TABLE 3.
Results for scene recognition among three classifiers over UCM dataset.
Categories | ANN | XGBoost | AlexNet | ||||||
---|---|---|---|---|---|---|---|---|---|
Pn | Rc | F1 Scr | Pn | Rc | F1 Scr | Pn | Rc | F1 Scr | |
AG | 0.755 | 0.788 | 0.755 | 0.799 | 0.899 | 0.817 | 0.901 | 0.977 | 0.937 |
AP | 0.711 | 0.744 | 0.875 | 0.815 | 0.875 | 0.844 | 0.883 | 0.965 | 0.922 |
BB | 0.783 | 0.711 | 0.746 | 0.841 | 0.819 | 0.747 | 0.995 | 0.951 | 0.972 |
BH | 0.792 | 0.658 | 0.737 | 0.844 | 0.889 | 0.844 | 0.986 | 0.937 | 0.960 |
BD | 0.701 | 0.725 | 0.758 | 0.889 | 0.839 | 0.889 | 0.967 | 0.903 | 0.933 |
CH | 0.745 | 0.715 | 0.875 | 0.872 | 0.921 | 0.872 | 0.977 | 0.839 | 0.903 |
DN | 0.799 | 0.791 | 0.795 | 0.886 | 0.938 | 0.886 | 0.872 | 0.921 | 0.895 |
FR | 0.783 | 0.711 | 0.746 | 0.985 | 0.954 | 0.985 | 0.886 | 0.938 | 0.911 |
FW | 0.771 | 0.792 | 0.781 | 0.901 | 0.859 | 0.901 | 0.985 | 0.954 | 0.969 |
GC | 0.730 | 0.717 | 0.961 | 0.883 | 0.965 | 0.883 | 0.925 | 0.917 | 0.969 |
HR | 0.755 | 0.788 | 0.755 | 0.879 | 0.851 | 0.879 | 0.936 | 0.977 | 0.937 |
IN | 0.711 | 0.744 | 0.875 | 0.986 | 0.937 | 0.986 | 0.871 | 0.871 | 0.922 |
MR | 0.783 | 0.711 | 0.746 | 0.967 | 0.809 | 0.967 | 0.995 | 0.951 | 0.972 |
MH | 0.792 | 0.658 | 0.737 | 0.845 | 0.856 | 0.850 | 0.956 | 0.879 | 0.96 |
OP | 0.701 | 0.725 | 0.758 | 0.879 | 0.851 | 0.864 | 0.891 | 0.903 | 0.933 |
PN | 0.874 | 0.845 | 0.859 | 0.986 | 0.937 | 0.960 | 0.819 | 0.916 | 0.859 |
RV | 0.869 | 0.829 | 0.903 | 0.967 | 0.809 | 0.880 | 0.977 | 0.921 | 0.903 |
RW | 0.872 | 0.851 | 0.895 | 0.844 | 0.855 | 0.850 | 0.887 | 0.911 | 0.895 |
SP | 0.886 | 0.918 | 0.911 | 0.899 | 0.839 | 0.867 | 0.793 | 0.935 | 0.911 |
SN | 0.965 | 0.934 | 0.969 | 0.872 | 0.875 | 0.873 | 0.799 | 0.916 | 0.895 |
TC | 0.901 | 0.859 | 0.937 | 0.886 | 0.913 | 0.899 | 0.855 | 0.891 | 0.911 |
Mean | 0.893 | 0.881 | 0.922 | 0.922 | 0.911 | 0.915 | 0.923 | 0.915 | 0.946 |
AG, agriculture; AP, airplane; BB, baseball diamond; BH, beach; BD, building; CH, chaparral; DN, dense residential; FR, forest; FW, Freeway GC, golf course; HR, harbor; IN, intersection; MR, medium residential; MH, mobile home park; OP, overpass; PN, parking; RV, river; RW, runway; Sp, Sparse Residential; SN, storage tank; TC, tennis court; ANN, Artificial Neural Network; XGBoost, eXtreme Gradient Bossting. Bold values indicates proposed results (highlighed).