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ABSTRACT

The symmetric equilibria of the three-locus symmetric viability model are
determined and their stability analyzed. For tight linkage there may be four
stable equilibria, each characterized by having one pair of complementary
chromosomes in high frequencies, with all others low. For looser linkage the
only stable symmetric equilibrium is that with complete linkage equilibrium.
For intermediate recombination values both types of equilibria may be stable.
A new class of equilibria with all pairwise linkage disequilibria zero, but with
third order linkage disequilibrium, has been discovered. It may be stable for
tight linkage.

THE equilibrium theory of selection on two recombining loci has been devel-

oped primarily with respect to three types of selection schemes. When the
contributions of the loci to the viabilities are additive, it is known that there is a
single interior polymorphism which is globally stable for all non-zero recombina-
tion values when hoth loci are heterotic (BopMmEer and FELsENSTEIN 1967 ; MoraN
1968; KaruiN and Feroman 1970a). The equilibrium population is in linkage
equilibrium. When the viabilities are multiplicative, it is known that for loose
linkage, heterozygote advantage at the separate loci is sufficient for global stability
of the equilibrium having linkage equilibrium (Morax~ 1968; Boomer and FEL-
SENSTEIN 1967). With these viabilities, however, the equilibrium behavior for
tighter linkage is not known, although for sufficiently small recombination values,
Karrin and McGrecor (1971) have shown the existence of two stable equilibria
in linkage disequilibrium.
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A special case of multiplicative viabilities is included in the general symmetric
viability model (LewonTiv and Kojivma 1960; Bopmer and FELSENSTEIN 1967 ;
Karrin and FELpman 1970; and Ewens 1968). For this model it has been shown
(Karuin and FeLoman 1970b) that there is a maximum of seven interior equi-
libria with possibly two stable simultaneously. Combined with the eight boundary
equilibria possible for non-zero recombination, this makes a total of fifteen in the
symmetric viability model.

The theory developed by the above authors has produced certain conclusions
of a qualitative nature which are biologically interesting. Tight linkage usually
produces a stable symmetric equilibrium, and this is always (except for the ad-
ditive case) in linkage disequilibrium. Loose linkage usually produces a stable
linkage equilibrium state although certain unsymmetric equilibria may exist and
be stable for moderate and loose linkage under strong selection. A selective ad-
vantage to the double heterozygote does not ensure polymorphism if the single
loci have strong enough underdominance (Ewens 1968). The mean fitness can-
not be used to produce information on equilibria and their stability especially for
tight linkage. A final conclusion is that in the above models it is not possible for
two equilibria, one in linkage equilibrium and one in linkage disequilibrium, to
co-exist and be stable for the same value of the recombination fraction.

Recently Frankrin and LEwonTiN (1970) have made a numerical study, con-
siderably extending those studies of LEwonTin (1964a and b), concerning inter-
actions between selection and linkage in 2-, 5-, 18-, 36-, and 360-locus models
with multiplicative symmetric viabilities and equal (pairwise) recombination
fractions. Looking at the symmetric equilibria, these authors determined (among
other things) that the range of recombination values can be partitioned into three
intervals: for small recombination values a single class of equilibria with rela-
tively high pairwise linkage disequilibrium values is stable; for large recombina-
tion fractions linkage disequilibrium is zero at the stable polymorphism while in
the intermediate range it is possible to have two stable situations for the same
recombination value, one with zero disequilibrium and one with high disequi-
librium.

In this paper we report primarily our results for the symmetric equilibria of
the three-locus symmetric viability model (which includes the simplest multi-
plicative model as a special case). In large part our findings for the symmetric
equilibria corroborate those which FrRankLIN and LewonTin (1970) obtained
numerically. The stabhility analysis for one class of symmetric equilibria, as re-
ported here, is not guite complete; but the analytic conclusions we make for the
stability of these are in agreement with the findings from a series of numerical
examples analyzed by computer. We also report a result for the simplest class of
unsymmetric equilibria. This result indicates a major difference between the
two- and multi-locus models.

The major conclusions of our analysis are the following:

1) For multiplicative symmetric viabilities and equally spaced loci, the conclu-

sions of FrRankLIN and LewonTtin (1970) hold: namely, for tight linkage the
stable equilibria exhibit high complementarity (i.e., high disequilibrium); for
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loose linkage there is stable linkage equilibrium; and in between there is a reglon
where both types of equilibria are simultaneously stable.

2) When linkage is tight but the loci are unequally spaced, two stable equilibria
exhibiting reduced disequilibrium can be stable simultaneously with the high
complementarity equilibria above.

3) For tight linkage but non-multiplicative symmetric viabilities, two new stable
unsymmetric equilibria exist simultaneously, but with the high complementarity
equilibria above. These exhibit pairwise linkage equilibrium but have third-order
linkage disequilibrium.

1. THREE-LOCUS MODEL

We consider three loci with two alleles at each. At the first, the alleles are A and @, at the
second B and b and at the third C and ¢. The frequencies in a given generation of the eight
chromosomes ABC, ABc, AbC, Abc, aBC, aBc, abC and abe are, respectively, z,, z,, Z;, Ty, L5, g T7
and z.. Random mating is assumed. The viability matrix we shall consider is detailed in (1.1)
below,

ABC ABc AbC Abe aBC aBe abC abe

Frequency z, z, Zy z, z z, z, z,
ABC 1-8 1-8,; 1-8, 1-9, 1-8, 1-9, 1-74 1

ABc 1-84 1-8 19, 1-8, Ly 1-8, 1 Lomy

AbC 1-8, 1-7, 1-8 1-8, 1-9, 1 1-8, 1-9,

(1.1) Abc 1-y, 1-8, 1-8, 1-8 1 1-n, 1-n4 1-8,

aBC 1-8, 1-74 19, 1 1-8 1-8, 1-8, 1-n,

aBc 1-y, 1-8, 1 1-n, 1-8, 1-8 1-9, 1-8,

abC 1-9, 1 1-8, 1-7, 1-8,4 1-9, 1-8 1-8,

abe 1 1-9, 1-n, 1-8, 1-9, 1-8, 1-8, 1-§

Thus the fitness of Abc/ABc is 1-8,, etc. All triple homozygotes are assumed to be equally fit.
Some of our analysis is restricted to the 8, = 8, = 8, ; n, = n, = u, case for simplicity. The
simplest symmetric viability fitness model would have the viabilities multiplicative also, so that
(1-8) = W3, 1-8,=1-8,=1-8, = W2 and 19, = 19, = 19, = W.

To complete the specification of the model, suppose that the recombination fraction between
the A-g locus and the B-& locus is r,, that between the B-b locus and the C-¢ locus is 7, and that
between the A-a and C-c loci is ry. If we assume that there is no interference as in much of our
analysis, then r, = r;~+r, — 2r,7,. Under the above assumptions the recursion system relating
the frequencies z’;, z’y, . . . , 'y in the next generation to z,, z,, . . . , Zg, those in the present,
is given by Table 1.

2. TRANSFORMATIONS

In KarLiv and Feroman (1970) the recursion system involving the chromosome frequencies
was transformed to a simpler more symmetric system which allowed the extraction of the
unsymmetric equilibria and the determination of their stability. The same technique is used here.
The appropriate coordinate system appears to be u;, i=1, ..., 7 with

U, =z, + 2, F 1, x - — T — L — I
u, =z, + 1, —x, —z, + 25 + 15 — 1, — x4
u, = — 2, + 2y — 3y + x5 — 2 + T, — I
2.1 u, =z, — 2, — 2, + 1, — x5 + 25 + 1, — T4
Uy =2, +zr, —x, —x, — x5y — 15 + T, + T
Uy =1, — 2, + 2, —x, — x5 + 75 — 2, + I
U, =z — 1, —x; + 1, +x; — 1 — T + oz
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TABLE 1

Recursion equations for the three-locus, symmetric viability model

-v-:xi =wx - rl{(l-ql) (xlx7-x5x5) + % Al] - rz{(l—nz)(xlxl\L—x2 5) + = AZ) - r3((1-q5)(xlx6-x2x5) + = A }
el =k = v (1) ) (g %) + %Al] + 1, (1) (e, 3, ) %AZ] + 1 (10 ) (xy gmiegieg) + 24,
e = Wty o+ x {(Lem ) (e ppmxgag) I RERCENCERCNES Az] - Tal(1y) (g, ) %As]
we = wyx +or ((1-n, ) (egrgx 5 + %Al} - rpl(a-np) (e x u'xz’%) * %Az] * 1l (l-ng}(xgxg-xx,) + %As}
gy = wgke + w) (10 ) (xyRpmagn) + %Al} - 7, ((1-np) (mgngsginy) + %’Az} + g {(1-n,) ey ngpxg) + %‘%3
w}xé = R + rl{(l-nl)(x2x8~xj+x6) + %Al] + rz[(l-nz)(x5x8-x6x7) + %Az) - rs{(l-ns)(xlxé-xzx5) + %AS}
;Jx% =X, - rl((l-nl)(xlx7~x3x5) + —JziAl} + I‘z{(l-’]z)(XBXS-XG}(?) + %AE} + rs{(l'qs)(XZXB'Xuxﬂ + %As}
vy = wgitg = x, {10y ) (g, %6) + %Al} - 7 l(2mmp) (egrgery) %Az} - 72 ) (ngug ) + %Asl
where
w, = marginal fitness of the i ganete

eg. Wy = (L8 =B 2y B No¥), By~ 1K=y g )
&y = Xy¥g b XXy = XXp - HXg s by = XyXg = Ky - KgXe ¥ HXg By = EXg = EXy + XHs - K Xs
and

8
_=z X, W
i=1

From (2.1) we can write the z’s as functions of u's as follows:

(2.2)

When (2.1) and (2.2) are applied to Table

T, =

z, = (I + vy + wy — vy — u, + uy —
2y = (1 + v, —w, + ug — u, — uy +
=1+ u —u —u, + v, — uy; —
z; = (U — oy + uy + vy —uy, — uy —
o = (1 —uy + uy, —uy + v, —uy +
2, = (1 —uy — uy, + vy + v, + vy —
g = (1 —u, —uy — uy — u, + u; +

Ug —

Ug

Ug

Ug
Ug
Ug
ug +

1 the recursion system simplifies

shall deal primarily with the transformed system (2.3) in what follows.

wu', =u (1

8
— Bljﬂ——w 2u5(33 —B,+7,—8) +
—!— (Bl-i—ﬁg 7,—8)

8
—;——fﬁ——) Jrﬁj (By—B,+7,—8) +

3 6

Ug 7

(1+u1+uz+u3+u4+u5+u6+u7)/8

u,)/8
u.)/8
u;)/8
u.)/8
u,)/8
u,)/8
u.)/8 .

substantially. We

+
+

(181 Bs+7]2—8)

(B1 .32+W3’—6)
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u_:‘u—s (181_{"[;2"773_8)
_ 8§ B.t8 nu wu
Dy = gy (1 — = = ) (B ) + T (BBt —8)
2% (BB
'z‘“ 2 3N )
8 u,u uu
Dy = (1 e 2 2 L (g 8) + 2 ()
{—
@23) + 22 (1 Fy—8) — ﬁ<_2_’71>_ (g titgtty—ugu,—ueyug)
1— 1—
- ral 5 712 (utu e, —uug—ugug) — ’ri('z—ji)‘ (g tuyug—w ;)
_ ., 8 B u U u 7}
wu's =us(1 ~;——j—’;—1)+—aﬁ(nl—ﬁr5)+ 1”4 (By—m—8)+ = (Bytm—8)
- r_; { (A=) (s—uuytug,—ugu;) + wy — wyuy, — uglt, - g}
_ ) B wu usu
Dy =gl ) R, —0) 4 (= 8) 2 (Byr—)
- % {(1—_773) (ua_u1u3+u2u4—u5u7) + Ug — Uglly — Uyl + u5u7}
o, 8 B Ugld
Dy = (4 — = — ST B g ) Sy =8 (Bt )
— % {(U—np) (uptuyu,—uu,—uguy) + v, — wyu, — uuy - ugl}
where
7
D=1 ___Z__ :81+w32+ﬁ3:'7l1+772+773 + Z uiz Ci
with =1
¢ = (B, +B;— B+ —u + 1, — 8)/8
C; — (—‘B1 —_ ‘32 -+ Bg -+ M1 -+ Ny — W3 — 8)/8
03:(Bl"—ﬁg_ﬂ3—"11+7]2+7]3_6)/8
(24‘) 04:(ﬁ1+ﬁz+ﬁ3-—‘ﬂl—"ﬂ2—'ﬂ3'—8)/8
C; = (—Bl+ﬁ2+33~71+772+773—8)/8
66:( ﬁ1+182_33+771+772_773‘_8)/8

C7 ( ﬁl_"pz + Bg+ 771_7’2‘_!- 773—8)/8

Equations (2.3) are analogous to the system (2.7) in KarLin and FeLoman (1970). We shall
use them in the next two sections to determine the equilibria of the original system (Table 1).

It has been common practice in discussions of two-locus models with two alleles at each locus
to transform the gametic frequencies into two gene frequencies and a coefficient of linkage
disequilibrium, i.e. the frequency of the gamete AB can be written

Pap=pspp—D
where p, and py are the frequencies of the alleles 4 and B and where D, the linkage disequi-
librium between the A and B loci, equals p,zPp — PapPes
Similarly for the three-locus model the gametic frequencies can be completely specified with
three gene frequencies and four disequilibrium parameters. If we let p,, p, and p, be the gene
frequencies of the alleles A, B and C, respectively, and let D,, be the coefficient of linkage
disequilibrium between locus 1 and 2, etc., we can also define a fourth coefficient of disequilibrium

(2.5) D,y =2, — p Doy — PoDyz — paDiy — Papaps s
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see BENNETT (1954). In terms of the above transformation we have

1
Py = E (1+u1> ’ i = 15 25 3
1
D, = = (us—u,)
1
(2.6) D, = ” (ug—u,u,)
1
D,y = @ (U —uyuy)
1
D,, = 5 (u,—ugu,—uue—u 20, uu,)

3. DETERMINATION OF THE SYMMETRIC EQUILIBRIA

(A) General parameters: In accordance with the terminology of the two-locus symmetric via-
bility model we term those equilibria (i.e., solutions of (2.3) with primes deleted from the left-
hand side) which have

G.1)(a) L) =g T =Ty Tz = Ty Ty = Ty,

symmetric equilibria. This is the same as

(3.1)(b) U, —u,=u; —u, —0.
Also, from (2.6) we have
(31)(0) p1:p2:p3:0‘.5, D123:0

and u;, u,, u, are measures of linkage disequilibrium between loci 1 and 2, 1 and 3, and 2 and 3,
respectively.
The equilibrium version of (2.3) can be more concisely written as follows:

(3.2) (1) w* uy = cquy + v (e ;) + wgug (cotey) - ugteg (catcg)
(i1) w* 1, = cyu, + uug (e, 4-cg) + uugle,tcg) + wgu, (e-tc;)
(1) w™ uy = cuy +- waug(e,F-cg) + wpu, (eytc;) + uyugle,+c;)
(v)  w'u,=cu + wu(ete;) 4 upug(e,teg) + ugus(c4-c;)

ry(1—mn,) ry(1—n,)
_ _1_2_1_ (wyFugu—uu,—u,ug) — _22_2

- 7‘3(1-——-113)
2
(v)  wruy=cyuy - uu, (e 4e,) Fugu,(etc,) + ug (cgte;)

— —;—1 {(1—n,) (u —uguytuu,—ugu,) + ug — wu, — ugty + ugu}
(Vi)  w* g =cguy +uu, (e te,) + uu (e, + ugu (cstc;)

— ; {A—,) (ug—ryustusu,—uu,) + vy — wu; — uyu, + v}
(vil)  w*u, =cu, + wu,(c,4c,) + wu, (e, te,) + uu e +4eg)

r
2
-5 {(1—n,) (uptu v —rpu,—ugu,) + 1, — wyu, — uyuy + w1}

(w1 —uy g — i)

(uytuug—u u—uguy)

where w* =327, | u?; ¢; and the ¢; are given by (2.4).
Substituting (3.1) (b) into (3.2) the symmetric equilibria are seen to be the solutions of the
three simultaneous cubic equations
. i i 1
(B3)[1) (X w¥eu; = cpuy + ugup(cgte) —ry {(1— ?1)“5 + El tgity }

i=5
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7
1) (S u?ie;)uy = cgug 1+ ugu, (ctcy) — rg {(1— 1;—3)u6 -+ % ugl}
i=5
7.
(@) S urie)u, =cguy 1+ ugug(egtcg) —r, {(1— 7;—2) u, - ?21 [TRIN
i=5

There are three classes of solutions to (4.3) depending on how many of u;, u, and u, are
zero. The first solution is obviously that given by &; = &t = &, = 0, namely

(3.4) _7:“1:1"2::23=£4:£5:i6:_f7:1‘8:1/8_
(We use hats to denote equilibrium values). This could be termed the “central solution,” not
only because of its obvious evenness property but also as it is the only interior (i.e., all chromo-
somes present) solution when r, =r, =7, =0.

The second class of three symmetric solutions is given by

(3.5) (a) u; 70, uy=u; =0
(b) U 70, us=u, =0
(c) u, 70, uy—=u;=0.
If u; 550 and w; = 1, =0 then from (3.3) (i)
1—1
(3.6) (a) ﬁ5:i-\/1—il—(———-é—zll~, b=, =0
Cs
so that
(3.6) (b) 2 —xs—xz_—:c7 (1)

=2 =2, = 1= Y(1xL)

If ug 5 0 and i, = &, = 0 then from (3.3) (ii)

1—1

(3.7) (a) ﬁezi\/i——w, fy=a,=0
[

so that ¢

(3.7) (b) B =By = £, = 2, = Y (124,)

2, =%, =%, =%, = Y (1=xd,)

If u; 5 0 and &; == &, = 0 then from (3.3) (iii)

1—1

(3.8) (a) ﬁ7:i\/1__’1(__ﬂ, =, =0
C,

so that !

(3.8 (b) Bk, =, =, = Ye(1%4,)

P, =% =%, =2, = (=i,
It is obvious from (3.3) that two of &, &, and &, cannot be nonzero with the third zero.
Therefore, the final class of symmetric equilibria is of the form #; 7 0, &; 70, &, 7 0. From

7
(3.3), writing 0* =2 u2c,;
i=5

‘We have

BN wr=c = (ete,) —r{(1— 2t

(b) =g == i (eser) —ry((1—gY +
(c) =c; l;5 G (estcg) —

Now define !

(3.10) g, =2k

Uy

=

72{(1_"_') +

2y
5
ugl,
(&
Ug
uﬁu6

)}
)}

7

g

iy
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Then from (3.9) (a) and (b) we have
Ce—C + 71 (1—724/2) — ry(1—n3/2) + &x(c5t-cr—ryn/2)
Cotc; —rn /2 )

(3.11) &=

while from (3.9) (b) and (c)

Com—ty F ra(1—1,/2) — ry(1—n/2) + &, (cse—rg15/2)
Cxtce—Tom,/2 '

Now treating (3.9) (b) alone and using (3.10) we have

(3.13) esfoly Tt Cofafs T €rb16, = ot Ex (et —Tgny/2) — ry(1—15/2).

Substituting from (3.11) and (3.12) for ¢, and &; (3.13) reduces to a quadratic equation in &,
alone. This can be written as

(3.14) K2, + K\, + K, =0
where

(3.12) £ =

K, = By(cyB; + ¢;Bg - ¢,B;)
K, =¢;B,(A;—A;) + ¢;B;(A;—A;) + ¢;Bg[24,—A;—A;] — B;BeB,
Ky =cs(A—A;) (Ag—A;) — A BB,

with

71
A, = — 1——=
5 Cs ry( 2)

3
A, = —_r,(1—=
6 Ce 3 2)

A, = ¢, — rz(i—z;E

By = oy o — 20
B, =¢; + ¢, — E;—S
By= o5+ 0 — 2

Now (3.14) produces two equilibrium solutions for £&,, namely £,(2) and ¢,(2). We therefore
have, from (3.11) and (3.12) the two solutions (in terms of £s) (£, ), £,V £,(1)) and (£,(2),
£,(2), £,2)), Now, for these we have, possibly
(3.15) 2,0 = ® \/£WED, 2,0 = £ /e WEM, 1) = /g MED
and
(B16) 2,0 = = VEOE®, 8,0 = % VEDED, 5,0 = £ VEOLD.
There are real solutions for #,, &, and 4. if &, &, and £, are all of the same sign, If, for example

50 Ug (RN ST 3
£, > 0, the possible sign configurations are

f, >0, 2,>0, &, >0
f, >0, 2, <0, &, <0
<0, 3, <0, ;>0
2, <0, 1, >0, 4, <0

with the other four possibilities invalid. If §2(1) < 0 similar considerations dictate that only four
valid equilibria exist. 1dentical arguments for éz(z) produce a maximum of four further valid
equilibria. In total, therefore, a maximum of eight symmetric equilibria with &, 70, &, 70,
i, 7 0 are possible. The solutions are specified by (3.10), (3.14), (3.11), (3.12) with the
appropriate sign considerations.

(B) A Simpler Parameter Set. For stability analysis the equilibria treated last in §3A are rather
complicated unless some additional assumptions are made about the parameters, For the analysis
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to be carried out in §5 and §6 this is seen to be most important for the u; 70, 1, 7 0, u, 0
equilibria. Suppose therefore that r, =r, = r, so that assuming no interference, ry = 2r(1—r)
which we now write as R, and that for the selection matrix, 8, =8, =8, =8; 1, =1, =
73 = 7. The system now involves the four parameters 8, 8, 7 and r, one more than the simple
Lewontin-Kojima two locus model. Equilibria (3.6}, (3.7) and (3.8) do not simplify any further
except that ¢; = ¢, = c,. In fact we have now

+n—8 38—39—3 7—pB—
(3.17) c5=c6:c7=B 5 y Oy = i 5 , € == ——-—l;——
Clearly for (3.6), (3.7), (3.8) to be valid 8+ # - & must be positive. This will be assumed
unless specifically mentioned.

= ==C

Let us reexamine the case #;50, &7 0, &, 70 with the simpler parameters. From
(3.3)(1) and (3.3) (iil) it is easy to verify that we must have

(3.18) (a) &; = 1, or (b) &y = —i;.
Consider first 4, =, and (3.3) (i). We have, dividing by u5,
B+n—38
(3.19) s (Qu2+tul2—1) = —r(1—y/2) + ue( + —rn/2).

Replacing the term in parentheses on the left side of (3.3) (i1) by the right side of (3.19),
(3.3) (ii) is seen to reduce to

—38
—(r—R) (1—/2)ug + ug? (ﬁ—l;’i_ —ry/2)
(3.20) (a) u? = i
(—Z—— — Ru/2)
Substituting (3.20) (a) back inte (3.19) produces the quadratic equation in .
—8 — —& 3

up B BETE ) +B+" <B+Z — Ra/2)

6an@ I eomyay + EE ey 2 + — B1/2)}
—8
<B+’; ey T2 + — Rn/2) =0.

For each of the two possible roots of (3.21) (a) we have two possible Z; values given by (3.20)
(a). When i; =17, there are therefore four possible equilibria of the form &; =12, #0,

i, # 0.

For solutions of the form u,; = —u, the same procedure produces
—B) (=12 2 EETE )
-
(3.20) (b) ? = '3_‘:’—“_ o
and (3.21) (a) becomes
uf[‘”j“s i N S s L s VY
Gan® +uTE om e + EE ~_ o EXTE pay2))
—(B—j:’—i— (=2 ET2 sy =o.
So there are four possible solutions of the form &, = —d; 7 0, s 7 0. Thus the total possible

number of equilibria in the third class is eight.
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4. EXISTENCE CONDITIONS FOR THE SYMMETRIC EQUILIBRIA

‘We have divided the symmetric equilibria into three classes.
Class 1. The central solution given by (3.4), thatis, &, =4, =a, =0orz; =1%,i=1,...,8
Class 2. The solutions (3.6), (3.7) and (3.8) obtained by equating two of u;, u,, u,; to zero.

2(a) fmRy =i =t = Yl £ 8y, B, =i, =2, =3, =% F )

2(b) f=mg =ty =t =Y 2y, £,=2 =i, =% =% F )

2(c) =%, =% =5=%0x1a), =8, =1;=% =%l xd)

Class 3. The solutions in which &, 0, &, # 0, i, 7 0.

(A) Equilibrium Class 1. The solution z; = %, i =1, . . . , 8 exists for all recombination and

selection parameters.

(B) Equilibrium Class 2. Note that if the gametic frequencies are to be in the correct range
it is necessary that %@, &, and #, are each less than 1 in absolute value. Hence the existence
conditions for equilibria 2a, 2b and 2c are

(4.1) (a) c; >0 and ¢;>r (1 —1%n,)
(4.1) (b) ¢ >0 and ¢, >r,(1 — 1% 7,)
(4.1)(c) ;>0 and ¢, >r,(1—1Y1,).

(C) Equilibria Class 3. (Existence of the &, 7 0, &, 7 0, &, 5= 0 equilibria)

For simplicity consider only the parameter set described in 3(B). As shown in that section,
there may be eight equilibria of this form, four with #; =2, and four with &, = —i,. The
former are given by (3.20)(a) and (3.21)(a) and the latter by (3.20)(b) and (3.21)(b). The

analysis is rather tedious but we have included some of it, for the case &; = i, as an appendix.

B4-1—

3
The main points to make are that over the range 0 <r < _BZI_—/Q—)’ four valid equilibria
. -
B+4—38

always exist and an additional four exist for r near 0. For r > —m either eight or no
"
valid solutions exist. For larger r no valid solutions exist until near » = 15 where eight valid
solutions exist, depending on the selection parameters.
Thus the class 3 equilibria may exist simultaneously with the “central solution” (class 1)
and with the class 2 equilibria.

5. STABILITY OF THE SYMMETRIC EQUILIBRIA (Classes 1 and 2)

‘We shall now consider the local stability of the symmetric solutions determined in 3(A).
Suppose that each u; differs from its equilibrium value #; by a small amount §;, and by an
amount §;’ in the next generation. Ignoring small order terms gives

(5.1) 8 =Ms/w
where M and w are given in Table 2. The equilibrium is locally stable if all eigenvalues A;,
i=1,...,7 of M/w are less than unity in absolute value.

Solution (34). £, =2,=2, =%, =%, =%,=%, =3 =Y%.
Substituting u; =0,i=1, ..., 7 in (41) produces a diagonal matrix for M. The requirement

that the seven eigenvalues of M/w be less than 1 in absolute value gives the following stability
conditions for the “central solution.”

(5.2) (a) ¢, <0
(b) ¢, <0
(e) <0
3
@ e, <¥% = r(l—m)

=1

(e) c;<r(1—1%5mn)
£) e <r,(1—1Y%19,)
(g) C7<T2(1 _1/21’2)'
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Obviously conditions (5.2) (e), (f) and (g) preclude the existence of the class 2 equilibria (3.6),
(3.7) and (3.8), a situation which should be compared to that for loose linkage in the two-locus
model. Condition (5.2)(d) precludes the existence of an unsymmetric equilibrium which we
shall discuss later. Conditions (5.2) (a), (b), (c) have no obvious analog in the two-locus model
but, if fitnesses are multiplicative, (5.2) (a), (b), (¢) are automatically true, as is (5.2) (d).

If the three loci have the same viabilities, ie. 9, =9, =9,=1, and 8, =8, = B, =4,

then ¢, =¢, =¢, = ﬂ—§—5 y €y = 3'3_3;—8 , €y = Cg=1C; = Eﬂ:s—, and (5.2) becomes
(5.2)' (a) B—1+8>0
) rdrhr> 18
nbretn> T
B+nr—8
© T S

The stability of equilibrium (3.6) is discussed in Appendix B using this simplified selection
scheme and assuming no interference so that r, = r, + r, — 2r,r,. Appendix C contains a similar
stability analysis for the equilibrium with @, % 0, &, 55 0 and &, 7 0 specified by (3.21) (a).

6. TWO SIMPLE UNSYMMETRIC EQUILIBRIA

In the two-locus symmetric viability model, KarLin and Feroman (1970b) proved the
existence of four and the stability of, at most, two unsymmetric equilibria for moderate to loose
linkage. The region of stability of these apparently does not overlap the stability region of any
symmetric equilibria.

Now return to (3.2) and assume w, = u, = u, = u; = u, = u, = 0, but u, % 0. Then from
(3.1)(b) any solutions will be unsymmetric. Using the simpler parameter set (3.17) we solve
the quadratic to find

3
_2 r,‘“*’],‘)

=1

(6.1) i, = =* 1—
2¢,
The existence conditions for (6.1) are clearly
(6.2) ¢, >0
and
3
(6.3 0<% = ri(1—y,;) <e¢,.
=1

It is important to note from (4.2) (b) that (6.3) precludes the stability of the central equi-
librium (3.4). Thus these unsymmetric equilibria cannot exist when the central equilibrium is
stable. Note also that when the viabilities are of the simple multiplicative form condition (6.2)
is not satisfied and the unsymmetric equilibria cannot exist. These unsymmetric equilibria are
of the form
s (1 +4,)

e (1 x4,

and from (2.6) we see that each of the gene frequencies is 0.5, that all pairwise disequilibrium
ccefficients are zero but the third order interaction D,,, is not zero and is equal to 14 &,. The
type of linkage disequilibrium exhibited by this solution could not be detected by measuring
correlations between pairs of loci.

When r,, r, and r, tend to zero these unsymmetric equilibria are of the form (14 ABC, 14 aBc,
14 Abc, Y4 abC) and (Y, ABc, Y4 aBC, Y4, AbC, 1, abc). Tt is not difficult to prove that when the
r’s are zero the latter two equilibria are stable if > 8 and 38 — 35 — 8 > 0. For tight linkage,
these unsymmetric equilibria (6.1) may be stable. The precise conditions for stability are given
by the roots of three quadratic equations., A more detailed analysis is presented in a forth-



SELECTION WITH THREE LOCI 147

coming paper on the unsymmetric equilibria. It is important that these two unsymmetric equi-
libria may be stable simultaneously with four of the symmetric equilibria. Example 6 of §7 is
a numerical case where this happens.

7. NUMERICAL EXAMPLES

In the following eight examples we shall discuss three models to illustrate the existence and
stability conditions for the symmetric equilibria. For simplicity we shall consider only models
in which all loci have equal selective values, hence 7, = N, =1n;=1, and B, = B,= B, = 6.
The selective values 1, 8, § are shown in (7.1).

7 B S =0y =0C [A Cp = Cg = ¢y
Model 1 0.2 036 0.488 —0.081 —0.001 —-0.009
(7.1) Model 2 02 037 0.45 —0.0775 +0.0075 ~+0.015
Model 3 —0.2 —0.44 —0.728 -+0.121 -+0.001 +0.011

Model 1 assumes overdominance at each locus and multiplicative interaction, Note that (1—g8) ==
(1—»)2 and (1—8) == (1—9)3. The first five examples illustrate the symmetric equilibria for
these selective values, and in the first four of these it is further assumed that r, =r, = r and
Bt1—3
8(1—7/2)
and r** = (.1 (see Appendix C) and the equilibria divide r, into five regions shown in 7.2,

ry=ry -} r,—2r,r, =R (ie., no interference). In this case r* = 0.0050253, =0.01

Number of equilibria

Class 1 2 3 Total Number stable
0.0 < r, <.0047327 1 6 8 15 4
0047327 < r, < .0050253 1 6 4 11 4
(7.2) 0050253 < r; < .0100000 1 4 4 9 4
0100000 < r, < .0104272 1 0 8 9 5
0104272 < r, < 0.5 1 0 © 1 1

Example 5, in which r, = r,, shows a situation in which six symmetric equilibria are simul-
taneously stable.

Examples 6 and 7 illustrate equilibria for model 2, in which all loci are overdominant but
do mot interact multiplicatively. The symmetric equilibria for model 2 are similar to those for
model 1, but the existence and stability of the unsymmetric equilibria are very different in the
two models. Model 3 is a symmetric underdominance model, with multiplicative interaction.
Again all equilibria exist for small recombination values but none are stable (Example 8).

The Class 1 equilibria are given by (3.4), Class 2 equilibria by (3.6), (3.7) and (3.8), and
the Class 3 equilibria are those with 7, 5% 0, G 7 0 and 4, 5 0 and are given by (3.18), (3.20)
and (3.21) when r; =r, and by (3.10), (3.14), (3.11) and (3.12) when r, 5= r,. The appropriate

. 1 oo '
eigenvalues have been found from the matrix — M (see Table 2) at the equilibrium values.
17/

EXAMPLE 1

—38
Class 1. From (5.2) this equilibrium is unstable as r < f—_!;ﬂ—— .

7
8(1—)

Class 2. The three classes of equilibria exist. Class 2b equilibria are always unstable, From
(B.7) 2a and 2c equilibria are unstable since r, =r,.

Class 3. The range is 0 < r < r*, so for  near zero there are eight valid solutions. From (C.2),
As] <1 for &g > 0 with &, = &, and for &, < 0 with 4, = —i,. These four solutions also
satisfy (C.4) and (C.6), so we would predict stability. The other four solutions do not satisfy
(C.2) and are unstable.
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Selection coefficients: 7 = 0.2, 8 = 0.36, § — 0.488
Recombination: r, =.004, r, = .004, r, = .007968

Gamete Frequencies
Equilibrium 1, ﬁ6 a

5

1 .0000000  .0000000 Q000000 .1250000 .1250000 .1250000 ,1250000 Unstable
J77H5967  .0000000  .0000000 .2218246 .2218246 028175k .0281754

7 Xl=X8 X2=X7 X3=X6 XL;.:X5

za 7145067  .0000000  .0000000 | .02B1754 .02B175h .22187h6 .22182kg) URStable

- 0000000 L507771 0000000 1812471 L0686529  .1813471 .0686529} Unstable
.0000000 -.4507771  .0000000 0686529 .18134k71 ,0686529 .1813471

2 .0000000  .0000000 7745967 .2218246 .0281754 .0281754 .22182&6] Unstable

¢ .0000000 ..0C00000 ~.7745967 .0281754% .2218246 .2218246 .0281754%

.8689615 7636253 .8689615 4376935 .0295468  .0032128  .0295468

Zai .8689615 -.7636253 -.8689615 L0295468  \L376935  .0295468  .0032128 Stabl

el -.8689615 -.7636255 .8689615 | .0295468 .0032128 .0295468 .4376935[ ©VAPI€
-.8689615 .7636253 -.8689615 .0032128 .0295468 4376935 0295468

.1205105 -.2579422  .1205105 .1228849 1572428 .0626296 .1572428
.1205105  .25794%22 -,1205105 L1572428 1228849 .1572428  L0626296
-.1205105  .2579422 1205105 .1572428  .0626296 .1572428 .1228849
-.1205105 -.2579422 -,1205105 L0626296 .1572428 .1228849 .1572428

daii Unstable

Eigenvalues

1 1.007%074  1.007407% 1.0025086 0.9898667 0.8888889 0.8888889 0.8888889
2a,2c 1.0160818 0.9852941 0.979055% 0.9760523 0.9582938 0.888888% 0.806k121
2b 1.0157422 0.9949953 0.9940308 ©.9851653 0.9310744k 0.8888889 0.8522548
3ai  0.9694377 0.9640507 0.9574303 0.9951389 0.9551389 0.9L00L55 0.71k1235
3aii  1.012kh0L 1.0046362 0.9943337 0.9873%055 0.9228028 0.87971.99 0.8623955

—§  EXA
Class 1. Unstable as r = B8+t MPLE 2

7
8(1 ) )
Class 2. Solutions 2a and 2c¢ are unstable since r; = r,,.
Class 3. The range is 0 < r < r*, but with r very close to r*, so there are four valid solutions.
From (C.2), |»;| <1 for &; > 0 with &, =4, and for 4, < 0 with &, = —-ii,, and these solu-
tions also satisty (C.4) and (C.6) so we predict stability.

Selection coefficients: 7 = 0.2, 8 — 0.36, § — 0.488
Recombination: r, —.005, r, =.005, r, = .00995

Gamete Frequencies

Equilibrium us 1.16 u,l. Xl = x8 x2 = x7 x3 = XG xl+ = x5
1 .0000000  .0000000  .0000000 | .1250000 .1250000 .1250000 .1250000 Unstable
o .7071068  .0000000  .0000000 | 2133853 2133835 .0366117 .OB66L17) oo\
-.7071068  .0000000  .0O00000 | .0366117 .03661L7 .2133833 2133833 &
b .0000000  .0707107  .0Q000000 .1538388 .1161612 .1338388 .1161612) Unstable
.0000000 -.0707107  .0000000 | .1161612 .1338388 .1161612 ,1338388° UBSta
o0 .0000000 0000000  .7071068 | .2133853 .OS66117 .0366L17 .2133833) .\ ..
.0000000  .0000000 ~-.7071068 | .0366117 .2133833 ,2133833 .0366117° roceble

.8277110  .6985331L  .8277410 1192510 0376834  .005381k  .0376834
.B8277410 -.6985331 ~.8277410 L0376834  .4192519  .0376834 005381k

sai -.8277410 -.6985331 .8277510 | .037633k .005381k .0376834 .hlozsig| Steple
_.8277410  .6985331 -.8277510 | .0053814 0376834 .4192510 .0376834

3aii No Solutions Exist

Eigenvalues

1 1.0061728 1.0061728 1.0000617 0,9876818 0.8888889 0.8888889 0.8888889
2a,2¢ 1.0138682 0.9877306 0.9800582 0,976169L 0.9528448 ©.8888889 0.8140263
2b 1.0078081L 1.004413%k  0.9998766 0.9875659 0.8958174 0.8888889 0.8818507
3al  0.9737436 0.9672149 0.9590359 0.9555496 0.9555496 0.9363980 0.7248958
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EXAMPLE 3

+1—8 B+n—

8
Class 1. R is greater than —'E although r < —————. Hence the central solution is
n L)
8(1—— 8(1——
( 9') ( 2)

still unstable.
Class 2. Since r, = r, solutions 2a and 2¢ are unstable.

Btn—8

Class 3. The range under consideration is r* < r < so a total of four valid solutions

n
8(1——
( 2)
exist. Those four satisfy (C.2), (C4) and (C.6). Thus we predict stability.

Selection coefficients: » = 0.2, 8 = 0.36, § — 0.488
Recombination: , = 0.006, r, = 0.006, r, = 0.011928

Gamete Frequencies

Equilibrium ﬁ5 66 ﬁ7 X =Xg Xy =X Xp=Xg X =Xy
kR » 0000000 Q000000 » 0000000 .1250000 .1250000 .0250000 .1250000 TUnstable
2, .6324555 . 0000000 + 0000000 .2040569 .2040569 .O459431 -O!I-59!I-3l] Uns t T;l
~.6324555 . 0000000 . 0000000 LOh50431 LOL59E3L 2040569 .2040569 able

2b No Solutions Exist
.0000000  .0000000  .6324555 . 2040569 .OL59L31  .OL5943L . 2040569

2e .0000000 0000000 -.6524555 | .OkSGh3L .2040569 2040569 .Ohsgksl) Unstable
.7813211  .6297h07  .7813211 .3990479  .0k6282k .0083873 .0h6282%

301 .7813211  -.6297407 -.7813211 .0h6282% L 3990479 0462824  .0083873 Stable
~.7813211 -.6297407  .7813211 .oh6282h  ,0083873 .oh6282%  .3990479 &
- 7813211  .6297H07 -.7813211 .0083873 .oL62824 .3990479 .O46282%

3aii To Solutions Exist ”

Eigenvalues

1 1.0049383 1.00%9383 0.9976198 0.9854990 0.8888889 0.8888889 0.8888889
2a,2c 1,0115645 0.9901720 0.9811529 0,9762883 0.9466787 0.8888889 0.8223631
3ai  0.9780822 0.9705269 0.9608497 0.9557872 0.9557872 0.9324650 0.7366237

EXAMPLE 4

Class 1. The five conditions in (4.2) are satisfied so this equilibrium is stable.

—p—8
Class 2. No equilibria exist as r > E—”— .
]
8(1——
( ) )
. . Btnr—s . .
Class 3. The appropriate range is ——— < r < r**. The coefficient of the uz, term in (3.21)
7
8(1——
( > )
(a) is negative so when 7, = &, there are two positive &, solutions, when #; — —i, there are

two negative i, solutions. Together there will be eight valid solutions. All will satisfy the con-
dition (C.2). From (C.4) |A,l, |A,| are less than 1 for the largest &, solution when #; =, and
for the most negative #, solution when &, = —,. These four solutions also satisfy (C.6). The
other four solutions do not satisfy (C.4) and so are unstable.
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Selection coefficients: 3 = 0.2, # — 0.36, § = 0.488
Recombination: r; = .0104, r, = .0104, r, = .020584

Gamete Frequencies

Equilibrium ﬁS GG ﬁ7 X; =Xg Xy =X, XKg=Xo X =X
1 .0000000  .0000000 . CO00000 .1250000 .1250000 .1250000 1250000 Stable
No Sclutions Exist
.3306752 . 1490700 3306752 .2263026 1063663 .000SERT 1063663
Zai 3306752  ~.1490700 ~.3306752 L1063663  .2263026 .106366% 0609649 Stable
* -.3306752 -.1490700  .3306752 .1063663  .0609649  .1063663 .2263026
-.3306752 1490700 -.3306752 L0609649 1063663 .2263026 .1063663

.2390673  .0857899 2390673 L1954006  .1142763  .0759569 .11L2763
.2390673  -.0857899 -.,2390673 L3114 2763 .1954906  .1142763  .0759569
-.2390673  .0857899 -.2390673 L1142763  .0759569 1142763 .1954906
-.2390673 -.8857809  .2390673 L0759569 1142763 .1954906 . 1142763

Sail Unstable

Eigenvalues

1 0.9995062 0.9995062 0.9869337 0.9759211 0.8888889 0.8888889 0.8888889
Zai  0.9994567 0.993084k 0.9786195 0.9708758 0.9262588 0.9909323 0.8337191
3aii  1.0003L05 0.9960142 0.9821135 0.9732860 0.9173472 0.8960161 0.8504754

EXAMPLE 5

—38
Class 1. Unstable as r;, < ﬁ_‘i‘_ﬂ_ .

]
8(1—)

Class 2. Only the class 2a solutions exist. The value of the quadratic ar?, -+ br, -+ ¢ in (B.7)
is +1-0.00000056, implying that M, is just slightly less than 1. In fact, from the numerical work,
A = 0.9999188. Note that with the above selection values and r, = .0099 but r, = .0102, then
A, is just slightly larger than 1.

Class 3. Consider the existence and stability behavior for r, = r, = 0.01, R = 0.0198. This is

—3
the point r; = fﬂ— . The coefficient of the u, term in (3.21) (a) is negative so for r, slightly
7
8(1——
. ( 5 )
less than — there is one valid &, solution producing two equilibria of the form #; = 2,.
]
8(1——
( 3 )

Simjlérly (3.21)(b) gives rise to two valid equilibria of the form i, < 0, &, = —#,. These
solutions will satisfy (C.2), (C.4) and (C.6). We cannot a priori predict whether the remaining
four should exist here due to the difference between r; and r,,.
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Selection coefficients: » = 0.2, 8 == 0.36, § = 0.488
Recombination: r, = .0099, r, =.0103, r; = .019996

Gamete Frequencies
Equilibrium ﬁ5 ﬁ6 ﬁ7 X =X Xy =Xy Xg=Xg o X =X
1 .0000000  .0000000 0000000 .1250000 ,.1250000 .1250000 ,1250000 = Unstable
> .1000000 0000000 0000000 L1375000  .1375000 1125000 +11250004  gpovae
& -.1000000  .000000C  .0000000 .1125000 .1125000 .1375000 .1375000
b No Solutions Exist
2c
JLLbs181 L23h1716 LL2k3619 .2628815 .0982481 .Ob56614 0932090
Zai Ahhs181 -, 2341716 - L2k3619 .0982481 ., 2628815 .0932090 .O45661L Stabl
at SJLhh5181  -.2341716 0 .h2h3619 | .0932000 .o45661h  .0982481 2628815 anLe
- 4445181 .2341716 ~.42436190 LO45661h  ,0932090 .2628815 .0982481
.1175182 0084034k . 0L0B655 L1458359  .1335187 .1062650 .1143805
.y .117%182  -.008403% -, 0L0BESS L1335187  .1458359  .1143805 .1062650 Unstabl
ali - 1174182 -.008L03%  .OBOB655 | .1143805 ,1062650 .1335187 .1458359 €
-.1174182 0084034 -, 0408655 L1062650  ,11k3805 .1L458359 .1335187
Eigenvalues
1 1.0001235 0.9996296 0.9876592 0.9765728 0.8888889 0.8888889 ©.8888889
2a 0.9999188 0.9997531 0.98712k7 0.9763425 0.8986545 0.8888889 0.8789038
3ai  0.9972622 0.989136h 0.9745238 0.9678262 0.9352954 0.9071496 0.8136178
3aii 1,0001069 0.9995003 0.9868492 0.9762168 0.9007831 0.8893363 0.8762050
EXAMPLE 6a
Selection: coefficients: y = 0.2, 8 =037, § = 045
Recombination: r, = .001, r, =.001, ry; = .001998
Gamete Frequencies
Fauilibrium 65 ﬁ6 ﬁ7 X=Xy Ky = E; Xp=Xg o ox o= %5
L .0000000  ,0000000 0000000 .1250000 .1250000 .1250000 .1250000 Unstable
2 .8717798  .0000000 0000000 .2339725 ,2339725 0160275 .0160275} Unstabl
& -.8717798  .0000000  .0000000 | .0160275 .OL60275 .2859725 .2339725° o0 o0i€
- .0000000  .7224403  .0ODOC00 .2153050 0346950 2133050 0346950 Unsbabl,
.0000000 ~.7224403  .0000CC0 L0346950  .2153050 0346950 .2153050 able
2 .0000000  ,0000000  .8717798 .2339725 .0160275 .0160275 -2859725y v
¢ .0000000 0000000 8717798 .0160275 .2339725 .2339725 .0160275 €
.9268309  .8622477  .9268309 JAE887  L0172190  .0010732  .0172190
Zai .92683209 -.8622477 -.9268309 .0172190 .LE4W887 .0172190 .0010732 Stabl
al -.9268300 -.8622477 .9268300 | .0172190 .0010732 .0172190 .4Eh4E8T @
-.9268309  .8622477 -.9268309 .0010732 .0172190 .4eu4887 .0L72190
L2243313 -.2911683  .2243313 L1LL6868  L1613960 .0325212  .1613960
2aid .2243313  ,2911683 -.2243313 L1613960  J14LEBE8 1613960 .0325212 Unstab
a1t -.2243313  .2011683 .2253313 | .1613960 .0325212 .1613060 .1ile8e8[ Jnstable
-.2243313 -,2911683 -.2243313 .0325212 .1613960 .14LkE868  .1613960

Eigenvalues

1 1.0156164F 1.0156164 1.01072h4% 1.00152kk ©.8938356 0.8938356 0.8938356
Za,2c 1.0322466 0.969247h% 0.9641817 0.9629365 0.9535827 0.9020347 0.8066007
2b 1.0338228 0.9787788 0.9762263 0.9758575 0.9455480 0.8990228 0:8231550
ai  0.9389198 0.9334417 0.9281059 0.9281059 0.9268570 0.9210715 0.7284330
3aii 1.0235229 1.0165837 0.9895749 0.9827128 0.9%06593 0.8732087 0.8656087
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EXAMPLE 6b. Simple Unsymmetric Equilibria
Selection: coefficients: y = 0.2, 8 =037, § =045
Recombination: r; =r, =r

T Gi Elgenvalues
.000 1.00000 | 0.97966  0.97966 ©.91525  0.91%25  0.91525  Stable
LO0L 0.79677 | 0.98876 0.9872% ¢ 0. 0.90936 0.90905 Stable
LOUE 0.57376 | 0.99665  0.99384 o 3 0. 0.90L43 0.90406 Stable
.03 0.36096 | 1.00372 0.99952 1.0037¢ 1 c. 0.90014% ©. 5998, Unstable
.00k 0.14837 | 1.01035 1.00936 1.0103: 6 0.+ 0.546 G. 39616 Unstable
LGCEED | 0.00393 | L.o1h6k 1.00892 1.0LLEL [eReS = Q. 0.89350 0.509%90 Unstable
EXAMPLE 7
Selection: coefficients: 7 =02, 8 =037, § =045
Recombination: r, = .004, r, = .004, r, == .007968
Gamete Frequencies
Equilibrium /1;5 :‘1\6 H7 % = ;8 ;2 = x7 3{5 = x6 %), = ;(5
1 000000 000000 . 000000 .125000 .125000 .125000 .125000  Unstable
.969536 .000000 000000 2hk61g2 246192 003808  .003808
2a -.969556  .000000 .000C00 .003808  .003808 .ohélop  .oh6lge)  Unstable
o 000000 .9308147 000000 242268 007732 242268 .007752) Unstable
.000000  -.938147 . 000000 L007732  .2L42268 007732  .2k2268
. .000000  .000000  .969536 -2ké1g2 003608 003808 26192, oo
¢ .000000  .000000  -.969536 .003808  .2Lf1g2  .24bl92  .003808
982962 .966415 .982962 LL915h2  L00k198 000061 .004198
. .982962  -.966415  -.982962 .| 004198  .L915h2  .00M198  .00006L[ oo
Jai -.982062  -.966415  .982062 L00k198  .000061  .004198  .h915he
-.982962 L966415  -.982962 .000061  .004k198  .hg1lSh2 004198
.508630  -.323500 . 308630 L161720  L165438  .007h05 165438
is . 308630 323500  -.308630 L165438  L161720 L165438 007405 Unstabie
Jaii -.308650  .323%00 308630 VL6538 L00THOS  .165L38 161720
-.308630 -.323500 -.308630 .007405  .16543%8 161720  .165438
Eigenvalues
1 1.016315 1.019315 1.018085 1.008083 0.893836 0.893836 0.893836
2a,%b 1.038295 0.962102 0.960935 0.960498  0.95833k  0.90k9LL  0.795463
2b 1.03895L 0.96L4T73  0.96L192  0.963L66 0.956852  0.903942  0.79%906k4
Zal  0.926649  0.925237 0.923968 0.923968  0.923563  0.922257- 0.71lLL73
3aii  1.026341 1.024690 0.983867 0.975200 0.959958  0.862606  0.860917
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EXAMPLE 8§
Selection coefficients: 3 = —0.2, 8 = —0.44, § = —0.728
BRecombination: r, = .004, r, = .004, r, = .007968

Gamete Frequencies
Equilibrium ﬁ5 ﬁ6 ﬁ., X, =Xy Xy = E; Xz=Ep X = Xg
1 .0000000  .0000000 0000000 .1250000 ,1250000 .1250000 ,1250000 Unstable
L7745967  .0000000 0000000 .2218246 .2218246 .0281754 .028175u} Unsteble
za -. 7745967  .0000000  .0000000 L0281754 0281754 .2218246 .22182L6
.0000000  L4507771  .0000000 .1813471 L 0686529 1813471 .0686529] Unstable
2 .0000000 -.4507771.  .0000000 0686529 .1813h71 .0686529 .1813471
.0000000  .0000000 7745967 .2218246 0281754 .028175% .22182&6] Unstable
ge .0000000  .0000000 -.7745067 .0281754  .2218246 .2218246 0281754
.8023375  .8080347  .8923375 490887 .0239957 .0029200 0239957
. .8923375 -.8080347 -.8923375 .0239957 4490887 .0239957 .0029200 Unstable
Sai -.8023375 -.8080347 .8923375 | .0239957 .0029200 .0239957 .Uho0887
-.B8923375  .8080347 -.8923375 .0029200 0239957 .4Lgo887 .0239957
.1169267 -.2504200 1169267 .1229292  .1563085 0644658 .1563025
5044 J1169267  .2504200 -.1169267 L1563025  .1229292 1562025 .OfLL6ES8 Unstable
et -.1169267  .2504200 .1160267 | .1563025 .O6kh658 1563025 .1229292
-.1169267 -.2504200 -.1169267 L0644658  .1563025 .1229292 1563025
Figenvalues
1 1.0049587 1.0049587 1.,0016793 1.0909091 1.0909091 1.0909091 0.9935531
25 0.9901316 0.9851810 1.0115558 0.9832679 1.0909091 1.0090859 1.1619668
2b 0.9957002 1.0108475 0.996€470 1.0444499 1.1337104k 0.9900585 1.0909091
Ze 0.9851810 1.0115558 0.9901316 1.0090859 1.1619668 0.9832679 1.0909091
3ai  0.9780283 0.968962k 0.9732980 0.9675129 1.2L66726 0.9820082 0.9923578
Zaii  0.9962298 1.0084226 1.0032172 0.9916894% 1,0580683 1.1149144 1.0984355

The range under consideration is 0 < r < r*. Obviously Class 1 and 2 equilibria are unstable.
Four of the solutions from Class 3 satisfy (C.2), (C4) and (C.6). Numerical studies indicate

that in this case one of the eigenvalues from (C.8) is greater than 1. The other four solutions
are also unstable from (C.2).

DISCUSSION

The increased complexity of the three-locus system over two-locus models is
evident. For two loci (each with two alleles) there are three internal, symmetric
equilibria, and at most two of these may be stable. In the three-locus symmetric
viability model discussed in this paper we have shown that there may be fifteen
symmetric equilibria, and as many as six of these can be stable for a given set of
recombination values. These fifteen equilibria all exist, if linkage is sufficiently
tight, for a number of selection models, including symmetric overdominance (Ex-
amples 1, 6 and 7), and symmetric underdominance (Example 8).

Examples 1, 6 and 7 show overdominance models in which four of the fifteen
equilibria are stable. In symmetric equilibria each gamete, and its complement
(obtained by substituting one allele for another at all loci), have the same fre-
quency, and each of the four stable equilibria have one of the four pairs predomi-
nating in frequency. Example 4 shows a feature of three-locus models not found
in studies of two loci, namely the simultaneous stability of solutions in which
there is no linkage disequilibrium (Class 1) and the four described above (Class
3ai), making five stable equilibria in all. In this example the region of simul-
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taneous stability is very small (r = 0.01 — 0.010427), but for a different stability
regime or if there are many loci the region may be large (FrankLin and
LewonNTiN 1970). There can be six stable symmetric equilibria if recombination
between loci 1 and 2 is not equal to that between 2 and 3 (Example 5).

When six symmetric equilibria are stable for the same recombination fractions
they comprise four of Class 3 and two of Class 2 with the classes characterized by
different nonzero values of the linkage disequilibrium. This possibility was not
uncovered by FRANKLIN and LEwonTIN. We have proved for the three-locus case
that the number of equilibria in such a situation is five. In addition, we pointed
out in Section 8 that there may exist two unsymmetric equilibria which may be
stable for tight linkage simultaneously with the four stable Class 3 equilibria.
The implications of this are discussed in our work in preparation.

How much of the behavior of the three-locus system might have been predicted
from the extensive analyses of two-locus models? For tight linkage it is known
that in a suitably interacting two-locus model the equilibrium with D = 0 is un-
stable, and it would have been reasonable to assume that the three-locus analog
of the two-locus model would also show that the central solution (i.e.,all D;; = 0)
would be unstable for small recombination. In addition, for loose linkage the cen-
tral solution is the only symmetric equilibrium which exists, and is stable. The
three-locus model shows a similar behavior. Similarly, if one pair of loci is tightly
linked, and the other pairs are loosely linked, we could predict that there would
be stable disequilibrium between the tightly linked pair and no disequilibrium
between the remaining pairs. Further we might predict some of the behavior
shown in Examples 1-4. Here the loci have equal effect, and are equally spaced.
If linkage is tight enough so that the disequilibrium between locus 1 and 2 is
stable (as judged by the criteria established for the two-locus model), then zero
disequilibrium between 2 and 3 would be unstable, hence Class 2a equilibria in
which Dy, 7 0, D.; = 0 would be unstable. Similarly 2b and 2c are predictably
unstable. Hence we would assume that the stable equilibria, if they exist, would
have D,, # 0, D.; 7 0.

Ignoring the effect of the third locus, there will exist an equilibrium with
D1, 70 if r, < 0.1 in Examples 1-4. (This is based on the two-locus theory of
LewonTIin and Kosima (1960)). Using the above argument equilibrium 2a will
be stable if 7, > .01 and unstable if r, < .01. This prediction is in agreement with
the findings in § 4.

This is about as far as one can go using two-locus theory. The number of equi-
libria with nonzero disequilibrium between all pairs could not be predicted easily
a priori, nor the conditions for existence and stability. (From symmetry consid-
erations we might say that there are at least four such equilibria, and we have
shown that there are in fact eight). The region of simultaneous stability is a
feature of the three-locus model which does not follow from two-locus analyses.

Perhaps the relevant question for multilocus models should not be how much
can be generalized from the two-locus model. Instead, we might ask how much
can be inferred from the multiallele model with the number of alleles correspond-
ing to the number of gametic types in the multilocus model. In fact, when there
is no recombination the models are identical. Since the multiallele theory is com-
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pletely known the multilocus theory for tight linkage should be deducible. Thus
with three loci and the symmetric viabilities of this paper, we would predict that
for » small and B, 8, » > 0 four symmetric equilibria should be stable, the central
point unstable, and for general symmetric viabilities two unsymmetric equilibria
could also be stable. Karuin and McGrecor (1971) have presented similar
arguments in the context of a general small parameter theory.

Similarly we might consider the Class 2 equilibria (4.6) as r; tends to zero.
These equilibria approach the central equilibria of the appropriate two-locus
model, which are stable for r, large. We therefore infer that for Class 2 equilibria
to be stable, there must be asymmetry with respect to the way the loci lie on the
chromosome. In other words, although we cannot tell for what recombination
values the various equilibria come and go, we can obtain a great deal of useful
information on which equilibria govern the evolution for tight linkage by con-
sidering the appropriate multiallele case.

The body of this paper has been concerned only with symmetric equilibria.
One of the key distinguishing features of this three-locus work over the two-locus
work is that two unsymmetric equilibria may exist for tight linkage, and be
stable. Again this may be inferred from the multiallele theory. This would make
a total of six stable equilibria for tight linkage. The question of unsymmetric
equilibria in the three-locus model is an interesting problem, and in our subse-
quent paper we shall explore the interaction of these with the symmetric equi-
libria discussed above.

Thus there are two points of generalization from the work of FrRankrIN and
LewonTiN which are worth noting. First, if the three loci are not equally spaced
(as we would expect in more realistic models) there can be, in addition to the
stable solutions with all D # 0, equilibria in which one of the adjacent pairs has
D # 0 and the other is in linkage equilibrium. This will undoubtedly generalize
to more loci in a complicated manner. Second, unsymmetric equilibria stable for
tight linkage may exist simultaneously with symmetric equilibria.

In general, however, our analysis supports the numerical conclusions of
FrangLIN and LEwonNTIN (1970), who found a class of stable symmetric equi-
libria comprising 2% solutions, where n is the number of loci. These equilibria
are characterized by a high degree of linkage disequilibrium between all pairs of
loci and correspond in the three-locus model to equilibria 3ai. Our analysis has
proven the existence of a region of simultaneous stability of the central point and
the stable Class 3 equilibria which they originally discovered.

The unsymmetric equilibria for the three-locus model add considerably to the
complexity of the situation. In a preliminary analysis of Model 2, with small
recombination values, we have found thirty internal, unsymmetric equilibria,
some of which, as mentioned above, are stable.

The method of analysis used in § 2 and § 3 to obtain the symmetric equilibria
is based on a transformation similar to that used by Karrin and FELpMAN
(1970). The method used here can be applied to the two-locus symmetric
viability model to obtain the unsymmetric equilibria more simply. In principle
the system of gametic frequencies for more than three loci can be transformed in
the same way.
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APPENDIX A

Ezistence of the class 3 symmetric equilibria: (Gi; 7 0, &, 7 0 and 2, 7= 0) with r, =7, =r
and R =2r(1—r).

—38
(i) Consider first values of r such that R(1— —;—) <-lﬁ2——. This implies that r%, R %— and
—3 —3
r(1——;—) are all less than ﬁﬂ_ Define r* as the smaller root of R(l—-—g-—) ='3—+8L

(note r* < %) so that in this first range r < 7*. (In Model 1, §7, r* = .0050253.) From (3.21)
(a) there are two valid roots %, one positive and one negative. The positive one also validates
(3.20) (a) and therefore produces two valid equilibria. For the negative root to be valid in (3.20)
(a) we require

(r—zz)u—%)
Al 7} S .
(A1) u6<(ﬁ+ﬂ_r”)<0
T4 2

This is not automatically satisfied. In fact from (3.21) (a) for (A.1) to hold we need

7
r2(1—2r)2(1—-—)2

B+r—3 Ry 2" B+n—3 B+n—8 7
(—— ) ( )—( —R(l——=)| <0
4 2 ( B+n—38 rn)z 8. 8 2

4 2

(note that (A.2) holds near r = 0). Hence, r < r* always produces two equilibria from (3.20)
(a) and (3.21)(a) with &3 > 0, &5 = £, and in the same way there will be two from (3.20) (b)
and (3.21) (b) with &; <0, &, = —i,. In addition if (A.2) holds four more will exist. However,
for r very close to r*, (A.2) is obviously violated.

B+n—

.. . ] . ..
(ii) Next consider the range r* < r < ~———— so that in addition
7
8(1——
( 2)

(A2)
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B-+n—38 ] 7 1 __ Ry
i or(1——) > 2r(1—r) (1——) > 2r(1—r)— = —.
) > 2r( 2)> r{1—r)( 2)> r( )2 5
Thus from (3.21) (a) two valid %, solutions exist. From (3.20(a) the positive one is valid. How-
ever, using the same argument as before, since r > r* the negative #, solution is invalid. Thus
in this range, two solutions of the form #; > 0, &, = &, exist. In the same way from (3.20) (b)
and (3.21) (b) two solutions of the form &, < 0, &; = —, are valid, so that the total cannot

exceed four here.

—48
(ii1) Now consider (8-+4—38) /8(1———;’—) < r < r** where r** is the smaller root of E-ﬂ—— =
R
Enﬂ (In Model 1, §7, r** = 0.1.) Clearly in this range the constant term of (3.21)(a) and

(3.21) (b) is positive (note that if 8 > § [single heterozygotes less fit than triple homozygotes]
r** > 14 so this complete the range of r values). This case is difficult to analyze completely so
we are content to consider what happens near the limits of the range.

When r = (8+7—8) /8(1‘—%), ;=0 is a valid solution although, since it entails

fiy =, = 0, it is in fact the “central solution.” The validity of the non-zero solution will then
depend on the slope of (3.21)(a) at u, = 0 for this value of r. If the slope is negative this
solution will be positive and will be valid from (3.20) (a). When r is slightly greater than

(B+9—8)/8(1— —%) the slope of (3.21) (a) at z; = 0 will still be negative but since the value at

the origin is now positive there will be two positive £, solutions both of which will be valid
from (3.20)(a) and four valid equilibria will result. Similarly, under these same conditions,
four valid equilibria with £, < 0 will result from (3.20)(b) and (3.21)(b). If, however, the

slope of (3.21)(a) at u, = O is positive for r = (8-Fy—8) /8(1~%) the solutions for r slightly
greater will both be negative and invalid. What we expect therefore depends on the slope of
(321)(a) at uy =0 for r= (B—l—n—ﬁ)/S(l———%). This seems to depend critically on the selec-

tion parameters in such a way that when 7 is small this slope is negative and all eight equilibria
exist, (It is important for the stability analysis to note that at the smaller positive root of
(3.21) (a), in this case the slope, is negative.)

As r increases to r** the constant term of (3.21) (a) again vanishes. When r is slightly less
than r** no positive 4, roots exist (nor negative roots of (3.21) (b)) so that no valid equilibria
are possible. At r = r** is is clear that no valid roots are possible. To summarize, in the range

(B-+n—38)/ 8(1—-—;—) < r< r** there may be eight solutions in the smaller part of the range

but these disappear as r increases to r**,

. —8
(iv) If 8 > B then consider the range r** <r < —B—-;L— We have to split this range further
7

because the coefficient of 1,2 in (3.21) (a) has a root 1,, say, which it is easy to see lies in this
interval and at which it changes sign from positive to negative. Let us first treat r values with
r** < r <, so that the coefficient of 2 is positive, while the constant term is negative. In this
range, then, there is a positive and a negative root of (3.21)(a). But the denominator on the
right side of (3.20) (a) is negative. Hence the positive root is invalid. For the negative root to be
valid in (3.20) (a) we must have

7

(r—R)(l——?)
>8> ———-_
g °><m_r_")

4 2
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On substitution into (3.21) (a) it is seen that the reverse of condition (A.2) must hold for this
negative root to be valid. This is clearly impossible. Hence in r** < r </, no valid roots are
possible.

B—l—n

To complete case iv we examine [; < r < . Note that the coefficient of u; in

(3.21) (a) is a cubic in 7. It has three positive roots m, < m, < m;, and it is easy to see that

B8+n—38
r*<m1<r“, —2—'<m2<1/27 m3>y2‘
i
Therefore, when r = I, and (3.21) (a) is linear, the root is positive, and as ahove, is invalid. For
7 close to I, the roots of (3.21) (a) are real. Any roots in this range must be positive and again
from (3.20) (a) cannot be valid.

-8
In the range r** <r < E-i;]—- , therefore, there are no valid roots.
7
—38 —3
(v) —FH_T"-— < r < %. Again this breaks naturally into the regions ﬁg————— <r<m, and
7 ¢l

m, < r < Y% where m, is the second root of the coefficient of u, in (3.21)(a). In the first sub-
region all real roots of (3.21)(a) must be positive. From (3.20)(a) where r is close to
(8+1—8) /21 the roots are invalid. Also, from (3.21) (a) when r is close to m, no real &g roots
exist. In between, for a valid positive i, we need

(r—R) (1-—%)
ug >

[(B-7—8)/4— 12"—1

The slope of (3.21) (a) when &; = (r—R) (1v——;’-)/[(ﬁ+1’—8)/4‘——r—;] is clearly negative so

so the inequality is violated and no roots can be valid in the range (8-}19—38)/2y <r < m,.
It remains to treat the case m, < r < %%. Again near r = m, (3.21) (a) has imaginary roots.
In this region any real roots must be negative and, if they exist, will certainly satisfy (3.20) (a}.
At r =14 the reality of the roots of (3.21) (a) depends on the selection values. If (2(8—38) +
39)2—12(8+n—8) > 0 eight valid solutions will exist at » = 14. This condition is clearly
satisfied if % is small and 8§ > 8 and, of course, 8 + 9 — 8 < 0.
(vi) B+ n— 8 < 0. Equilibria (3.6), (3.7) and (3.8) cannot exist. From (3.21) (a) one positive
and one negative #, root exist. The negative root always satisfies (3.20) (a) and from (4.3) the
positive root will also be valid in (3.20) (a). Therefore, eight valid roots always exist.

APPENDIX B

Solution (3.6): # =%, =% =&, =% (1+d,), &, ==, +2==% =1 (1Fy;) where
u2=1—8r, (1—7/2) (B+y—5)"

The local stability determinant partitions into a linear term and three quadratics. From the
linear term the condition that the first eigenvalue be less than 1 is the existence condition for
(3.6), namely, A, < 1 if

—38
(B.1) < FAn—s
8(1—/2)
The roots of the first quadratic A, and A, say, are less than unity (in modulus) if, respectively,
7—38 —n+8
®2) s S ALY
and . N
—5 5— — -8
®3) L _.‘Lg”_t >0

hold.
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From (B.2) and (B.3) when 8 > 7 no new conditions are required. When 5> § and
B8 —n-+ 8 <0, we have A\, > 1 so that for stability we do require 8 — 5 4 8 > 0. In summary
the conditions that A, and A, both be less than unity in absolute value are:

(B.4) (a) § >y implies [A,|, |A,| <1 forallr,
or
(B.4) (b) 7> 8, B>\/2(r—38) imply [A,], Al <1 forallr,
(BA4) (c) 7>8, n— 8 < B < /2(n—3$) implies
. B47—8
AL <1 if o<, <Cor D<r1<—8(1—1—"—/—2—)—

where

o B (=824 B(1—8) — (1—8) Y [2(1—8)2 — 7]

4(1—2/2) (B+7—8)
b B— =82+ Ba—) F (1—8) V [2(r—8)2 — 7]

4(1—2/2) (B+21—8)
It should be noted that (B.4)(c) allows a gap, C <r, < D, of instability analogous to that
discovered by Ewens (1968) (see also KarLiN and FeLoman (1970b)).
The remaining four eigenvalues are guite complicated to analyze. They are the roots A,
and A; of the quadratic
B (1—)

WeA2 — ZZ)}\[Q -— ; — E —7 ) (r1+r2+r3)]
s B 7 § 33 (1—m)
(B5) Fl—Q— g =Pl === (rbrotr)]
28—n—3§ —3
— [—B—i—] [‘)7—4‘— + (rg—rytry) (1—9) /21252 =0.
and the roots A; and A, of the quadratic
WIA2 — DA[2 — ﬁ;i — (rgtry) (1—9/2)]
(B.6) + (1 —W»— rs(i—n/Q))(l—i:i_—s-—rz(l—-n/%)
—38 —38
e [ La LS PR
where
PR SO G . i (Btn—3) .,

8 8 8 o
It is easy to see that A; and A, are real. After some algebra the condition that they both be
less than 1 in absolute value turns out to be

(B.7) ar,? +br,+¢>0
where a, b and ¢ are the functions (of r,)
(1—2ry) .
a= """ [4(1—y) 4 (1))
2 —+n—3
(B8) b= —(t—n/2)%r, (1—2r,) — d2[r, - — (1—ry) (——B+: )l
—3 —8
c=—a2( '8_:” ) [ﬂ+; —r].

The most important property of (B.7) is that the inequality is false if , < r,. The symmetry
of the model therefore implies that (3.6) and (3.8) cannot be stable together. In particular, if
r, = r, neither can be stable.

The roots of (B.5) are more difficult to analyze in a qualitative way. If the viabilities are
multiplicative it is easy to see that A\, and A, are real and less than unity in modulus. When the
more general fitness scheme is in force we can see that for r; close to zero or near its maximum
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(B+1—8)/8(1—1/2) the roots are real. Near r, = 0 the condition that they be less than unity is
(B.9) B—n—38<0

while near r;, = (8+3—8)/8(1—7/2) the conditions are the same as (5.2)'(a) and (5.2)'(b),
namely

(B.10) B—148>0, (rtry—rry) > (3—31—8)/8(1—).

The general conditions on the roots of (B.5) seem complicated to write down. We can say that if
the selection coefficients do not depart greatly from multiplicative by continuity we expect these
two roots to be less than unity for very tight linkage.

(C) Solution (3.7): #, =%, =F;,=1;= 1Ag(l-i-uﬁ), 2, =2, =2, = &; = 13 (1x0,;) where
2 =1—8r,(1—y/2) (/3—(-17 8)-t (all other #;=0). The first condition for the stability
of (3.7) is seen to be the existence condition, namely

(B.11) 0 < ry < (B+7—8)/8(1—n/2).

Now corresponding to (B.6) with r, and r, interchanged we obtain the eigenvalues A; and A, as

8
@ - 2Tty
-8 —8
£ 45y Lry—r)* (=)o (B—i”———’;—’b GanELESS ) )
which are real. Substituting =1 — %ﬂ —ry{1—1/2) we have A, (the larger) <1 if
(B.12) (ryfry—drr,) (1—2/2)

. B+n —8  rn. Btu—8 1y

+ V(=) 2 (1—n/2) 2 4a2 ] 5 y 5

is negative. But since r,, r, < 14 this is 1mposs1ble and therefore A, is always greater than unity.
Thus (3.7) can never be stable,

(D) Solution (3.8): £, =%, =%, =%, = 1/3(1+u,), £, =%, =2, = £, = Y (1F1%,;) where
i,2=1—8r,(1—7/2) (B+n—38)-1 all other #i; =0. The conditions for stability are as for
(3.6) with r, and r, interchanged. Again, it should be emphasized that (3.8) and (3.6) cannot
be stable simultaneously. In fact of the seven solutions so far analyzed, for tight linkage only
(3.6) or (3.8) (mot both) may be stable, while for looser linkage (3.4) may be stable. In fact,
if r, is sufficiently great relative to r, we predict (3.6) will be stable. A case is given by Example
5 of §7. The stability of this class of equilibria was not considered by Frankrin and LEwoNTIN
(1970).

APPENDIX C

Stability of the i, 0, &y 7 0, &, 5= 0 solution when B =+ 49— 8 > 0.

The stability determinant splits into a cubic and a quartic. From the cubic we have been
able to obtain the three eigenvalues, and these three appear to give us most of the information
we need on stability for tight linkage. In other words, the numerical examples in §7 can be
predicted from these eigenvalues alone, although with less simple selection parameters there may
be difficulties involving the other four eigenvalues.

We shall refer to solutions i, from (3.21)(a) and the relevant remarks for (3.21) (b) are
easily inferred.

The first eigenvalue from the cubic is A, given by

B+1+3 B+9—38 ry

(.1 ”7}‘5:1“—4——' )“‘— 4 ”e+—§,us,

where =1 — i (4a,) — _B_ —tr) — 2 (1—u6) _ r(1——-—) - —;us

Clearly A, > 0 and is less than 1 if
(C2) , fg(—— — — ) >0
B+n—3 . . q B+n—

8
That-is, if r< — for stability i, must be positive, while if » > 5 iz, must be
7 7
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negative. From Appendix A this condition already eliminates four of the eight equilibria

—38
which may exist when r <r*, where r* is the smaller root of R(l-——z-) = -—"t{——g—— For
r > r* all the possible equilibria which exist satisfy this first stability condition.

The remaining two eigenvalues from the cubic are the solutions A, and A; of
(C.3) g(A) =A2p? — Mp(JH-N-+-L) + N(J+L) —2KM =0
where
8 —38
PO o o L D . B P
4 2 4
B+1—38 i .B-l-n —8 rq
K=— (T g+ (————— —) Us
/3+17-— . .3-!-17 —8
L=—(——F)t%+ (—f—— -—) iy
B+nr—38 i B+v—8& Ry
M=t =5
8 —38
N=1 —%_3(1_1) _E_l_"—ﬁez_
4 2 4
.. . . B+9—3
It can be shown that J + N -+ L > 0. It is important to note that in the region R > e >r
7
8 —38
(or equivalently r** < r < —li;—, where r** is the smaller root of %— =R)ifs§>8
N 7
no valid roots exist. Therefore in considering the reality of A, and M, we may assume either
—3
(C4) (a) LAk’
2
or
+9—38
(C4) (b) r> B
27

In both of these cases it is not difficult to show that XM > 0 so that A, and A, are real. The
condition that [A,], |A,| be less than 1 is therefore that g(1) > 0, namely

—& — R
ao{ a2 (ETE T BB ey
(C5)
—38 8§ R
+ 2 a2y - BTy A Pt

But condition (C.4) is precisely the condition that the derivative of (3.21) (a) be positive at .

This, therefore, tells us in cases (iii) and (v) of Appendix A which #, roots could be stable.

B+4—38 . e . .

In the range ——————— < r < r** this condition informs us that the smaller positive root is
8(1-—(2/2))

Bt+n—38

unstable while, when
29

< r< 1, the smaller (in absolute value) negative root is

unstable.

The conditions, taken jointly, imply that whenever eight equilibria exist, only four can be
stable. When only four exist the first three eigenvalues are always less than unity. As can be
seen from 7 these three eigenvalues seem to be very good predictors for the complete stability,
at least in the case where the viabilities are multiplicative and linkage tight.

The fourth-degree determinant factors into a linear and a cubic. From the linear part we have
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8
(C6) h= @)~ — % — 2t (a4 < 1
if
B+29—28  ry_ 7 B
€7 [ — S > [r(1—2) — =1,

This is a somewhat strange condition. But for r very small so that &, is close to --1 (note that
by the above the equilibrium &, = — 15 cannot be stable), the condition reduces to 8+ 3 —
& > 0. For sufficiently tight linkage this eigenvalue imposes no additional restrains. However, at
r=1% (C.7) can never be true so that for very loose linkage equilibria of the form u, % 0,
u; 7 0, u, 7 0 cannot be stable.

The remaining stability eigenvalues are the roots of the equation

A— Ao 2B E
(C.8) B AL+ C— D D =0
C+G 2(B+F) H— 2\
where
3 —38
A:i————E—-—z—, B_(?? )5
4 2 4 4
(n—38) , (2B—n—8)
C="""1, , D=,
28—n—38 R(1—
P (28 ;1 ) L. F= (2 ) ]
(1—7) 8 33 (dA-—9)
G=rz ; , H=1———2_ R+2
g e 4 4 (B+2r)

‘When r is sufficiently small the condition that all three roots of this determinant be less than
unity reduces to 8~ 7 — & > 0. When r— 1 the cubic factors to produce a second eigenvalue
equal to A, in (C.6). No further analysis of the cubic has been made. It appears that such an
extended analysis would have to be made numerically. From § 7, however, it seems that for
relatively tight linkage, the first three eigenvalues do a good job of predicting stability, while
for loose linkage A, > 1 allows us to infer that the equilibria are unstable.



