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ABSTRACT 

A stable polymorphic equilibrium may be established at a selectively- 
neutral gene locus which controls the extent of recombination between two 
other selected loci. The condition for the existence of the stable polymorphism 
is analogous to heterozygous advantage. The heterozygote at the modifying 
locus should produce a recombination fraction allowing the greatest linkage 
disequilibrium. In the models treated this has the effect of producing the 
highest mean fitness. The relationship of these findings to general problems of 
coadaptation is discussed. 

a recent paper one of us (FELDMAN 1972) made an analysis of a model, 
Ifriginally due to NEI (1967,1969) , for the control of linkage between two gene 
loci by a third locus. Briefly, suppose A / a  and B/b are two linked loci at which 
selection occurs. The modifying locus M / m  is such that with genotypes MM.  
M m  and mm the recombination fractions between A / a  and B/b are rI, r2 and r3, 
respectively. Suppose further that the recombination fraction between M / m  and 
A / a  is r for each genotype at the M / m  locus and that this locus is selectively 
neutral. That is, the viability of a given A/a-B/b genotype is the same for each 
genotype at the M / m  locus. 

In the analysis made by FELDMAN (1972) the selection schemes chosen for 
A / a  and B/b  were those for which the two-locus equilibrium theory is known, 
namely the additive, multiplicative and symmetric viability models. It was sup- 
posed that a small frequency of ‘m’ arose at a stable (in the two-locus sense) 
equilibrium of the MAB,  MAb,  MaB, Mab system and the conditions for ‘m’ to 
increase, namely for the initial equilibrium to be unstable in the three-locus 
sense, were determined. 

It was shown that provided MAB,  MAb,  MaB and Mab are in linkage dis- 
equilibrium at the initial equilibrium, then ‘m’ will increase if and only if r2 < rl, 
so that linkage between A/a  and B/b will then be tightened, On the other hand, 
if the initial state was one of linkage equilibrium the leading stability eigenvalue 
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was unity and no advance of the ‘m’ gene was possible. It was pointed out, with 
reference to the former case, that selection may occur at a locus at which the 
genotypes are equally fit. That is, a selectively neutral gene may be selected by 
virtue of its effect on the other loci rather than on viability or fertility. It was 
also pointed out that in the special cases examined the mean fitness was a decreas- 
ing function of the recombination fraction in the initial state of disequilibrium. 

It has since been shown by KARLIN and MCGREGOR (1972) that when mating 
is random, what determines the fate of selectively neutral modifiers is the mean 
fitness of the population. For a modifying gene to increase from its initially low 
frequency, it must reduce a parameter of which the equilibrium mean fitness is a 
decreasing function. This result of KARLIN and MCGREGOR encompasses a much 
wider class of models than just linkage modification. 

When heterozygote advantage at the modified loci is sufficiently strong FELD- 
MAN and BALKAU (1 972) have also shown that, as with random mating, a selec- 
tively neutral recombination reducer is favored in the case of pure selfing. When 
the modifiers are not assumed to be neutral in the models described above the 
results are not usually as clear-cut. Examples include the classical case of evolu- 
tion of dominance (FELDMAN and KARLIN [1971]) and segregation distortion 
( PROUT, BUNGAARD and BRYANT [ 1971 3 ; THOMSON and FELDMAN [ 19 741 ) . 

Clearly the model of linkage modification by a selectively neutral modifier, as 
described in the first paragraph above, is in a sense symmetric in the alleles M 
and m at the modifying locus. Thus if mAB, mAb, maB and mab are the original 
chromosomes which are in linkage disequilibrium when the new allele M arises, 
M will increase if r2 < r3 just as, in the corresponding situation, M increased, 
when it was rare, if rz < rI .  Clearly, if r, < rl and r2 < r7, and the stable equilibria 
for the two-locus system A / a  - B/b  are at linkage disequilibrium, then all the 
boundary equilibria of the full three-locus system M / m  - A / a  - B/b  are un- 
stable. In this paper we confine ourselves to two of the examples treated by 
FELDMAN (1 972), namely the LEWONTIN-KOJIMA (1960) and the WRIGHT 
(1952) version of the symmetric viability model (see KARLIN and FELDMAN 
[ 19701 for details on this model). 

The consequences of the analyses are, we believe, very interesting for evolu- 
tionary theory. The natural inference to draw is that a stable interior polporph-  
ism exists. We describe two classes of such polymorphisms in the case where 
rl = r3 (so that the alleles M and m are indeed symmetric) and outline the con- 
ditions under which they are stable. We would like to characterize these equilibria 
as being caused by a recombination balance. In general perhaps the term “modi- 
fier balance” might be more appropriate. These isolated polymorphisms are stable 
in spite of the neutrality of the M / m  locus. 

2. Recursion System 
Let I be the recombination fraction between the modifier locus M / m  and the 

modified loci A/a-B/b with the order M/m-Ala-B/b. The genotypes M M ,  M m ,  
and mm are responsible for  the Ala-B/b recombination fractions rl, r, and r3, 
respectively, in the models we shall consider. The chromosomes MAB, MAb,  
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MaB, Mab, mAB, mAb, maB and mab have frequencies xl, xz, . . . x8 respec- 
tively, and the selection matrix is in general I 1 wii/ I with wij the relative viability 
of the genotype having chromosomes i and j .  Since the modifier locus is neutral 
this 8 x 8 matrix consists of four identical 4 x 4 blocks. The recursion system 
relating x',, in the next generation to xl, is then given by (1)  below. 

fix', = xlwl .  + r [x2x5w25+x3x5w35+x4x5w45-w17x1x7-w1~x1x8-w1~xlx~l 
+ rl [x2x3w23-u)14x1x41 (1) + rz [x2z5w25+x2x7w2 7 - ~ 1 ~ 8 w 1 8 - ~ 1 ~ 6 w 1 6  I 

r7-2 [ ~ w l 6 ~ 1 ~ 6 - ~ ~ Z 5 ~ 2 ~ 5 + ~ 3 ~ 6 ~ 3 6 + ~ 1 ~ 8 ~ 1 8 - ~ 4 ~ 5 ~ 4 5 - ~ 2 T ~ Z ~ T 1  

where 

and 
w = I: z wijxgxg 

% I  

wi = I: W i j X j  etc. 
i 

The product rrz arises because we assume that there is no interference. The 
corresponding transformations for the other frequencies are given in FELDMAN 
(1972). 

Throughout this paper we shall consider only the case where the selective 
regime at the A/a-B/b loci is that of symmetricviabilities, as discussed by LEWON- 
TIN and KOJIMA (1960), BODMER and FELSENSTEIN (1967) and KARLIN and 
FELDMAN (1970), namely 

A B  Ab aB ab 
AB 1-8 1-p l-y 1 

Ab 1-p l-a 1 1-Y 

aB 1-Y 1 l--a! 1-p 

ab 1 l-y 1-p 1-8 

Under the hypothesis of selective neutrality at the M / m  locus, (2) is the matrix 
in each of the four 4 x 4 blocks of the full three-locus fitness matrix. The two 
cases of ( 2 )  we shall consider here are the LEWONTIN-KOJIMA model a = 6 and 
the WRIGHT model 2(p+y) = (I! 3- 8. For both of these models the stable equilibria 
of the two-locus system we consider are symmetric, i.e., at the equilibria A B  and 
ab have the same frequencies, as do A b  and aB. The complete stability conditions 
for these may be found in KARLIN and FELDMAN (1970). 

In terms of the three-locus model these equilibria are on the boundaries of the 
frequency simplex. Thus when (I! = 6 the two-locus theory produces the sym- 
metric equilibria, with 1 = 2(p+y-S), 

%, & = f, = f4 = f, 

when only M is present, with f, = 56 = f, = f8 = 0, and 
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( 3 4  f, = f6 = f, = f, = y4 

In the WRIGHT model 2 = 2(p+y) - (cu+S) = 0 the corresponding equilibria 
when only m is present, with Si.l = fZ = Si., = 

are, with k = 6-a: > 0,  

= 0. 

when only M is present, with Si., = f 6  = f, = Si8 = 0, and 

(4b) f,=& = % +T'i - 1 +- 1 6r23 , & = & = i / - &  
k kZ 

when only m is present, with fl = f2 = f3 = 2, = 0. 

Basically, the stability condition* for (3)a is that the quantities under the 
square roots be positive, i.e. r1 < (1 /8) .  If r1 > (2/8), (3) b is stable and r3 > (2 /8 )  
makes (3)d stable. For the equilibria (4)a and (4)b the condition for stability 
is that rl and r3 be smaller than a certain constant, expressible in terms of the 
selection coefficients and given by KARLIN and FELDMAN (1970). These facts do 
not give the whole story; with strong single-locus underdominance, for example, 
(3)a and (3)c may not be stable in the whole interval while in both models 
unsymmetric equilibria may exist. We shall not consider these here as they are 
unstable. 

3. Recombination Balance: Interior Three-Locus Equilibria 
The result of FELDMAN (1972) for the cases of the previous section are that 

when either of (3)a or (4)a is stable in the two-locus sense it is unstable in the 
three-locus sense provided rz < rl. Similarly when either of (3)c or (4) b is stable 
in the two-locus sense it is unstable in the three-locus sense provided rz < r3. 
Insofar as (3)b and (3)d are concerned, in the seven-dimensional frequency 
simplex there is a curve of equilibria joining these two points and parameterized 
by pu, the frequency of M .  It appears that when (3) a and (3) c are unstable (in 
the three-locus sense) there is convergence to this curve, the precise point depend- 
ing on the starting conditions. Throughout the rest of this paper we assume that 
rl = r3 and that, when a: = 6, rI < (1/8) so that (3) a and (3) c are stable as two- 
locus equilibria in the LEWONTIN-KOJIMA case. In the WRIGHT model, when 
I = 0, (4)a and (4)b are assumed stable as two-locus equilibria. Finally, con- 
sidered as three-locus equilibria, we assume that all of these are unstable, i.e. 
rz < rl. We are now interested in the behavior of the system (1) as a bona fide 
three-locus system. 

Consider first the case, (Y = 6. Since MM and mm produce the same recombi- 
nation fraction rl between A/a and B / b  it might be expected that the population 
would move towards a stable equilibrium at which the frequencies of chromo- 
somes MAB, MAb, MaB and Mab are, respectively, equal to mAB, mAb, maB 
and mab; i.e., xl = x,, x2 = x6, x3 = x7, x4 = xs. Indeed it is quickly seen that two 

* Stability in this paper means local stability. 



RECOMBINATION BALANCE FOR NEUTRAL MODIFIERS 717 

such equilibria exist and, as expected, are of the form (3) a but with recombina- 
r1+r2 tion fraction -- , namely, 2 

Similarly in the WRIGHT case 1 = 2(p+y) - (a+S) = 0 the same reasoning 
produces the equilibrium, with k = 8 - Q: > 0. 

f 2 = & = 2 3 = & =  % - & .  ( 6 )  

With Q = S and rl = r3 > (1/8), equilibria (3)b and (3)d are stable in the 
two-locus sense. From (1 ) with (2) it is easy to seen that these two boundary 
equilibria are joined by the curve of equilibria specified by 

(7)  

where pnf 
This approach is of limited usefulness and in order to discover whether these 

are the only equilibria we make use of the transformation used by FELDMAN, 
FRANKLIN and THOMSON (1973) for the study of the three-locus symmetric 
viability model. We change the coordinates from xi to ui where 

1 - pm is the frequency of M .  
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(This transformation is seen to be an extension of that used by KARLIN and 
FELDMAN [I9701 for their study of the two-locus symmetric viability model.) 

It is easy to see that the three-locus viability model given by four blocks identi- 
cal to (2) is a particular case of the symmetric viability three-locus model. In 
the present case, however, an additional recombination parameter is involved. 
Even so, it is natural to ask whether there are symmetric equilibria in the present 
setup, i.e. equilibria with fl = f,, f, = f,, f3 = f,, & = f5. These are the type of 
equilibria to which the study of FELDMAN, FRANKLIN and THOMSON (1973) is 
devoted. In terms of the U’S these are of the form Cl = Liz = ii3 = Li4 = 0. It will 
be seen that the search for such symmetric equilibria in the linkage modification 
context produces a great deal of useful information about the equilibrium 
behavior of the model. 

3A. LEWONTIN-KOJIMA System a =S; rl < - = 1 p+y-s 
4 .  8 

Rewrite the recursion system in terms of the U variables. To obtain the sym- 
metric solutions set the variables ul, U , ,  u3 and u4 equal to zero. We are left with 
three simultaneous cubics in u5, us and u7 as follows 

1 + [ S - 21 (a) w*u5=u5[1 - - - - - - - r ( l - ~ ) ]  S P Y  
4 4 4  2 

(b) w*u,=u6[l  - - - - - - - (  r-+r2-2rr2) (I-$>] + 
4 4 4  

r+r2-2rr2 

S P r  1 where w* = 1 ------+-uuZ, is written for  ZiJ, with u1 = uz = u3 = u4= 0. 

(11) .fl = .& f3 = f-, 25 f, = f 7  = fs 1/l8 

which lies on the curve (7). There cannot exist solutions of the form zi, # 0; 
22, zi, = 0 unless, from (lO)a, r = 0. Similarly, unless rl + rz - 2rr2 = 0 there 
are no solutions with Lis # 0 and ii, = ii, = 0. From (10) c,  however, there are 
solutions of the fo rm ii, = iiG = 0; ii, # 0, and these are given by 

4 4 4 8  
Clearly one solution of (10) is 22, = Lis = zi, = 0, or 

U , =  * V l  - 8 ( r 1 + r 2 ) / 2 ) / l  (12) 
which from (9) are seen to be the points ( 5 )  obtained previously. 

It is obvious that unless special relations hold among the parameters in (IO) 
no solutions with exactly two of U,,  U , ,  u7 non-zero are possible. It remains to 
determine those solutions, if any, with all three variables non-zero. To this end 
make the further transformation 

(1 = U&?/u5 7 f?. u5U?/u6  (3 = u5%/u7 * (13) 
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Then, since us = t1&, from (10)a we have 
-r ( 1 -y /2)  + ti [1/8 - ry/21 

&/8 
t z  =- 

1/8 - (ri+rz 1 / 2  - &L/8  - 
and from (1  0) c we have 

t 3  = ~ 

(r2-rl)/2 

- 1/8 - (r1+rz)/2 + r ( I - y /2 )  - t,[1/8 - ry /2]  
( rz -rd /2  

L(b'8 - ry /2) t : /8  + 
{ 1 [ ( r+r2-2rr2) ( 1 -/3/2) - r ( 1 - - y /2 )  3 /8 - [ 1/8 - ry/2] 

Finally, using (14) in (10 )  b we obtain the quadratic equation in & 

719 

(14) 

For fixed r2 > 0, this quadratic is seen to have real roots in an interval of r 
values including r = 0. Now given any real root of ( 1  6 )  we determine & and & 
from (14) and (15) and then ii,, ii,, ii7 from the fact that fi; = t2&, 72," = .$& and 
iit = Therefore the valid roots must have il, j z  and i3 all with the same sign. 
We now discuss the case r = 0 since from this case we learn quite a bit about 
the case where r is small and positive. 

Special Case r = 0. 

us = U? = 0, u5 # 0. They are of the form 

" &  A A  

Clearly, when r = 0, from (10)a there is a continuum of equilibria with 

5 1  ZZZ xz = 5 7  = x8 % (1+&!5) 

2 3  = 5 6  = 5 4  = 5 5  = % (1-u5) (17) 

with -1 5 u5 I 1. In addition to this curve, the curve ( 7 )  and the points (12 )  
there are boundary equilibria given by 

(18)  

f , = f 2 = f  7-2.8=0. - 
Points (19) a and ( 19) b are to be expected since when r = 0, the M / m  and A/a 
loci are superimposed, and in effect we have a two-locus situation. Thus we might 
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write A* for M A  and a* for ma in which case (19) a represents the usual LEWON- 
TIN-KOJIMA equilibria for the two-locus model having chromosomes A*B, A*b, 
a*B and a*b. Similar considerations apply to (19)b. 

We shall have more to say about (1 9) a and ( 19) b in Section 4, but at this stage 
we point out that when r is positive and sufficiently small these boundary equi- 
libria move into the interior of the simplex producing four non-trivial poly- 
morphic equilibria. 

For very small r it can be seen that (16) has one root, .& very close to zero, but 
positive, and the other, i:, substantially positive. Now under our hypothesis 
r2 < rI and 1/8 > ~ “-Fr2 . Therefore, for r small enough, from (15) the value of 
t3 corresponding to & is negative. This is inadmissable since all Z’s must have the 
same sign. Thus there may exist a maximum of four additional equilibria with 
d, # 0, 6, f 0, 6, # 0 when I is small, and this maximum is attained. (It is 
interesting to compare this with the three-locus symmetric viability made1 where 
eight such equilibria exist.) 

It is possible to present a more detailed analysis of the existence conditions 
for the equilibria from the roots of (1 6 )  in terms of (1 0) a, ( 10) b and (IO) c or  
(14) and (15), as well as all of the parameters. An analysis of this type is pre- 
sented elsewhere by FELDMAN, FRANKLIN and THOMSON (1973) for the fifteen 
symmetric equilibria of the three-locus symmetric viability model, so we do not 
present such detailed arguments here. Some elementary facts are worth noting, 
however. The first is that the condition for stability of the central points (5) is 
(see section 4) 

4 2. 

lD2 [4r-4r~+z-~~] 4- r ( r f r 2 - 2 ~ ~ 2 )  [ (1 - y / 2 )  (1-p/2) -4/3ysz] > 0 (20)  

where D2 = 1/16 [l - 4(r1+r2)/Z]. Now if (r+rz-2rr2)/3/2 > 1/8 > ry/2 or if 
ry/2 > Z/8 > (r+r2-2rr2) p/2, then from (1 6) ,  (14) and (15) , it is quickly seen 
that no roots of (16) can be valid. On the other hand if Z/8 > ry/2 and Z/8 > 
(r+r2-2rr2)/3/2 and (20)  is violated, there are two positive roots of (16), the 
larger of which 2 is valid from (14) and (15) and the smaller one invalid.* 
The larger root produces four valid symmetric equilibria which exist when the 
central points ( 5 )  are unstable, namely when r is small. For values of r slightly 
larger than that allowing stability of ( 5 )  there are no valid symmetric equilibria 
except (5), and when ry /2  and (r+r2-2rr2) p/2 are both greater than 1/8, neither 
of the resulting negative roots of (16) is valid. To  summarize, for the modifier 
tightly linked to the modified loci, four symmetric equilibria and the central 
points ( 5 )  coexist, with the latter unstable. These four extra symmetric points 
cease to exist as r increases and ( 5 )  become stable. 

3B. WRIGHT’S Model 2(P+y)  = (Y + 6, k = 6 - (Y > 0. 
We have already remarked that (4)a and (4)b are the equilibria in this case 

corresponding to the boundaries where M and m, respectively, are fixed. With 
rI > r2 these are unstable in the three-locus sense. In addition there is the interior 

* A valid Q’, is one for which the corresponding r-values are between zero and 1. 
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equilibrium (6). In the same way as before we proceed to seek the symmetric 
equilibria. Using (9) we rewrite (1) and set u1 = u2 = u3 = u4 = 0 to obtain 
the symmetric equilibria. We obtain 

with 
- 0r+6 - p+y -ku7 w = l - -  - - 

Note that these are no longer cubics and have a somewhat different structure 
from that in the LEWONTIN-KOJIMA case. From (21)c there is no solution with 
0, = Lis = 0, = 0. Also there are no solutions with Zi, # 0 and 06 = 0, = 0 or 
with Lis # O  and u 5 = u 7 = 0 .  From (21)c, however, there is a solution with 
C7 # 0 and 0, = f i e  = 0. In fact, there are two such solutions but the admissable 
one is 

8 4 4 -  

which is precisely the same as (6). Finally we look for solutions of the form 
# 0, 0 6  # 0, C7 # 0. Some elementary algebra on (21)a and (21) b, respec- 

tively, produces the relations 

and 

(24) 
~5 - ku7/8 - ( r f rz -2~~2)  (1 -/3/2) 
U6 

Combining these we have the quadratic in U, 

___- 
k/8 + ( r+rz-2rr2) u7/2 

[ r (r+rz;2rr2) yp k2 k(2r+r2-2rrz kz 
Uf - -] 64 + U7 [ --8--- I+%- 

For T- small the roots are clearly real and the negative one is admissible while the 



722 M. W. FELDMAN AND B. BALKAU 

positive is not. Substituting the admissible root, a,, into (21)c we obtain an 
equation of the form 

(26) 

with g ( & )  = ___- + (q) Li7. Substituting back into (23), say, we find 

g(2.i) 
u5 (rl-rz) /2 

U6 = 

k (1-2,) 
8 

It is not difficult to show that g ( & )  is negative near r = 0, so that this is a valid 
expression for 6;. For the admissible i2, value we therefore have two additional 
symmetric equilibria in a range of r values including r = 0. 
Remark I :  In the same way as for the LEWONTIN-KOJIMA model when T- = 0, the 
admissible roots are on the boundaries and are functions of rz only. When r2 = 0 
as well these boundary equilibria have the fo rm 

(a) %=&=%, (b) &=&=%, (c) &=2,=1/, (d) ?,=&=%. (28) 

Remark 2: For both models 3A and 3B it is conceivable that additional unsym- 
metric equilibria exist (apart from those already mentioned in the analysis of 
3A). We have not analyzed these here. 

4. Stability of the Interior Polymorphisms 

FELDMAN (1972) showed that if rl = r j  equilibria (3) a, ( 3 )  c, (4) a, and (4) b 
are unstable in the three-locus sense if and only if r, < rl. We assume, of course, 
that these exist and are stable in the two-locus sense on their respective boun- 
daries. In the LEWONTIN-KOJIMA case this also entails that (3)b and (3)d are 
unstable in the two-locus sense and we assume that, in this case, the curve (7) is 
unstable. It remains to establish the stability properties of the equilibria (5) and 
(16) for the LEWONTIN-KOJIMA case and (6) and (25) for the WRIGHT model. 
We discuss mainly the former since the arguments are the same for the latter. 

Stability is taken locally by linearizing (1 ) in the neighborhood of the appro- 
priate equilibrium and evaluating the eigenvalues of the resulting matrix. First 
consider the more central equilibria ( 5 )  for the LEWONTIN-KOJIMA case, (6) for 
the WRIGHT model. The 7 x 7 local stability determinant breaks into a quartic 
and a cubic. The eigenvalues from the latter are simply those for the stability, 
in the two-locus symmetric viability sense, of these equilibria but with r* = 
( rl+rZ) /2 as recombination fraction. Since ___ rl+rz < rl, all three eigenvalues 
in both models will be less than unity. 

The remaining quartic breaks into two quadratics, one of which has both roots 
less than unity if and only if rz < rl. The remaining quadratic produces an inter- 
esting finding. In the LEWONTIN-KOJIMA case the larger eigenvalue is less than 

2 
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unity and hence the equilibrium is stable if inequality (20) holds. In the WRIGHT 
model the corresponding condition is, with k = 6 - a > 0, 

[4r-4rr2+~,-rl] + r[r+r2-2rr,] [ 1 - !?h - ?!!?&?E 1 > 0 (29) 
-kB 

4 2 k 

where 

Clearly when r = 0 these conditions reduce to the condition r, > rl. Hence when 
r = 0 then (5) and (6) are unstable for their respective models. Further, when 
r = 0 it is easy to show that the condition rl > r2 ensures that the boundary 
equilibria (19) a and (19) b are stable in the LEWONTIN-KOJIMA case and simi- 
larly in the WRIGHT model. I t  is clearly necessary for the instability of (5) and 
(6) that r < -- (since the last terms in (20) and (29) are positive). 

v -7 

4 ( 1-r~) 
The other symmetric equilibria (16) and (25) are more complicated to analyze 

but we believe the main properties have been uncovered. We report only the 
LEWONTIN-KOJIMA case here although the WRIGHT case can be done in a similar 
way. The stability determinant factors into a cubic and two quadratics. The cubic 
has not been shown to have real roots although fo r  r small it does, since when 
r = 0 it factors producing the stability conditions 1 > 0, r,  < 1/8, r1 > r,, all of 
which were assumed anyway. In  fact, if the cubic has real roots they are all less 
than unity in absolute value if and only if the derivative of the quadratic (16) 
evaluated at the equilibrium is positive. This is certainly the case fo r  the larger 
positive root of (16) in its range of validity, namely when (5) are unstable. 

One of the remaining two quadratics can be shown to produce real eigenvalues 
less than unity in modulus if rl > r2. The other quadratic produces the stability 
condition 

This condition is completely analogous to, and when r = 0, is identical to con- 
dition (4.2) of KARLIN and FELDMAN (1970) for the non-existence of the “gap” 
of instability originally discovered by EWENS (1968). As was the case in that 
study, overdominance at each of the Ala and B/b loci is sufficient to ensure the 
truth of ( 3 0 ) .  In summary, when 1/8 > rl > r,, and there is overdominance at  
the separate modified loci, the symmetric equilibria resulting from (16) are 
stable for r small. These equilibria are each characterized by high frequencies of 
the two complementary pairs of chromosomes. When r is larger, the central 

symmetric points with effective recombination fraction ____ r1+r2 are stable. 
2 

DISCUSSION 

The existence of the stable interior polymorphism in the models treated here 
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confirms predictions based on the instability of the boundary equilibria pre- 
viously proved by FELDMAN (1 972). The instability of the boundary equilibria 
does not depend on the degree of linkage of the modifier to the modified loci, but, 
as has been shown here, the polymorphism attained does. When the modifier is 
tightly linked to the modified genes, the polymorphisms are characterized by two 
pairs of complementary chromosomes in high frequencies, with the others in low 
frequencies. This might have been predicted from the standard two-locus theory 
of KARLIN and FELDMAN (1970), for when r is zero the model essentially is a 
two-locus symmetric viability model. When r is large a more evenly distributed 
polymorphism results. 

Polymorphisms for genes which affect the fitness of other genes have been 
studied in connection with epistatic two-locus theory, evolution of dominance 
and a number of other situations. The linkage modifiers we have discussed have 
no effect on the fitness of their carriers-they are selectively neutral-yet through 
their effect on the linkage disequilibrium at the modified loci they are eflectively 
selected. We propose to call this type of selection secondary selection, as opposed 
to primary selection which occurs for genes affecting the fitness of their carriers. 
Secondary selection might just as well be called induced selection, as the changes 
in frequency of the genes at the modifier locus are induced by the selection going 
on at the primary loci. This stands in contrast to the situation of evolution of 
dominance in which the selection is imposed by the modifier locus on the modified 
locus. As discussed by KARLIN and MCGREGOR (1974) this really makes it 
impossible to distinguish the primary from the secondary locus in the evolution 
of dominance situation. In the cases discussed in this paper the recombination 
fraction is lower with a heterozygous modifier than with either homozygote. We 
could describe this as induced or secondary overdominance. 

I t  is not necessary that secondary overdominance always involves a parametric 
reduction by the modifier heterozygote compared to the modifying homozygotes. 
It occurs in the models we have examined but we conjecture that this is because 
the basic two-locus polymorphisms are such that stable linkage disequilibrium 
exists only for tight linkage between the selected loci. Now, except for the unsym- 
metric equilibria of KARLIN and FELDMAN (1970), there are no examples in the 
literature of stable linkage disequilibrium for relatively loose linkage. If such an 
equilibrium came from some asymmetric selection model it is conceivable that 
“overdominance” would have the opposite meaning to the above. Thus looser 
linkage in the heterozygote than homozygotes at the modifier locus might produce 
the polymorphism. An example of this is discussed by THOMSON and FELDMAN 
(1974) in connection with a model of segregation distortion due to PROUT, BUN- 
GAARD and BRYANT (1973). The meaning of the term L‘~~erdominan~e” in this 
context will depend on the selection regime, degree of recombination and type of 
equilibrium considered at the modified loci. 

In the case of evolution of dominance the order of magnitude of selection is the 
mutation rate at the beginning and the square root of the mutation rate at the 
conclusion (unless the latter is algebraic). On the other hand, with secondary 
selection the order of magnitude of the selection depends on the magnitude of the 
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parametric changes caused by the modifier locus. These are prombably character- 
istic of the parameter. Thus one might expect smaller changes in mutation modi- 
fication than, say, in migration or recombination modification. (The first two 
have been studied by BALKAU and FELDMAN [I9731 and by KARLIN and 
MCGREGOR [ 19 731. ) 

One interesting corollary of the arguments presented in this paper pertains to 
speculations on the origin of inversion polymorphisms, such as the discussions 
by HALDANE (1957) and DOBZHANSKY (1970, p. 145).  HALDANE’S condition 
for the existence of such polymorphisms was that “heterozygosis at any locus 
concerned in the genetical polymorphism should have a greater effect in raising 
fitness when the other loci concerned are heterozygous than when they are 
homozygous.” In terms of the two-locus LEWONTIN-KOJIMA model, for example, 
this would seem to mean that the difference in fitness between AaBb and AABb 
should be greater than the difference in fitness between AaBB and AABB. When 
a = 6, /3 = y, HALDANE’S condition merely entails that 2/3 > 6, or in the termi- 
nology above 1 > 0. 

Now 1 > 0 is the condition that the original equilibria with b # 0 exist. We 
have shown here that when these equilibria are stable a recombination balance 
can be set up if the recombination between heterozygotes (measured by r2) is 
less frequent than between homozygotes (measured by rl) . This balance is, we 
believe, completely analogous to the polymorphism between inversion and stand- 
ard chromosome forms. In other words HALDANE’S argument is not complete. 
Indeed, it is conceivable under his condition that an equilibrium with D = 0 be 
stable (for loose linkage) in which case linkage modification would not proceed. 

The completion of these arguments of HALDANE is a quantitative expression of 
the qualitative arguments expressed by LEWONTIN (1967) and discussed by 
DOBZHANSKY (1970, p. 145) that the relevant dimension in the dynamics of 
change of inversion frequency is the extent of disequilibrium, not necessarily the 
extent of heterosis. 

In the study of KARLIN and MCGREGOR (1973) of the models discussed here, 
and of a number of others, it has been shown that the properties of the mean 
fitness at equilibrium in fact determine the fate of modifying genes. The recombi- 
nation examples studied by FELDMAN (1972) had the property that ab/&- > 0 
at the stable equilibria where modification occun-ed. Thus, although the modifier 
did not alter the fitness of its carrier, for it to increase, it had to increase the mean 
fitness of the population. In this sense, then, we may even conceive of a gene 
which decreased the fitness of its carriers but still increased by virtue of secondary 
selection, i.e. its effect on population fitness. This would seem to provide an 
example of the “altruistic” gene discussed by HALDANE (1966). Although his 
discussion was mainly in terms of “social” animals, secondary selection may 
provide a more basic framework in which to view this idea. 

The above-mentioned new modifying principle enunciated by KARLIN and 
MCGREGOR (1974) has been shown by them to apply to many more models than 
the original linkage modification cases. In these cases, any mutation which 
decreases the fitness of its carrier but which sufficiently increases the mean 
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equilibrium fitness of the population we presume will increase, and such a 
mutant gene could well be called “altruistic.” We are currently investigating 
the details of this phenomenon. 

lating discussions, and for permission to see their unpublished manuscript. 
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