an average of 0, and &, but f will still be zero o r  slightly negative unless 
parents are more related than random pairs of individuals in the subpopulations. 

Next consider the isolates to be inbreeding units with no exchange among 
them. With random mating within isolates fl  = 0, but bzcause of drift or other 
effects among isolates f2  can be reasonably positive. In this case to igno,re the 
isolates leads to a positive f as an average. I t  does not take a great deal of inter- 
change (migration) among the isolates to undo this positive effect, as we shall 
see, and the question of f positive osr negative still reduces to whether mates are 
more- o r  less-related than random members in the subpopulations. One would 
want to take account of inbreeding isolates in any case. 

It is at the subpopulation level that subdivisions probably cause the most 
trouble in practice. Some subpopulations may have been from a relatively recent 
common origin, these being more related than more distantly separated sub- 
populations in time. Of course historical information is required to take account 
of these matters in an analysis, Migration tends to make populations in close 
proximity more alike than are those more distantly separated in space. It is much 
more important to take account of these differences than those within subpopu- 
lations. As was shown with model (3) if certain groups of subpopulations are 
more closely related than others then to ignore this is to work with less than the 
total variance available, with the correlations being correspondingly reduced. 

The extreme of subdividing is to consider the population a continuum with 
relationships indexed according to distances, as did MORTON, MIKI and YEE 
(1968) in fitting distance models. For codominant genes considered herein one 



698 C. C. COCKERHAM 

can apply methods P or B for genes separated by distance d, with some reason- 
able grouping of genes into classes of distances (1969). Here we consider pairs of 
genes and not genotypes as did MORTON, MIKI and YEE (1968). Let d = 0, 1, 
2, . . . I where 0 is for genes with themselves, 1 is for genes in the same individual, 
and d > 1 for genes separated according to the distance structure with I corre- 
sponding to the greatest distance. Then for method 3, 

and 
B o  E 0, I Bi z= ( l - F ) w ,  I BZ = ( ~ 4 )  

A 
P =  1 -B,/B,, 1 - B a / L h i ,  1 < d < I .  

A comparable adaptation of method P is 

P =  (PI - P ~ ) / ( P O  - p i ) ,  &= (pa- P ~ > / ( P O  - pi), 1 < d < 1 .  

Having estimated the correlations, then, one may fit distance models. Alterna- 
tively, one may use different groupings for which to fit migration models. Note 
that the correlation of genes separated by the greatest distance is set to zero and 
that the other correlations are relative to this correlation if it is not zero. There 
is some difficulty, in practice, in obtaining the local, fo ,  and overall mean, 7, 
correlations-utilized in some detail by CROW and MARUYAMA (197l)-since 
quadratic functions of gene frequencies must also be estimated. While these 
authors were considering multiple alleles, the same principle applies. Implicit 
in their formulations is that the mean gene frequency, pi, over replicates of their 
global finite system is zero and consequently 7 pz, = 0, which is inherent in the 
assumption of an infinite number of neutral alleles. 

The obvious long-term effects of migration are to reduce F and 0 from what 
they would be without migration. The immediate effect of a migrant gamete on f 
is nil. The immediate effect of a migrant individual on f is to increase f very 
slightly and this effect is lost with mating and death of the migrant. The theory 
of isolation with migration has been considered in detail by WRIGHT (1943,1946 
and 1951), by MALBCOT (1948,1967) and more recently by MARUYAMA (1970). 

I l i  

With relation to MARUYAMA’S (1970) island model, using his f o  and fl, 
F = 0 = fo, &, = f l  

and what we would estimate as 6 is (fo-fl)/( 1-fl) . For his other models 6, is 
the average of all his f ’ s  save f o .  

The effect of isolation at equilibrium, using MARUYAMA’S island population 
measures, is 

@ 

where N is size of subpopulation (not sample), nN is the size of the total popu- 
lation, m is the migration rate, and U is the mutation rate. (MARUYAMA’S formu- 
lations for the island model need a slight modification due to the finiteness of n 
but are accurate enough for present purposes.) For U < m and both small 

0 = 1/[1,+4Nm(n+l)/n] s 1/(1+4Nm) if n large. 
The last expression was given by WRIGHT (1943). While for purposes of fixation 

- 
(fo-fl) / ( 1 - f l )  = 1 / [2N/ ( 1 -U) ( 1 -m) ( 1 -m-2m/n) -2N3.13 

- 
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one migrant gamete per subpopulation per generation is sufficient to make the 
population behave as one panmictic unit (or slightly larger), this rate of migra- 
tion does allow considerable differentiation among subpopulations, 0 slightly less 
than 1/3. A migrant individual per subpopulation per generation reduces 6 to 
something less than 1/5 and so on. For other models, (MARUYAMA 1970), the 
average differentiation among subpopulations is even larger. However, it cer- 
tainly does not take a lot  of migration to make 0 very small. The same principle 
is involved with inbreeding isolates within subpopulations with interchange or 
migration of individuals among isolates. It does not take much interchange among 
them to make f very small. I t  would appear that the mating system within 
many human subpopulations would tend to make f very slightly negative. 

S. WEIR. 
Many helpful suggestions and comments were made by DRS. PETER M. BURROWS and BRUCE 
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