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ABSTRACT 

A model of the effect of gene flow and natural selection in a continuously 
distributed, infinite population is developed. Different patterns of spatial varia- 
tion in selective pressures are considered, including a step change in the en- 
vironment, a “pocket” in the environment and a periodically varying environ- 
ment. Also, the problem of the effect of a geographic barrier to dispersal is 
analyzed. The results are: (1) there is a characteristic length scale of varia- 
tion of gene frequencies, 1, = l /  4;. The population cannot respond to changes 
in environmental conditions which occur over a distance less than the charac- 
teristic length. The result does not depend either on the pattern of variation in 
selective pressures or on the exact shape of the dispersal function. (2) The re- 
duction in the fitness of the heterozygote causes a cline in gene frequencies 
t3 become steeper. (3) A geographic barrier to dispersal causes a drastic 
change in the gene frequencies a t  the barrier only when almost all of the in- 
dividuals trying to cross the barrier are stopped. 

PATIAL variation in the intensity of natural selection can play an important 
part in determining the genetic structure of natural populations. The differ- 

ence between the allopatric speciation theory proposed by MAYR (1963) and the 
sympatric speciation theories of PIMENTEL and STONE (1967) and others is the 
amount of flow which is necessary to prevent the genetic differentiation of two 
populations. In the allopatric theory a small amount of gene flow is enough to 
prevent the evolution of reproductive isolating mechanisms. The assumption for 
the theory of sympatric speciation is that if differences in selection pressures are 
large enough, then reproductive isolating mechanisms can evolve even in the 
presence of a large amount of gene flow. A quantitative analysis of gene flow and 
selection is necessary to determine the amount of divergence that can result from 
spatially varying selective forces. 

A second and perhaps more practical reason for developing a model of gene 
flow and selection is to increase our understanding of the causes of the observed 
spatial patterns of gene frequencies. One of the ways to measure the strength of 
selection in nature is to measure the rate of change in gene frequencies in a cline. 
HALDANE’S (1948) original work on this subject was motivated by the problem 
of measuring selection in Mus musculus and has been used by others to estimate 
the strength of selection in other natural populations (KETTLEWELL and BERRY 
1961). 

In this paper, I develop a model from a simplified set of assumptions about 
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gene flow and selection and relate the implications of the model to the theoretical 
work which has been done previously on the subject. Then, I go on to consider 
cases which have not been previously analyzed-specifically, the effect of reduced 
or increased heterozygote fitness and the effect of a geographic barrier to migra- 
tion. The last two topics will be discussed in relation to some observational data 
from the literature. 

ASSUMPTIONS 

The basic assumptions for the model are as follows: 
(1) A population is continuously distributed in a region and is allowed to vary 

( 2 )  The effects of genetic drift are ignored so that the gene frequencies after 

( 3 )  Generations in the population are discrete and non-overlapping. 
(4) A single generation is made up of three separate steps: mating and the pro- 

duction of offspring, natural selection, and the movement of individuals to 
other locations to find mates and begin the next generation. 

( 5 )  Mating and selection of the offspring take place at each location inde- 
pendently before the offspring disperse. 

(6) There are no genetic differences in dispersal patterns of individuals, and no 
mortality occurs during dispersal. 

{ 7) Only density-independent selection is being considered. 
The validity of assumption (1) depends on the particular population under 

consideration. This assumption would be true for organisms which are relatively 
evenly distributed in their habitat, such as animals in the intertidal community 
or  grasses in a field. I t  is not likely to be true for  organisms which have a very 
patchy distribution, such as insects living only in fallen logs in a forest. The 
restriction to one spatial dimension is strictly for convenience and the extension 
of the model to two or even three spatial dimensions is simple and straightforward. 
Assumption (2) is certainly untrue although it may be nearly valid when the 
effective population size is great enough at each location in the habitat so that 
drift is relatively weak. Certainly, the first extension of this model must be to 
include the effects of genetic drift. 

Assumptions ( 3 )  and (4) are the usual ones made in the development of popu- 
lation genetic models. Assumption ( 5 )  is equivalent to the assumption that the 
location of birth of an individual determines the selective forces which will act 
an it before it mates. This assumption is valid if most of the selection is acting 
a t  an early stage in the life cycle. If selection on the character of interest is also 
acting late in the life cycle, possibly affecting the choice of mates (sexual selec- 
tion), then a different assumption must be made, The selection acting would 
depend both on the initial and final locations of an individual. 

Assumption (6) will be valid when there is no difference in the ability of the 
different genotypes to disperse and when there is no differential habitat prefer- 
ence by the different genotypes. 

in only one spatial direction. 

mating are given by the HARDY-WEINBERG relation. 
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Also, I assume the region is infinite in extent. This is done for mathematical 
convenience and in any applications of the model the possible effects of the 
boundaries of the region have to be considered. The justification for this assump- 
tion is that it allows the examination of the effects of gene flow and selection 
without other complicating factors. 

THE MODEL 

We consider a single locus with two possible alleles ( A  and a ) ,  and describe the 
population by the frequency of A at  every location, x, and at every time, t ,  p ( x , t )  . 
This description is sufficient since we are ignoring the effects of density (assump- 
tion 7) .  Initially, let us consider relative viabilities of the form 

A A  : l+sy(x) 
Aa : I  
aa : l-sy(x) 

where s is a measure of the strength of selection and y(s) is a function which 
describes the spatial variation in selection intensity. We will not consider the 
possibility of y varying in time. We chose s so that the maximum of y(x)  is 1. At 
this point, s is not necessarily small, although most measured selective differences 
between genotypes are on the order of 5-10% or  less, except for lethals. 

Since we have assumed that mating and selection take place at  each location 
independently, we can use the usual formulae of population genetics for this part 
of the generation (CROW and KIMURA 1970). Therefore 

where p’(x,t) is the frequency of A after mating and selection but before dispersal. 
We describe the dispersal stage by a conditional probability distribution, 

M ( x , x ’ ) ,  the probability that an individual moves from i to x during the dis- 
persal stage. Since M(x,x‘) is a probability distribution in x, M(x,x’)  must be 
normalized in x. Also, since there is no mortality during dispersal, M(z ,x ’ )  
must be normalized in x’. 

j M(x,x’)dz? = 1, j M ( x , i ) d x  = 1 (3) 

where the range of integration is over the region of interest. 

is M(x,x-’)p’(z‘,t)dx’ so 
The contribution to p(x, t+h)  (where h is the generation time) of location rtJ 

W 

p(x,t+h) = M(x,x’)p’(x’, t)dx’ 
-CU 

Combining (2) and (4) we get the final equation for the model 

(4) 
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In this model p ( x , t )  is the frequency of A after dispersal and before mating. 
An alternative formulation of this model can be made in terms of discrete 

variables (x,) which represent discrete locations in the region of interest. The 
resulting model will be in terms of a sum rather than an  integral over all of the 
locations of interest but it is essentially the same model. The latter formulation 
has been used by HANSON (1 966) and by JAIN and BRADSHAW (1966) to calcu- 
late results in some special cases. 

In this paper, we will be concerned with the equilibrium solution to ( 5 )  where 
p(z,t+h) = p ( x , t ) .  The question of the stability of the equilibrium solution 
will be taken up elsewhere (SLATKIN, in preparation). Here, it is sufficient to 
say that in all the cases of biological interest there is a stable equilibrium solution. 
This is verified in the several examples by direct numerical computation. For 
convenience, we can write the equation for q(s) equivalent to (5) and subtract 
that equation from (5) to get a new equation for the introduced variable A (5) = 
P(Z> - q ( x ) .  

dx‘ ( 6 )  
1 - A’(x‘) 

1 +SA (x’) y (2‘) A ( z )  = f M(x,x‘ )A(x’ )dx’+ 2 2 M(x,x ’ )y (x ’ )  
- m  - m  

The possible range of A is -1 to 1, corresponding to p = 0 and p = 1. The first 
term on the right-hand side of (6) represents the effect of dispersal alone on gene 
frequencies. The second term represents the effect of selection after the dispersal 
stage. 

The simplest assumption we can make about the dispersal function, M(x.x’ ) ,  
i s  that it is a function of x-x’ only. This form for M is reasonable when there is no 
habitat selection and when there is no barrier to dispersal. Later, I will consider 
the effect of a barrier to dispersal and will have to introduce another form for M .  
Migration functions of this type have been used by MALEG~T (1968) and by 
KIMURA and WEISS (1964) in models of genetic drift in spatially distributed 
populations. 

We can assume that M ( x )  has certain simple properties which can enable us 
to find the approximate solution to (6), a t  least in some cases: 
(1 ) M ( x )  is an even function of x which is equivalent to assuming that there is 

(2) M (5) , considered as a probability distribution, should have finite moments 

( 3 )  For mathematical reasons, it is also necessary to assume that M ( x )  is 

For any M which satisfies the above conditions, it is possible to reduce (6) to a 
differential equation (see APPENDIX). In  addition, when the selection acting is 
weak (small s) it is possible to approximate the differential equation by the 
following equation: 

no preferential direction for dispersal. 

of all order. 

analytic (has derivatives of all orders) except at x = 0. 

where P = j z’M (x) dx, the second moment of M .  Equation (7) is correct to order 
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s. That is, the difference between the exact solution obtained from (6) and the 
approximate solution obtained from (7) is not larger than s or  some small multi- 
ple of s. 

Another way to derive equation (7) is to assume that random dispersal of 
individuals is effectively a diffusion process with a diffusion constant equal to the 
second moment of M .  FISHER (1937) first analyzed a similar problem in this 
way. Also, equation (7) can be derived by expanding M in a Taylor series about 
x = 0 in ( 6 )  and assuming that the first terms in the expansion must be approxi- 
mately equal. HALDANE (1948) used this approach in considering the effect of a 
step change in selective intensities. The purpose of the discussion in the APPENDIX 

is to show that equation (7)  is approximately correct under a wide variety of 
conditions. In particular, it is not necessary to assume anything about the form 
o i  the spatial variation in selective intensities. Nor is it necessary to assume any 
functional form for M ,  as long as it satisfies the assumptions listed above. 

t = Vs x / l ,  to get 
We can rewrite equation (7) in terms of another variable, 

By introducing the variable t, we can see that the appropriate description of the 
problem is not in terms of the average distance traveled at the dispersal stage, I ,  
but l/vy. Since the coefficients on each side of (8) are of order unity, it appears 
that the balance between gene flow and selection is most easily seen in terms of t. 
From the form of (8) we could guess that if y ([) varies significantly over dis- 
tances less than ( = 1, then A ( [ )  will not reflect those variations. On the other 
hand, A ( e )  should respond to changes in y ( e )  which occur over a distance greater 
than t = 1 .  We will verify our intuition about the expected properties of the 
solution to (8) in the examples treated below. 

Based on the above discussion, we can define a length 1, = l/vT (correspond 
to = I ) ,  as the characteristic length for the spatial variation in the frequencies 
of alleles. Regardless of the pattern of spatial variation in the selection intensities, 
we would not expect the gene frequencies to vary significantly over a distance 
less than the characteristic length. Therefore, the population could not respond 
to changes in selection which occur over distances less than the characteristic 
length, while it could respond to or “track” changes which occur over distances 
greater than the characteristic length. We will test this prediction by analyzing 
several examples in which particular forms for y (5) are chosen. 

The existence of a characteristic length scale of variation for the population is 
related to LEVINS’ (1968) concept of “environmental grain.” A fine-grained 
environment is one for which the spatial variation in the environment is over a 
short enough length scale that the population is unable to respond. For a coarse- 
grained environment, the population can respond to the local variations. The 
importance of the result here is that the grain of the environment depends not 
only on the mobility of the species (as measured by 1) but also on the strength of 
the selection being applied to the character. Therefore, it is possible to have a 
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situation in which the environment is coarse-grained with respect to one charac- 
ter, on which strong selection is acting, and fine-grained with respect to another, 
on which relatively weak selection is acting. 

EXAMPLES 

Solutions to (8) can be found for special functional forms for y ( s ) .  In  each 
case, we must determine the relevant boundary conditions on A ( ( )  which are 
consistent with the biological problem, because of the loss in information in going 
from the integral to the differential equation. In  this section, a few of these 
simple cases are treated in order to illustrate the behavior of systems which 
are governed by equation (8). The main point in all the examples i s  the import- 
ance of the characteristic length, 

In  order to test the validity of the approximations made in obtaining equation 
(8), numerical iterations of equation ( 5 ) ,  the original equation for  the model, 
were carried out, and the results compared with solutions to (8). To perform the 
numerical calculations, the model had to be reformulated in terms of a finite 
number of discrete locations, rather than an infinite continuum. The probability 
of an individual moving from location i to location j in a single generation is 
11.1 ( i,j). M ( i,j) is a matrix and has been called the “migration matrix” by KIMURA 
and WEISS (1964) and others when analyzing problems involving genetic drift. 
At each of the locations, the same equations from population genetics apply 
between the dispersal stages. Therefore, the allelic frequencies at each location 
in the next generation are given by 

= 1 in this rescaled equation. 

where the @ ( j )  are obtained from equation (2). The calculations are carried out 
by choosing initial values for the p ( i )  and iterating according to (9) until an 
equilibrium is approached. 

In  each of the examples below I compare the numerical solution of (9) with 
the solution to (8). In  the numerical calculation, we might expect that the boun- 
daries introduced by having a finite number of locations would have a significant 
effect on the results. That possibility was tested by running the same examples 
with different locations of the boundaries. It was found that when the boundary 
was placed sufficiently far from the region of interest, moving the boundary had 
no effect on the results. It is reasonable to assume that the results from the calcu- 
lations made when the boundary location is determined in this way are a good 
approximation to the exact solution in an infinite region. 

The first example is the so-called step environment which is modeled by y ([) = 
e([) where e ( ( )  = +1 for ( > 0 and 0( ( )  = -1 for t < 0. This form for y 
represents an abrupt change in some environmental factor which would reverse 
the relative advantage of the homozygotes. The necessary boundary conditions 
are that A (() approaches ‘4-1 as f approaches -C CQ . Since y ( t )  is an odd function, 
the solution to (8) is also odd and is the same as the solution to 
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in 0 < [ < 00 with the boundary conditions that A (0) = 0 and A (m) = 1. The 
condition that A and A’ be continuous at 0 are automatically satisfied. There is a 
discontinuity in A”( [) at [ = 0 caused by the discontinuity in y ([) . The solution 
to (10) is 

A([) = -2 i- 3tanh2([/2 + tanh-lvV3) . (11) 
~ 

The maximum slope of the cline, at [ = 0, is .\/2/3 in the scaled variables or 
1/Zd2s/3 in the unscaled variables. This is often the only number that can be 
measured. 

The analytic solution (1 1 ) was compared to the results from the numerical 
calculations made in the manner described above. Two different choices for M 
were chosen, exponential and normal. Thus, we can determine whether the 
particular functional form of M has very much effect on the results. The results 
are shown in Table 1.  In each of the three sections. the first column was obtained 
by evaluating (1 1 ) at the various points; the second and third columns and the 
values from the equilibrium solution were obtained by using the normal and 

~ 

TABLE 1 

A comparison of the actual uzlues of A(x) obtained by using the numerical iteration of  the 
integral equation with gaussian M (b)  and exponential M (c) and the 

values for A(x) from equation (IO) ( a )  

0.5 
1.5 
2.5 
4.5 
6.5 
8.5 

10.5 

0.5 
1.5 
2.5 
4.5 
6.5 
8.5 

0.5 
1.5 
2.5 
3.5 
4.5 

.I159 

.3158 

.4’759 
,699 1 
,8303 
.9053 
.91.75 

.I 225 
,3320 
.4971 
.7215 
.8487 
.9186 

.4574 
,8581 
,9649 
,9914 
.9979 

S = 0.M 
,1133 
,3197 
,4857 
,7128 
,8427 
,9147 
.9540 

s = 0.1 
.I512 
,4157 
.6085 
,88901 
.9803 
.9963 

s =  .5 
.2633 
.6626 
,8597 
,942) 
,9765 

,0888 
2470 
,381 7 
.5892 
.7308 
.8251 
3369 

.1225 

.3297 
,4931 
.7894 
,9369 
.9790 

.2W8 

.5661 

.7552 
,8632 
.9242 
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exponential migration functions. These results are in agreement with the predic- 
tions based on the analytic techniques. The emor made in the cases when s is 
small (.l and .05) is of order s. Furthermore, the difference between the calcula- 
tions using the normal and the exponential migrations functions are of the same 
order of magnitude. We would expect that the approximations not be valid for 
larger values of s(s = 0.5), and this is the case. These results allow us to use the 
approximate differential equation with some confidence. 

Although the question of the uniqueness and stability of the equilibrium solu- 
tion will not be considered here, it is worth mentioning that in the above example, 
several different sets of initial conditions were tried and the same solutions were 
always obtained at equilibrium, That suggests that our intuition is correct and 
that the equilibrium solution is unique and stable. The mathematical aspects of 
the problem will be analyzed in a later paper (SLATKIN, in preparation). 

HALDANE (1948) was the first to treat the case of the step environment. He 
derived an equation analogous to (10) and he applied the model to examples with 
varying degrees of dominance. While the exact shape of the cline depends on the 
degree of dominance at the locus, the general character of the solution does not 
change. Therefore, the definition of the characteristic length does not depend on 
the degree of dominance at the locus. 

An example similar to the step environment above is one for which the change 
in selective values is more gradual. This situation is modeled by 

The equation for  this new problem will have the same boundary conditions as in 
the previous case and the solution is still an odd function of <. Thus, A ( t )  
satisfies 

t 
d tZ  2k - L A ( [ )  =-(l-A2([)) O < [ < k  

d2 1 
dt2 2 - - A ( [ )  =- (1-A2([)) k < [ < 00 

with A (0) = 0 and A (" ) = 1. In addition, A and A' must be continuous at 
f = k. The solution to (1 3b) is 

where Ak = A (< = k). There is no analytic solution to (1 3a), so a numerical 
method was used. In Figure 1, A ([) is plotted against f for different values of k. 
For k < 1, the solutions are quite similar. In fact, it would be difficult to distin- 
guish them on the basis of any observations. For  k > 1, A ( ( )  is different for 
different values of k, so for more gradual changes in the selective values, the rate 
of change in the frequencies of the alleles is more gradual. 

FISHER (1950) considered the problem of the effect of gradual environmental 
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K=3 

I ‘ - 5  
0 1 2 3 4 5  

FIGURE 1.-Graphs of A (2) us. z for the case of a gradual change in the environment. These 
graphs were obtained using the approximate differential equation (13). 

change of gene frequencies. In that paper, he ignored the fact that the linear 
change in the fitness of the genotypes could not apply over an indefinitely large 
range. FISHER’S argument, that the slope of the fitnesses function, y,  is unim- 
portant and can be absorbed into the rest of the analysis, is incorrect. There are 
two significant length scales in the problem-the length scale associated with the 
change in the fitnesses, k, and the characteristic length scale of variation for the 
population, I,. A comparison of these two lengths is needed to provide an under- 
standing of the results. In one extreme, when the slope of the environmental 
change is small, large k,  the gene frequencies closely follow the change in fit- 
nesses, and in these cases, FISHER’S argument is valid, as long as it is applied only 
to the interior region of the cline. 

ENDLER (1973) discusses several models of gene flow and selection, including 
effect of a gradual change in the selective values of the homozygotes (the gradient 
model). He calculates the effect of different amounts of gene flow (different 
values of I) for a particular selection function (constant k). To compare END- 
LER’S results to those given above, we plot A (z) against x for k = 5 (Figure 2). 
We can see that when I is much less than k ,  the cline is very steep, in agreement 
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FIGURE 2.-A(x) us. z for a gradual change in the selection intensities. The selection was 
held constant and the migration distance, I ,  was changed. The curves were obtained from (13). 

with ENDLER’S results obtained from a direct iteration of the basic equation. 
However, as I increases, the steep cline is rapidly smoothed over. On the basis of 
his computations, ENDLER concluded that the effect of gene flow on this model is 
small. From Figure 2 we can see that the conclusion depends on how much gene 
flow is allowed. In ENDLER’S study, gene exchange is possible only between 
adjacent demes, so even with the maximum amount of gene flow, 1 could not be 
greater than the interdeme distance. If longer distance dispersal is permitted, the 
effects of gene flow can be much greater. 

If y has the form 

y ( t )  = +1 161 > 10 

= -1 It1 < 10 (15) 

then we have a model of a situation in which there is a region of finite size, or a 
“pocket” in the environment (HANSON 1966), where one homozygote is favored, 
surrounded by a region where the other homozygote has the selective advantage. 
In  this example, A ([) is an even function and the boundary conditions are that 
A (6) approaches 1 as t approaches +- m. Thus we want the solution to the system 

(164  
1 - A ( t )  =--(1 - A 2 )  d2  

d p  2 
0 < [ < 1, 

d2 1 - - - A ( [ )  =---(I - 
dt2 2 

The solution to (16a) and (16b) can be found directly. A quantity of interest 
is the maximum difference in gene frequencies, which is measured by A (0). 
Figure 3 shows a plot of A (0) against lo, the size of the region measured in units 
of 1,. Notice that if 2, < .5 (i.e., the size of the region is less than the critical 
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-1 
FIGURE 3.-Graph of the minimum of A,  A(O), as a function of the size of the “pocket” in the 

environment, I,. These values were obtained using the approximate differential equation (16). 

length), then A (0) is nearly 1 and dispersal masks the presence of such a region. 
This is in agreement with HANSON’S (1966) results, which were obtained using 
a computer model similar to the one described previously in this paper. 

Another example will further illustrate the importance of the critical length 
of the system. If y (x) is defined to be the periodic function 

y ( [ )  = -1 

y ( t  + 21s + 212) = y ( 0  

0 < [ < 22, 
= +I 21, < .$ < 21, + 21, (174  

(17b) 
then we would expect the equilibrium solution to be also periodic in x. We want 
the solution to 

1 - A ( [ )  = - ( l - A 2 ( [ ) )  - 0 < [ > 2 2 2  d2 
dt2 2 

1 
__ A (0 = - -( 1 - A’(()  ) 

d‘ 
dt2 2 

(184  

(18b) 21, < [ < 211 f 212 

with the additional condition that A and A’ be continuous x = 0 and x = 21, 
and that 

A(21, -k 22,) = A ( 0 )  . (19) 
The numbers of real interest are maximum and minimum values of A and some 
estimate of the average value of A .  A sample solution is shown in Figure 4. Figure 
5 shows plots of A,  = A ( I l ) ,  As  = A(21,), and A ,  = A(21, 4- Z,) ,  as functions of 
1, for fixed 1, (measured in units of Zc).  Notice that when I, = .5, there is little 
difference between the maximum and minimum frequencies. In this case, the 
population is not able to respond to the variation in the selective values. Except 
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FIGURE 4.-A representative solution in the case of a periodically varying environment. 

when I, and I, are nearly equal, one or the other allele is eliminated. This result 
is the same as one derived by LEVINS (1968) using his fitness set argument on 
fine-grained and coarse-grained environments, In the case of coarse-grained 
environments, the prediction of the fitness set model is that the species would 
adopt an intermediate strategy with both alleles present. While one genotype is 
common in one habitat type and the other in the other habitat type, in a sample 
taken from a large enough area, a mixture of genotypes would be found. The 
area :ampled must be a large enough area for  the “intermediate” strategy to be 
observed. 

REDUCED HETEROZYGOTE FITNESS 

In the previous section, various examples have been considered in which the 
fitness of the heterozygote is the average of the fitnesses of the homozygotes. If 
the fitness of the heterozygote is less than 1, then the clines predicted in the previ- 
ous sections should be steepened. To illustrate this effect, I will show the change 
in the spatial pattern in the step environment model. The fitnesses of the three 
genotypes are now assumed to be 

AA: 1 + s y ( z )  Aa: 1 - U aa: 1 - s ~ ( z )  (20) 

where U is a constant-for the moment, positive. The equilibrium equation for 
this model is 

m A ( s )  = j A(s’)M(z--s’)dz’I-- 1“ j (uA(x’) + S Y ( Z ‘ ) ) ( 1  -A2W)) dz’. (21) 
U - m  2-m 1 - -(l-A2(x’)) ,+ sy(ZI)A(z?) 2 

We consider the case in which 

l > U > > S  
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FIGURE 5.-Graphs of the maximum, minimum, and average values of A (z) as a function of 
length of intervals, of the periodic environment, for given values of the other 1,. These values 
were obtained using the approximate differential equation (18). 

Following the procedure in the APPENDIX, the basic equation is 

d2 U A ( x )  (1 - A2(2)) 
dx2 

- - -A((z )  =- 
212 I -,U (I - A 2 ( x ) )  ' 

2 

Equation (22) is correct to order s/u, which we have assumed to be small. With 
sufficient effort equation (22) could be integrated to give A as an implicit function 
of x. The only quantity found here is the maximum slope of the cline. 

1 1 1/2 
A'(0) =r [I - 2 ( 1  --) U log (I -;)I (23 >. 

Therefore, when the fitness of the heterozygote is much less than the fitnesses of 
either of the homozygotes, then the structures of the cline is independent of the 
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exact values of the homozygote fitnesses. The selection on the homozygotes 
determines the location of the cline but the selection of the heterozygote deter- 
mines the slope. 

The analysis carried out above can just as well be applied to the system where 
there is a gradual change in the environmental conditions affecting the fitness of 
the homozygotes, i.e., where y ( z )  has the form given in equation (12). With 
U > > s, y (z) acts only to determine the boundary conditions for A (z) . There- 
fore, a relatively steep cline could be present even when there is no sudden change 
in the environment. The so-called “area effects” in Cepaea nemoralis and C. 
hortensis which have been extensively described and discussed in the literature 
(FORD 1964, and Studies in Cepaea, 1968, provide the most comprehensive review 
of this subject) might be the result of this kind of balance between selection and 
gene flow. The purpose of the discussion here is not to try to provide an expla- 
nation for the area effects, which involve many factors outside the scope of this 
model, but to illustrate some of the implications of the model for problems of 
practical interest. 

The European land snails, C .  nemoralis and C. hortensis, have distinctive color 
and banding patterns of the shell which have been found to be under relatively 
simple genetic control. Furthermore, the different morphs have, in many cases, 
been found to have a selective advantage in different habitats by being more o r  
less visible to the potential avian predators. For example, the brown, unbanded 
form is cryptic in grass. Much of the geographic variation in Cepaea can be 
accounted for by this mechanism. However, some cases cannot be so explained. 
There are regions which have populations in which different banding and color 
patterns are dominant and between which there is a relatively rapid change in 
the frequency of the different morphs. In  these regions, such as the chalk downs 
of England, none of the morphs present seem to have any cryptic value. This 
phenomenon has been called the area effect. 

There are two explanations which have been put forward for the area effects. 
First, CAIN and CURRAY (1963) suggest that the color and banding patterns are 
indications of some other physiological adaptation to selection which is not appar- 
ent to human observers. In this case, the area effects are a reflection of the adapta- 
tions to local changes in the habitat. In support of this hypothesis, CAIN and 
CURRAY have found a strong correlation of some morphs with particular micro- 
habitats. For example, the brown color morph is closely associated with frost 
hollows. However, such correlations are not always found, particularly with the 
different banding forms, and it is difficult to apply this hypothesis to all observa- 
tions of area effects. GOODHARDT (1963) has suggested that some area effects are 
historical in origin. Small, genetically different, founder populations began in 
different parts of a region. As these populations grew, coadapted gene complexes 
formed which prevented the interbreeding of the populations when they came 
into contact. With the explanation, the area effects are non-adaptive. The diffi- 
culty with GOODHARDT’S hypothesis is that there is evidence that the area effects 
have persisted for thousands of years (CURRAY and CAIN 1968). Therefore the 
different coadapted gene complexes must be identical in fitness. 
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There is another explanation for the maintenance of area effects which is a 
compromise between the two given above. If coadapted gene complexes did have 
the chance to evolve in the different isolated populations, then it is likely that this 
would serve to reduce the fitness of the heterozygotes created by crosses between 
the individuals from the two populations. If, in addition, some character which is 
controlled by part of the coadapted gene complex is subject to selective forces 
which gradually change with distance, then these two mechanisms could produce 
the area effects. The region of change in the selection on the homozygotes could 
be much longer than the size of the habitat under consideration. Using the argu- 
ment based on the model, the cline in gene frequencies could be much steeper 
than the rate of change in the selective values. It is possible, then, to maintain 
the area effects with relatively weak selection against some physiological char- 
acter which is linked to the banding and color patterns and a reduction in the 
fitness of the heterozygote, 

Some calculations, using the numerical method described earlier, were car- 
ried out to illustrate this idea. y (2) had the form given by (1 1). The results of 
the calculations are shown in Figure 6. For comparison, the case with U = 0 is 
also shown. CLARKE (1966) has proposed a different type of model of area effects 
based on the effect of modifier genes. 

If the fitness of the heterozygotes is only slightly smaller than unity, then we 
can write U = as where a is of order one. The basic equation is 

with the boundary conditions that A (0) = 0 and A ( + a )  = 1. The first integral 
of (24) is 

where C must be chosen so that A' = 0 when A = 1. Therefore 

The slope of the cline at the origin is v?. In terms of the unscaled variables, the 
effect of the reduced fitness of the heterozygote on the maximum slope of the cline 
is 

For the third range of values of U ,  U < s, there is no effect on the lowest order so- 
lution. 

If -s < U < 0, the equation (27) for the maximum slope of the cline is still 
valid. An increase in the heterozygote fitness reduces the slope of the cline. For 
U < -s, there is overdominance at every location. Therefore the boundary con- 
ditions at x = f 00 must be changed to A (+- ") = fs/u (corresponding to p = 
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FIGURE 6.-Graphs of A ( z )  us. z obtained by using the numerical iteration of the exact 
equation (5) for the model, carried out as described in the text. In each case, the boundaries of 
the model were set at I 50. The fitnesses of the three genotypes were 

AA: 1 + s y ( x )  
Aa: 1 - - U  
a a  1 - s y ( z )  

where y(x) = +1 z > k 
=x/k 1x1 < k 
= -1 x < --k 

(ul-s) J2u and p = ( U-s) /2u) ) . In this case, the condition for determining C in 
(25) is A' = 0 when A = u/s,  where LY < -1. The result is that the maximum 
slope of the cline is 

which decreases as U becomes larger in absolute value. Therefore as the fitness of 
the heterozygote increases, the cline becomes less steep. 
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GEOGRAPHIC BARRIER TO DISPERSAL 

So far, we have considered examples for which the probability of dispersal be- 
tween two points depends only on the distance between the points. That assump- 
tion could not be true if there were a physical barrier to dispersal at some location. 
There are several possible dispersal functions which could model the effect of a 
geographic barrier. A particularly simple one is found by assuming that all dis- 
persing individuals travel the same distance as they would in the absence of the 
barrier, but that a certain fraction of the individuals which reach the barrier turn 
around and proceed in the other direction, traveling the same total distance. I will 
call this a “reflecting barrier”. Mathematically, it can be described by a dispersal 
function M(x,x ’ )  of the form 

M (x,x’) = ( 1 -k) 11.1 (x-2’) xx’ < 0 

= M(Z-Z’) 4- kM (x+x’) XZ’ > 0 (29) 

where M (x-x’) is the dispersal function of the type used in the previous sections 
and k is a measure of the strength of the barrier. It is convenient to use (29) be- 
cause the normalization properties of M are preserved. The effect of a barrier to 
dispersal can be illustrated by considering the example of a step environment. 
With (29) the basic equation ( 6 ) ,  becomes 

A ( x )  = 7 IM(x-x’ )A(x’ )dY+2k M ( x + x ‘ ) A ( l ) d l  
- m  0 

for x > 0. We can still assume that A (5) is an odd function but A is not neces- 
sarily continuous at x = 0. In fact, A(O+) is found to be non-zero by letting z 
approach 0 from the positive direction. Equation ( 3 0 )  becomes 

dx’. ( 3 1 )  1 - A’(X’) A(O+) = 2k 7 M ( x ’ ) A ( x ‘ ) d x ‘ +  sk 7 M ( x ’ )  ,+ 

0 0 

We can reduce ( 3 0 )  by the method described in the APPENDIX and find that 
the approximate equation is 

which is the same equation as in the case without the barrier. The difference is 
that A (0) ZO in the present case. In other words, the balance between gene flow 
and selection on either side of the barrier is unchanged by the barrier. The bar- 
rier changes the boundary condition at the origin by reducing the number of in- 
dividuals which cross that point. The solution to ( 3 2 )  is 
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where A(O+) must be determined from (32). We can find A(O+) approxi- 
mately by using the fact that the length scales of change of A (5) and M (2) are 
different. In (31), A ( z )  can be replaced by A ( 0 f ) f z A ’  (O+)  to lowest order. 
From (33) 

(34) 
v 7  2+A(O+) - 

3 
A’(O+) = - I 

and (3 1 ) becomes 

( 1 - A ( 0 f ) )  7 x M ( z ) d x :  (35) 
2 vJi A(O+) =kA(O+)  +- I 

0 

The integral in (35) is proportional to 1 with the constant of proportionality de- 
pendent on the functional form of M .  Therefore, A ( O f )  is independent of 1. The 
general dependence of A (O+)  on k can be easily found by rewriting (35) and 
observing that 

(I-k)A(O+) = O(V/S) 

where 0 (vs) means of the order of magnitude of VY. For this condition to be 
satisfied, either A ( O f )  or I-k must be 0 (vi). Therefore, unless the barrier is 
very strong and almost all of the individuals trying to cross are stopped (1 -k Q 1 ) , 
the effect of the barrier on the equilibrium gene frequencies is small. This result 
is valid, of course, only if the relative selection coefficient, s, is small. Figure 7 
shows the results of numerical evaluation of the equilibrium solution which was 

1.0 

-8 

.6 
A (0 - t )  

.4 

- 2  

I 
o -2 -4 .6 -8 1.0 

k 

0 

FIGURE 7.-A graph of A(O+) obtained from the numerical iteration in the case of a geo- 
graphic barrier to dispersal. In this case k is a measure of the strength of the barrier and A (Od-) 
of its effect. 
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carried out in the manner described earlier. M (z-.‘) was assumed to have a nor- 
mal form in these calculations. 

A barrier to dispersal is much less effective in producing a steep cline than re- 
duction in fitness of the heterozygote. A barrier alters the “effective fitness” of an 
individual in a region of width 1 about the barrier while the reduction of fitness 
of the heterozygote changes the effective fitness throughout the region of the 
cline. By effective fitness I mean the probability of survival of the offspring of an  
individual averaged over future generations, not simply the individual’s chance 
of surviving to mate and produce offspring. This is similar to HAMILTON’S (1964) 
“inclusive fitness”. 

A field study on the effect of a geographic barrier to dispersal on gene frequen- 
cie; has been done by KETTLEWELL and BERRY (1968) on the Caradrinid moth, 
Amethes glareosa, in the Shetland islands. The darker form ( f .  edda) is produced 
by a single dominant gene which decreases in frequency from 98% in the north 
of the island to 1 % in the south (KETTLEWELL 1961a,b; KETTLEWELL and BERRY 
1961 ) . KETTLEWELL (1961 c) has shown that f. edda has a selective advantage of 
approximately 5% on the most northern island (Unst) because of differential 
predation by certain gulls. In a later study of this cline, KETTLEWELL and BERRY 
(1968) concentrated on the central part of the South Mainland where the fre- 

quency of f .  edda decreases by 50% in 15 miles. They were especially interested 
in the effect of a potential geographic barrier to dispersal, the Tingwall Valley, 
which crosses the entire island in the middle of the area of maximum slope of 
the cline. The valley is two to three miles wide and is what KETTLEWELL and 
BERRY describe as a wind tunnel driven by the prevailing winds. Therefore, it 
should be a great hindrance for individual moths which would attempt to cross. 

KETTLEWELL and BERRY measured the frequencies of the two forms in the im- 
mediate neighborhood of the Tingwall Valley. They also released marked indi- 
viduals on either side of the valley to measure the average dispersal distance and 
the probability of crossing the valley. The results they obtained are: (1) The 
maximum slope of the cline does not occur across the valley but in a region two 
or three miles north, where the frequency of f. edda decreases from 35% to 20% 
in approximately one mile. (2) The frequency off. edda is the same on either side 
of the valley. (3) The average distance between release and recapture of marked 
individuals was 1/2 mile. (4) Of the 65 moths which were recaptured, only one 
crossed the valley. On the basis of these results, they concluded that “fairly in- 
tensive selective pressures must be occurring to maintain the observed gene fre- 
quencies.” In other words, they are proposing that there is relatively strong 
heterosis acting to maintain the gene frequencies at their observed levels. The 
cline in gene frequencies results from the gradual change in the selective intensi- 
ties rather than from a balance between selection and gene flow. 

In  order to distinguish between these two hypotheses, it would be necessary to 
show that the Tingwall Valley is a sufficiently good barrier to dispersal that the 
gene frequencies on either side would not be the same unless they were main- 
tained so by selection. While there are not sufficient data to provide conclusive 
evidence, there are enough to investigate the consequences of the model. 
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If the maximum change in the cline is 15% in one mile, then from equation 
( l l ) ,  s = .015 is sufficient to maintain the cline. Since the gene causing the 
melanic form is dominant, this value is only approximate but of the correct order 
of magnitude. In equation (35), we can use A ( O f )  as an estimate of the maxi- 
mum discontinuity in a cline which could be produced by a geographic barrier. 
In fact, this is an overestimate of the size of the expected discontinuity because 
the geographic barrier is not located at the point of maximum slope of the cline. 
If we use the above estimate fors  and assume that a discontinuity of 5% or  less 
would be masked by the sampling of gene frequencies, then we can conclude from 
(35) that k would have to be at most 22, for A (0-k) to be less than .05. In making 
this calculation, we assume that 

which would be exactly true only for an exponential form for M .  Therefore, if 
as many as 20% of the individuals which would otherwise cross the barrier do 
not, then the discontinuity in gene frequencies would be appreciable. If we as- 
sume that nearly half of the individuals released by KETTLEWELL and BERRY 
would have tried to cross the valley, and if we assume that individuals which did 
cross the valley would be as likely to be recaptured as those that did not cross, 
then the results of the experiment provide evidence in favor of their hypothesis 
that there is strong heterotic selection acting. Since only one of the 65 recaptured 
individuals had crossed the valley, we could conclude that more than 20% were 
turned back by the barrier. While this argument is hardly conclusive, the 
orders of magnitude of the estimates involved are sufficiently different, that the 
alternative hypothesis, that the frequencies are maintained by gene flow, seems. 
less likely to be correct. 

CONCLUSIONS 

The general results which have been derived from the analysis on gene flow 
and selection can be summarized as follows: 

1) There is a characteristic length scale of variation, Z,, which determines the 
equilibrium pattern of gene frequencies in a spatially distributed population. If 
the environment changes on a scale less than the characteristic length, then the 
gene frequencies will not respond to the local variations but to the selection in- 
tensities averaged over the characteristic length. When the scale of variation in 
the environment is larger than the characteristic length, the gene frequencies can 
respond to the local variations resulting in genetically differentiated populations 
with clines between them. The result does not depend on the exact form for the 
dispersal function, M ,  but only on the average distance between the initial final 
locations of an individual. 

2) The effect of a reduction of the heterozygote fitness is a steepening of the 
cline. If the reduction in fitness of the heterozygote is sufficiently large, then the 
maximum slope of the cline is determined mainly by the heterozygote fitness. 
Therefore a steep cline can result even when there is no abrupt change in environ- 
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mental conditions. An increase in the heterozygote fitness will reduce the maxi- 
mum slope of the cline. 

3) A geographic barrier to dispersal can cause an abrupt change in gene fre- 
quencies or a very steep cline only if the barrier stops most of the dispersing in- 
dividuals who try to cross it. 

4) For the same order of magnitude of selection coefficients and dispersal dis- 
tances, a geographic barrier will permit much less differentiation in a spatially 
distributed population than will a reduction in heterozygote fitness. 

There are some general conclusions we can reach based on the above results. 
The effect of gene flow and selection on a spatially distributed population cannot 
always be anticipated. The possibility of local differentiation depends on the 
quantitative analysis of the two mechanisms. The fact that a barrier to dispersal 
is relatively ineffective in isolating the populations on either side of the barrier, 
except in the case o f  very strong selection or an almost complete restriction of 
gene flow, might also not be anticipated. We have found that even a fairly large 
reduction in ability of individuals to cross a barrier, say by 50% or 75%, would 
probably not be detectable by measuring gene frequencies. That conclusion, in 
addition to the result that a sufficient reduction in the heterozygote fitness can 
produce a relatively steep cline, suggests that we would not necessarily expect 
to find a rapid change in gene frequencies or area effects associated with sudden 
changes in environmental conditions. 

In a recent paper, ENDLER (1973) has argued that in many cases the effect of 
gene flow may be negligible on the amount of differentiation in a spatially dis- 
tributed population. In one of his examples, he models a cline maintained by 
heterosis at each location (deme) with the relative fitness of the two homozygotes 
varying linearly with location. The resulting cline in gene frequencies is approxi- 
mately linear with distance and ENDLER shows that the cline in gene frequencies 
does not change in the presence of some gene exchange between populations. In 
his system he allowed 40% gene exchange between adjacent populations and he 
showed that with this amount of gene flow, there was no effect on the cline, either 
in the computer model or in a series of population cages of Drosophila metano- 
gaster where a cline was maintained in the Bar gene. The computer model pre- 
dicted quite accurately the results from the population cages. Based on these re- 
sults, ENDLER argues that gene flow has no effect because the averaging of gene 
frequencies on either side of a deme will produce the same gene frequencies as in 
the deme. That would still be true if longer distance dispersal were allowed. 
However, that result and the conclusion that gene flow has no effect on the cline 
depends strongly on the linearity of the selection pressures. In fact gene flow will 
tend to product a linear cline in gene frequencies whether or not the selection 
intensities are linear functions of distance. The actual outcome does depend on 
the quantitative balance between the two mechanisms. 
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APPENDIX 

In  the main text, equation (6) was derived from the assumptions about the mechanisms of 
gene flow and natural selection. As indicated, (6) can be approximated by a differential equa- 
tion, (7), which is adequate for many purposes. The mathematical development of that approxi- 
mation is complicated enough that it is presented here rather than in the main part of the paper. 
What follows is not a rigorous mathematical proof but an argument based on commonly used 
techniques in applied mathematics. The results must be checked for consistency and plausibility. 
In the present paper, the system is simple enough that spurious results do not appear. As is 
mentioned in the text, the reduction of the integral equation by that technique described below 
is equivalent t o  making certain assumptions about the balance of gene flow and selection 
(HALDANE 1948; FISHER 1937). The agreement with previous work on this problem also supports 
the use of the mathematical techniques. The purpose of the analysis is to show what assumptions 
are necessary for making the approximations and what changes we would expect when those 
assumptions are not satisfied. 

We have assumed that M ( x )  is an even, normalized function of z ( M ( z )  = M ( x )  and 
J M ( z ) d x  = l),  has finite moments of all order ( j x n M ( x ) d x  < CO for  all n) and is analytic 
except possibly at x = 0. For such a function, we can find a linear differential operator L, 
which satisfies 

L,M(x)  = 6 (x) (AI ) 

where 6 ( x )  is the Dirac delta function. M ( x )  is the Green’s function for L, which satisfies the 
boundary conditions M ( z )  + 0 as x -+ k 0. L, can be found by using Fourier transforms to be 

where 

d 
L, = 1,s (i,) 

m 
M ( k )  = j e i ” M ( x ) d x .  

- -CO 

1 
21 

TWO examples might clarify the general result. If M ( x )  = - e-lW then L, calculated using 

(A2) is 

That (A3) satisfies (AI) can be seen by direct substitution. If 

then 

2 dxz 
L, = e 

where we must interpret the infinite order operator operating on a functian f as 

12  dz 

Equation (Al)  is satisfied for this choice of M because 
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reduces to a statement of completeness of the Hermite polynomials (ABROMOWITZ and STEGUN 
1965). Similar results can be derived for other choices of M ,  although with less ease. 

I shall always assume that the function A ( z )  is in the region of function space for which an 
expansion of the form (A4) is valid. I t  is at this point where a formal proof would be required. 
The mathematical aspects of the problem are far from simple but will not be discussed here. 
HIRSCHMANN and WIDDER (1955) consider the general problem in detail. 

Because M ( x )  is assumed to be even and normalized, the form for L, is always 

where Zz is the second moment of M and M,, are the higher even moments. I is usually the 
only thing which can be measured in a field situation from the release-recapture experiments. It 
will be argued that under many conditions, I is the essential parameter and the detailed form 
of M is unnecessary. 

We can now apply L, to equation (5) to reduce the integral equation to a differential 
equation. 

As mentioned above, in many cases of interest s is small. In  these cases, it is reasonable to look 
for  a solution to (A7) in the form of a power series ins. 

In practice, only the first term in the series, A,,, would be of any interest. If this is attempted, it 
is found that the solution is not in terms of z, but in terms of another independent variable, 
which we can call 6, where 6 = r / sx /I .  Therefore, the required solution to (A7) is in the f w m  

where the series must be interpreted as meaning that the error made by including only the first 
n terms in the series is O ( x n + l ) .  This is the usual requirement for an asymptotic series and must 
be used here because we cannot consider the limit of (A9) as s-+ 0 to be the solution to (A7) 
with s = 0. The model with s = 0 is fundamentally different. We want to find an approximate 
solution to (A7) for a given value of s. 

We could show that (AS) represents the o n l y  possible form of the solution to (A7) by using 
the method of multiple scaling (COLE 1968, Chapter 3 )  but this is not necessary for  our purposes. 
This will be taken up in a mathematically oriented paper on this problem (SLATKIN, in prepara- 
tion). I t  will be sufficient t o  show that (A9) provides us with a good approximation to the exact 
solution, found numerically, and enables us to understand the basic nature of the balance between 
gene flow and selection. 

When we substitute (AS) into (A7), the resulting equation is in the form 

where all of the terms in the braces are of the order of unity or smaller. Therefore, we conclude 
that equation (7)  is correct to order s. We have assumed that M ,  is not too large as compared 
with 12. That is, M4/14 is not much greater than 1.  This assumption is valid for all reasonable, 
unimodal forms for M ,  including all that have been measured in natural populations. 


