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ABSTRACT 

The symmetric equilibria of the three-locus symmetric viability model are 
determined and their stability analyzed. For tight linkage there may be four  
stable equilibria, each characterized by having one pair of complementary 
chromosomes in high frequencies, with all others low. For looser linkage the 
only stable symmetric equilibrium is that with complete linkage equilibrium. 
For intermediate recombination values both types of equilibria may be stable. 
A new class of equilibria with all pairwise linkage disequilibria zero, but with 
third order linkage disequilibrium, has been discovered. It may be stable for 
tight linkage. 

T H E  equilibrium theory of selection on two recombining loci has been devel- 
oped primarily with respect to three types of selection schemes. When the 

contributions of the loci to the viabilities are additive, it is known that there is a 
single interior polymorphism which is globally stable for all non-zero recombina- 
tion values when both loci are heterotic (BODMER and FELSENSTEIN 1967; MORAN 
1968; KARLIN and FELDMAN 1970a). The equilibrium population is in linkage 
equilibrium. When the viabilities are multiplicative, it is known that for loose 
linkage, heterozygote advantage at the separate loci is sufficient for global stability 
of the equilibrium having linkage equilibrium (MORAN 1968; BODMER and FEL- 
SENSTEIN 1967). With these viabilities, however, the equilibrium behavior for 
tighter linkage is not known, although for sufficiently small recombination values, 
KARLIN and MCGREGOR (1971) have shown the existence of two stable equilibria 
in linkage disequilibrium. 
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A special case of multiplicative viabilities is included in the general symmetric 
viability model (LEWONTIN and KOJIMA 1960; BODMER and FELSENSTEIN 1967; 
KARLIN and FELDMAN 1970; and EWENS 1968). For this model it has been shown 
(KARLIN and FELDMAN 1970b) that there is a maximum of seven interior equi- 
libria with possibly two stable simultaneously. Combined with the eight boundary 
equilibria possible for non-zero recombination, this makes a total of fifteen in the 
symmetric viability model. 

The theory developed by the above authors has produced certain conclusions 
of a qualitative nature which are biologically interesting. Tight linkage usually 
produces a stable symmetric equilibrium, and this is always (except for the ad- 
ditive case) in linkage disequilibrium. Loose linkage usually produces a stable 
linkage equilibrium state although certain unsymmetric equilibria may exist and 
be stable for  moderate and loose linkage under strong selection. A selective ad- 
vantage to the double heterozygote does not ensure polymorphism if the single 
loci have strong enough underdominance (EWENS 1968). The mean fitness can- 
not be used to produce information on equilibria and their stability especially for 
tight linkage. A final conclusion is that in the above models it is not possible for 
two equilibria, one in linkage equilibrium and one in linkage disequilibrium, to 
co-exist and be stable for  the same value of the recombination fraction. 

Recently FRANKLIN and LEWONTIN (1970) have made a numerical study, con- 
siderably extending those studies of LEWONTIN (1 964a and b) , concerning inter- 
actions between selection and linkage in 2-, 5-, 18-, 36-, and 360-locus models 
with multiplicative symmetric viabilities and equal (painvise) recombination 
fractions. Looking at the symmetric equilibria, these authors determined (among 
other things) that the range of recombination values can be partitioned into three 
intervals: for small recombination values a single class of equilibria with rela- 
tively high pairwise linkage disequilibrium values is stable; for  large recombina- 
tion fractions linkage disequilibrium is zero at the stable polymorphism while in 
the intermediate range it is possible to have two stable situations for the same 
recombination value, one with zero disequilibrium and one with high disequi- 
librium. 

In this paper we report primarily our results for the symmetric equilibria of 
the three-locus symmetric viability model (which includes the simplest multi- 
plicative model as a special case). I n  large part our findings for the symmetric 
equilibria corroborate those which FRANKLIN and LEWONTIN (1970) obtained 
numerically. The stability analysis for one class of symmetric equilibria, as re- 
ported here, is not quite complete; but the analytic conclusions we make for the 
stability of these are in agreement with the findings from a series of numerical 
examples analyzed by computer. We also report a result for the simplest class of 
unsymmetric equilibria. This result indicates a major difference between the 
two- and multi-locus models. 

1) For multiplicative symmetric Viabilities and equally spaced loci, the conclu- 
sions of FRANKLIN and LEWONTIN (1970) hold: namely, for tight linkage the 
stable equilibria exhibit high complementarity (i.e., high disequilibrium) ; for 

The major conclusions of our analysis are the following: 
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loose linkage there is stable linkage equilibrium; and in between there is a region 
where both types of equilibria are simultaneously stable. 
2) When linkage is tight but the loci are unequally spaced, two stable equilibria 
exhibiting reduced disequilibrium can be stable simultaneously with the high 
complementarity equilibria above. 
3 )  For tight linkage but non-multiplicative symmetric viabilities, two new stable 
unsymmetric equilibria exist simultaneously, but with the high complementarity 
equilibria above. These exhibit painvise linkage equilibrium but have third-order 
linkage disequilibrium. 

1. THREE-LOCUS MODEL 

We consider three loci with two alleles at each. At the first, the alleles are A and a, at  the 
second B and b and at the third C and c. The frequencies in a given generation of the eight 
chromosomes ABC, ABc, AbC, Abc, aBC, QBC, abC and abc are, respectively, zlr z2, z,, z4, z5, z6, 2, 
and zb. Random mating is assumed. The viability matrix we shall consider is detailed in (1.1) 
below. 

ABC ABc AbC Abc aBC aBc abC abc 
Frequency 21 =a z3 z 4  I 5  l o  z7 X s  

ABC 
A Bc 
AbC 

(1.1) Abc 
QBC 
aBc 
abC 
abc 

1-6 1-PI 1-P3 1-72 
1-P1 1-6 1-11, 1-p3 

1-11, 1-6 1-p1 w 3  
1-11, 1-P3 1-p, 1-6 
1-P, 1-11, 1-11, 1 
1-11, I -P,  1 1-111 
1-11, 1 1-P, 1-11, 
1 I-v1 1-11, I-P, 

Thus the fitness of Abc/ABc is 1-P3, etc. All triple homozygotes are assumed to be equally fit. 
Some of our analysis is restricted to the 8, = p ,  = p3 ; 11, = 7, = 11, case for  simplicity. The 
simplest symmetric viability fitness model would have the viabilities multiplicative also, so that 
(1-8) = W3, 1-p, = l-Pz = 1-P3 = W2 and 1-11, = 1-11, = 1-11 3 -  - W. 

To complete the specification of the model, suppose that the recombination fraction between 
the A-Q locus and the B-b locus is rl, that between the B-b locus and the C-c locus is r, and that 
between the A-a and C-c loci is r3. If we assume that there is no interference as in  much of our 
analysis, then r, = rl+rz - 2r1r2. Under the above assumptions the recursion system relating 
the frequencies z’,, z’,, . . . , zlg in the next generation to zl, z,, . . . , zs, those in the present, 
is given by Table 1. 

2. TRANSFORMATIONS 

In KARLIN and FELDMAN (1970) the recursion system involving the chromosome frequencies 
was transformed to a simpler more symmetric system which allowed the extraction of the 
unsymmetric equilibria and the determination of their stability. The same technique is used here. 
The appropriate coordinate system appears to be ui, i = 1, . . . , 7 with 

U, = z1 + 2, + z3 + z4 - zg - zs - z7 - z8 
U ,  = z1 + z, - z3 - zq + z5 + z6 - .z7 - zg 
U ,  = I, - 2, + 2, - z4 + z, - Z6 + z7 - zs 
U4 = z, - z, - z3 + z4 - z5 + z6 + z7 - z s  
- z1 + zz - z3 - z4 - x5 - L6 + z7 + zs 

U6 = z1 - 2, + z, - zq - z5 + Z6 - z7 + zs 
u7 = z, - zz - z, + z4 + z5 - zg - z7 + z g  . 

(2.1 1 
U 5 -  



138 M. W. FELDMAN, I. FRANKLIN AND G. J. THOMSON 

TABLE 1 

Recursion equations for the three-locus, symmetric viability model 

where 

w. = marginal fitness of the ith gamete 

eg. w1 (1-a 1 1 2  -p x - B . x ~ - ~ 2 ~ ~ - B 2 x g - ! l ~ x g - ' i , x , )  5 a  

+ = X1X8 - x2x7 - x x + x x,. , A3 = xlx8 - X2X7 + x3xG - x4x5 3 6  4 j  A = X Y  C x x  - X X  1 1-8 2 7 3 6 - x4x5 
and 

8 
w = 1 XiWi 

i=l 

From (2.1) we can write the x's as functions of U'S as follows: 

51 = (1 + U1 + uz f u3 + U4 + U 5  f + u 7 ) / s  

z2 = (1 + u1 + u2 - U 3  - uq + u g  - u6 - u7)/S 
z3 = (1 + u1 - u2 + u3 - U4 - u g  + us - u,)/8 
xq = (1 + u1 - u2 - u3 + u4 - U5 - u6 + u,)/8 
zj = (1 - u1 + u2 + u3 - uq - U~ - u6 + u 7 ) / 8  
z6 = (1 - u1 + u2 - us + u4 - - u 7 ) / 8  
x7 = (1 - u1 - u2 + u3 + u4 + u5 - us - u,)/S 
z8 = (1 - u1 - u2 - u3 - uq + u5 + U6 + u,)/S . 

(2.2) + 

When (2.1) and (2.2) are applied to Table 1 the recursion system simplifies substantially. We 
shall deal primarily with the transformed system (2.3) in what follows. 
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with 

c1 = ( - P I  + 82 - P 3  + 111 - 112 + 113 - 8 ) / 8  
c, = (-P1 - P, + P 3  + 111 + I ) ,  - 113 - 
c3 = ( P1 - P, - P3 - 111 + 112 + 113 - ' ) / 8  
cq = ( P1 + Pz + P 3  - 111 - 112 - 113 - ' ) I 8  
cg = (-PI + 82 + Ps - 111 + 112 + 113 - ' ) / 8  
c g  = ( P1 + 0, - P 3  + 111 + 112 - 113 - ' ) / 8  
c7 = ( P I  - P, + P 3  + 111 - 11, '+ 113 - V / 8  

(2.4) 

Equations (2.3) are analogous to the system (2.7) in KARLIN and FELDMAN (1970). We shall 
use them in the next two sections to determine the equilibria of the original system (Table 1 ) .  

It has been common practice in discussions of two-locus models with two alleles at each locus 
to transform the gametic frequencies into two gene frequencies and a coefficient of linkage 
disequilibrium, i.e. the frequency of the gamete AB can be written 

PAB = PAP,  - D 
where p, and p B  are the frequencies of the alleles A and B and where D, the linkage disequi- 
librium between the A and B loci, equals pABpab - pAbpae. 

Similarly for the three-locus model the gametic frequencies can be completely specified with 
three gene frequencies and four disequilibrium parameters. I f  we let pl ,  p z  and p s  be the gene 
frequencies of the alleles A, B and C, respectively, and let D,, be the coefficient of linkage 
disequilibrium between locus 1 and 2, etc., we can also define a fourth coefficient of disequilibrium 

(2.5) D123 = - PlD33 - PZD13 - P3D12 - PlP2P3 
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3. DETERMINATION O F  THE SYMMETRIC EQUILIBRIA 

(A)  General parameters: In accordance with the terminology of the two-locus symmetric via- 
bility model we term those equilibria (i.e., solutions of (2.3) with primes deleted from the left- 
hand side) which have 

x1 = X8, x* = xi, x3 = X G ,  x* = x5, (3.1) (a) 

(3.1) (b) 

symmetric equilibria. This is the same as 
u1 = u2 = U, = u4= 0 .  

Also, from (2.6) we have 

(3.1) (c) 
and u5, us, u7 are measures of linkage disequilibrium between loci 1 and 2, 1 and 3,  and 2 and 3, 
respectively. 

p1 = p z  = p a  = 0.5 ,  DlZ3 = 0 

The equilibrium version of (2.3) can be more concisely written as follows: 

(3'2) (i) w* u1 = ' l u 1  + uqu7 (c4+c7) -k uzu5 (cZ+c5) + ( c 3 + c G )  

(ii) w* uz = ' z u Z  + u4u6 (c4+c6) + u1ug(c1+c5) + u$'7 ('3+'7) 

(iii) w* = 'QU3 + u1u6(c1+c6) f uzu.i(c2+c7) + u4u5(c4+c5) 

(iv) w* u4 = + u1u7 ('1+'7) + u2uS (cz+c,) + u.3u5 ('.3+'5) 
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There are three classes of solutions to (4.3) depending on how many of U,, u6 and U? are 
zero. The first solution is obviously that given by 2, = fi, = 2, = 0, namely 

f ,- -2 - = f 4  =f, =f6=27=f8=1/8. (3.4) 
(We use hats to denote equilibrium values). This could be termed the “central solution,” not 
only because of its obvious evenness property but also as it is the only interior (i.e., all chromo- 
somes present) solution when rl = r2 = r3 = 0. 

The second class of three symmetric solutions is given by 

(3.5) (a) u 5 # 0 ,  ug=u7=o  
(b) U 6 # 0 ,  u 5 = u 7 = o  
(c) U , # O ,  u 5 = U 6 = o .  

If u5 # 0 and us = U ,  = 0 then from (3.3) (i) 
r1(1-% 7 , )  

fi - fi - (3.6) (a) f i 5 = q / l -  9 6 -  7 - o  
c5 

so that 

(3.6) (b) f, = 2, = f, = f, = i/R (1 +- 22,) 
f 3  = f 6  =f4 = f, = i/s(lT$) . 

If u6 # 0 and fi, = 6, = 0 then from (3.3) (ii) 

2, = f, = 2, = 2, = i/s (1 *n, ,  
f, = f, = f4 = f, = I/s (lTfi,) . 

If U, # 0 and 6, = f i g  = 0 then from (3.3) (iii) 

It is obvious from (3.3) that two of a,, fi, and 0, cannot be nonzero with the third zero. 
# 0. From Therefore, the final class of symmetric equilibria is of the form fi5 # 0, 0, # 0, 



111 

2 
A,  = c, - rl(l--) 

B 
2 

A ,  = c7 - r2(1-?) 

‘3% B,  = cj + c7 - -- 
2 

:r2vZ 
B,  = c, + C6 - - 

2 
Now (3.14) produces two equilibrium solutions for &, namely [2(1) and t 2 ( 2 ) .  We therefore 

have, from (3.11) and (3.12) the two solutions (in terms of [’s) (t1(1), 12(1), &(I)) and ([1(2), 
& ( 2 ) ,  & ( 2 ) ) .  Now, furthese we have, possibly 

and 
(3.15) 2,(1) = i- v(2(l)‘$3(1), &(I)  = i v,tl(l),$(l), a7w = 5- v ‘$1 (I)& 

(3.16) G5(21 = i- v[2(2),k3(2), = 2 v [ 1 ( 2 ) ( 3 ( 2 ) r  fi,(2) t v f 1 ( 2 ) & ( 2 ) .  

There are real solutions for zi,, 6, and 1;, if El, & and t3 are all of the same sign. If, for example 
‘$2(1) > 0, the possible sign configurations are 

fc, > 0, f c 6  > 0, e, > 0 
a, > 0, a, < 0, a, < 0 
fc, < 0, a, < 0, a, > 0 
a, < 0, a, > 0, a, < 0 

with the other four possibilities invalid. If i2(1) < 0 similar considerations dictate that o d y  four 
valid equilibria exist. Identical arguments for i 2 ( 2 )  produce a maximum of four further valid 
equilibria. In total, therefore, a maximum of eight symmetric equilibria with a, # 0, fi, # 0, 
a, # 0 are possible. The solutions are specified by (3.10), (3.14), (3.11), (3.12) with the 
appropriate sign considerations. 
(B) A Simpler Parameter Set. For stability analysis the equilibria treated last in $3A are rather 
complicated unless some additional assumptions are made about the parameters. For the analysis 
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to be carried out in  s5 and $6 this is seen to be most important for the u5 # 0, u6 # 0, U ,  # 0 
equilibria. Suppose therefore that r1 = r2 = r, so that assuming no interference, r3 = & ( I - r )  
which we now write as R, and that for the selection matrix, p1 = pz = P 3  = P; -ql q2 = 
q3 = q. The system now involves the four parameters p, 6 ,  q and r, one more than the simple 
Lewontin-Kojima two locus model. Equilibria (3.6),  (3 .7)  and (3.8) do not simplify any further 
except that c5 = c6 = c,. In fact we have now 

3p-38--6 T-P---s 
~ c1 = cz = c3 = --- . p+q--S 

8 8 (3.17) c - c  - > c4= - - = 8 
Clearly for (3 .6) ,  (3 .7) ,  (3.8) to be valid p + q - 6 must be positive. This will be assumed 
unless specifically mentioned. 

Let us reexamine the case ti, # 0, e, #O, ii, # 0 with the simpler parameters. From 
(3.3) (i) and (3.3) (iii) it is easy to verify that we must have 
(3.18) (a) li, = ii, or (b) 0, = - 2 , .  

Consider first li5 = ii, and (3.3) (i). We have, dividing by U,, 

(3.19) - r d 2 ) .  
P+q-S (2u52+u,2-1) = -r( l -q/2)  + Ua(- P+v--S 

8 4 

Replacing the term in parentheses on the left side of (3.3) (ii) by the right side of (3.191, 
(3.3)  (ii) is seen to reduce to 

P+v--s - (r-R) (1--0/2) U ,  + ug2 (7 - 4 2 )  

Substituting (3.20) (a) back into (3.19) produces the quadratic equation in ue. 

P + F S  P+v--S P f o - 6  p+s--S 
(--- - R d 2 )  1 u62{-'--- (- - r d 2 )  + ~ 4 4 4 8 

For each of the two possible roots of (3.21) (a) we have two possible ii, values given by (3.20) 
(a). When ii, = ii, there are therefore four possible equilibria of the form 6, = 6, # 0, 
2, # 0. 

For solutions of the form u5 = -U, the same procedure produces 

r d 2 )  (r -R)  (1-q/2)u6 + u62(-- - P+o--s 
A, 

and (3.21) (a) becomes 

So there are four possible solutions of the form ii, = -d, # 0, C6 # 0. Thus the total possible 
number of equilibria in the third class is eight. 
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4. EXISTENCE CONDITIONS FOR THE SYMMETRIC EQUILIBRIA 

We have divided the symmetric equilibria into three classes. 
Class I .  The central solution given by (3.4), that is, Lis = 2, = Li, = 0 or zi = 1/, i = I,  . . . , 8. 
Class 2. The solutions (3.6), (3.7) and (3.8) obtained by equating two of u5, U,, U ,  t o  zero. 

2, =f, = f 5  = f ,  = %(l T h5) 2(a) 

2 (b) 2, = 3, = 2,  = f, = % ( I  T 2,) 
2(c) f l=f*=f5=f8=1/(1 * a,), f , = f , = f , = f , = i / s ( I  T C , )  

C h s  3. The solutions in which 6, # 0, Li, # 0, 2, # 0. 
(A) Equilibrium Class I .  The solution zi = %, i = 1, , . . , 8 exists for  all recombination and 
selection parameters. 
(B) Equilibrium Class 2. Note that if the gametic frequencies are to be in the correct range 
it is necessary that Li5, Li, and Li7 are each less than 1 in absolute value. Hence the existence 
conditions for equilibria 2a, 2b and 2c are 

(4.1) (a) c5 > 0 and c5 > r,(l - % 
(4.1 1 (b) c6 > 0 and Cg > r3(l - ?h v3) 
(4.1) (c> c7 > 0 and c7 > r , ( l  - ?h 11,) . 
(C) Equilibria Class 3. (Existence of the a5 # 0, 6, # 0, Li, # 0 equilibria) 

For simplicity consider only the parameter set described in 3(B). As shown in that section, 
there may be eight equilibria of this form, four with Lis = Li, and four with 2, = -Li,. The 
former are given by (3.20) (a) and (3.21) (a) and the latter by (3.20) (b) and (3.21) (b) .  The 
analysis is rather tedious but we have included some of it, f o r  the case Li, = Li,, as an appendix. 

The main points to make are that over the range 0 < r < ’+‘-’ , four valid equilibria 

always exist and an additional four exist for r near 0. For r > ’+‘-’ either eight or no 

valid solutions exist. For larger r no valid solutions exist until near r = 1/2 where eight valid 
solutions exist, depending on the selection parameters. 

Thus the class 3 equilibria may exist simultaneously with the “central solution” (class 1 )  
and with the class 2 equilibria. 

f -2 - , - - 2, =f* = % ( I  +- Li,), 
2, = f 3  = f, = f, = % ( I  * Li,), 

8(1--9/2) 

8 ( 1 -d2 )  

5. STABILITY OF THE SYMMETRIC EQUILIBRIA (Classes I and 2) 

We shall now consider the local stability of the symmetric solutions determined in 3(A). 
Suppose that each ui differs from its equilibrium value Lii by a small amount Si, and by an 
amount Si’ in the next generation. Ignoring small order terms gives 
(5.1) 6’ = M S / w  
where M and w are given in Table 2. The equilibrium is locally stable if all eigenvalues hi, 
i = 1, . . . , 7 of M / w  are less than unity in absolute value. 
Solution (3 .4) .  f1 = 2-, = f, = 2, = f, = 2, = f, = f ,  = ‘/8. 
Substituting ui = 0, i = 1, . . . , 7 in (4.1) produces a diagonal matrix for M. The requirement 
that the seven eigenvalues of M / w  be less than 1 in absolute value gives the following stability 
conditions for  the “central solution.” 
(5.2) 
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Obviously conditions (5.2) (e),  (f) and (g) preclude the existence of the class 2 equilibria (3.6), 
(3.7) and (3.8),  a situation which should be compared to that fo r  loose linkage in the two-locus 
model. Condition (5.2) (d) precludes the existence of an unsymmetric equilibrium which we 
shall discuss later. Conditions (5.2) (a), (b), (c) have no obvious analog in  the two-locus model 
but, if  fitnesses are multiplicative, (5.2) (a), (b), (c) are automatically true, as is (5.2) (d). 

If the three loci have the same viabilities, i.e. ql = q2 = v3  = v, and PI = p, = ps = p ,  
P + v - 6 ,  and (5.2) becomes , c5 = C6 = ci = ___ 

7-P-S 38-31--6 

8 8 
then c1 = c2 = c3 = ___ , Cd = 

8 

(5.2)' 

The stability of equilibrium (3.6) is discussed in Appendix B using this simplified selection 
scheme and assuming no interference so that r3 = r1 + r2 - 2r1r2. Appendix C contains a similar 
stability analysis for the equilibrium with C5 # 0, C6 # 0 and Ci # 0 specified by (3.21) (a). 

6. TWO SIMPLE UNSYMMETRIC EQUILIBRIA 

I n  the two-locus symmetric viability model, KARLIN and FELDMAN (1970b) proved the 
existence of four and the stability of, a t  most, two unsymmetric equilibria for moderate to loose 
linkage. The region of stability of these apparently does not overlap the stability region of any 
symmetric equilibria. 

Now return to (3.2) and assume u1 = u2 = U:, = U; = ug = ui  = 0, but U+ # 0. Then from 
(3.1) (b) any solutions will be unsymmetric. Using the simpler parameter set (3.17) we solve 
the quadratic to find 

The existence conditions for (6.1) are clearly 

(6.2) cq > 0 
and 

(6.3) 
3 

O <  34 7 r i ( l - v i )  < e 4 .  
I =1 

It is important to note from (4.2) (b) that (6.3) precludes the stability of the central equi- 
librium (3.4). Thus these unsymmetric equilibria cannot exist when the central equilibrium is 
stable. Note also that when the viabilities are of the simple multiplicative form condition (6.2) 
is not satisfied and the unsymmetric equilibria cannot exist. These unsymmetric equilibria are 
of the form 

f l = f , = f , = E i = l / s ( l  * C 4 )  
f - f f , = f 5 = f  f i  - - '/s (1 7 CJ 2 -  

and from (2.6) we see that each of the gene frequencies is 0.5, that all pairwise disequilibrium 
ccefficients are zero but the third order interaction D,,, is not zero and is equal to l /s  fi,. The 
type of linkage disequilibrium exhibited by this solution could not be detected by measuring 
correlations between pairs of loci. 

When r l ,  r2 and r3 tend to zero these unsymmetric equilibria are of the form (x ABC, ?l+ aBc, 
% Abc, abC) and (1/4 ABc, 3/4 aBC, % AbC, % abc) .  It is not difficult to prove that when the 
r's are zero the latter two equilibria are stable if 7 > -6 and 3p - 3v - 6 > 0. For tight linkage, 
these unsymmetric equilibria (6.1) may be stable. The precise conditions for stability are given 
by the roots of three quadratic equations. A more detailed analysis is presented in a forth- 
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coming paper on the unsymmetric equilibria. It is important that these two unsymmetric equi- 
libria may be stable simultaneously with four of the symmetric equilibria. Example 6 of $7 is 
a numerical case where this happens. 

7. NUMERICAL EXAMPLES 

In the following eight examples we shall discuss three models to illustrate the existence and 
stability conditions for the symmetric equilibria. For simplicity we shall consider only models 
in which all loci have equal selective values, hence v1 = o2 = v3 = v, and P1 = p2 = pS = 8. 
The selective values v, P, 8 are shown in (7.1). 

cs = ca = c, 9 P 8 CI = c, = C8 ca 

Model 1 0.2 0.36 0.488 -0.081 -0.001 +o.om 
(7.1) Model 2 0.2 0.37 0.46 -0.0775 +0.0075 +0.015 

Model 3 -0.2 -0.44 -0.728 4-0.121 +0.001 +@.all 
Model 1 assumes overdominance at each locus and multiplicative interaction. Note that (1-p) = 
( l - ~ ) ~  and (1-8) = (1-o)3. The first five examples illustrate the symmetric equilibria for 
these selective values, and in the first four of these it is further assumed that r1 = r2 = r and 

= 0.01 r3 = rl + r2 - 2r1r2 = R (i.e., no interference). In t h i s  case r* = O.Oy550%3, 

and r** = 0.1 (see Appendix C) and the equilibria divide rl into five regions shown in 7.2. 

P+v---s 
8(1-~/2) 

Number of equilibria 
Class 1 2 3 Total Number stable 

0.0 < rl < .OM7327 1 6 8  15 4 
.0047327 < r1 < .0050@53 1 6 4  11 4 

(7  2) .0050253 < r1 < .(F103000 1 4 4  9 4 
.0100oOO < r1 < .0104272 1 0 8  9 5 
.0104272 < r1 < 0.5 1 0 0  1 1 

Example 5, in which r1 # r2, shows a situation in which six symmetric equilibria are simul- 
taneously stable. 

Examples 6 and 7 illustrate equilibria for model 2, in which all loci are overdominant but 
do not interact multiplicatively. The symmetric equilibria for model 2 are similar to those for 
model 1, but the existence and stability of the unsymmetric equilibria are very different in the 
t w o  models. Model 3 is a symmetric underdominance model, with multiplicative interaction. 
Again all equilibria exist for  small recombination values but none are stable (Example 8). 

The Class 1 equilibria are given by (3.4), Class 2 equilibria by (3.6), (3.7) and (3.8), and 
the Class 3 equilibria are those with Lis # 0, 0, # 0 and Li, # 0 and are given by (3.18), (3.20) 
and (3.21) when rl = rz and by (3.10), (3.14), (3.11) and (3.12) when r1 # r2. The appropriate 

eigenvalues have been found from the matrix -24 (see Table 2) at the equilibrium values. 
1 
lij 

EXAMPLE 1 

P+T--S C h s  1. From (5.2) this equilibrium is unstable as r < I__. 
v 

8(1--) 
2 

Class 2. The three classes of equilibria exist. Class 2b equilibria are always unstable. From 
(B.7) 2a and 2c equilibria are unstable since r1 = r2. 

Class 3. The range is 0 < r < r*, so for r near zero there are eight valid solutions. From (C2), 
Ih,J < 1 for 0, > 0 with 0, = 2, and for Lis < 0 with 0, = -0,. These four solutions also 
satisfy (C.4) and (C.6), so we would predict stability. The other four solutions do not satisfy 
(C.2) and are unstable. 
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Gamete Frequencies 

3 6 "4 = x5 1 8 xz=x7 = x  x = x  

u5 u6 7 ci Equilibrium 

1 .0000000 .0000000 .OOOOOOO 
.7071068 .ooooooo .ooooooo -. 7071068 .0000000 .0000000 

2a 

1 . m 0 0  
.7745967 

2a - .7745967 

Gamete Frequencies 
x = x  x3 = X6 x4 = x5 

= x8 

.l25OOOO .12jOOOO .l25OOOO .l25OOOO Unstable 

.2133833 .2133833 .0366117 .0366117 

.0366117 .0366117 .2133833 .2133833' 

.om000 . om000 2b 

. 0000000 . oooooo0 zc 

.8689615 
* 8689615 

3ai -.8689615 
- .8689615 
.1205105 
.1205105 

3aii - .l205105 
-.lZO5105 

. 0000000 

. 0000000 . 0000000 

.4507771 
-.4507771 

.ooooooo . .0000000 

.7636253 .a689615 
-.7636253 -.8689615 
-.7636253 .86ami 
.7636253 
-.2579422 

.2579422 

.257*22 

-.257&22 

. 0000000 

. 0000000 . 0000000 

. 0000000 . 0000000 

.7745967 -. 7745967 

- .a685615 
.1205105 -. 1205105 
.1205105 -. 1205105 

.1250000 
,2218246 
.0281754 
.1813471 
.o686529 
.2218246 
.0281754 
.4376935 
.0295468 
.029 5468 
.0032128 
.1228849 

.157 24 28 

.06 26296 

.1572428 

.1250000 .1250000 

.2218246 .0281754 

.0281754 .2218246 

.181%71 ,0686529 

.0281754 .0281754 
,2218246 .2218246 

.0686529 .1813Jt71 

.0295468 .0032128 

.4376935 .0275468 

.0032128 .0295468 

.0295468 .43%935 

.1572428 .0626296 

.1228849 .1572428 

.1572428 .1228W9 

.o626296 .1572428 

. E50000 Unstable 
* ~ ~ ~ ~ ~ 2 ]  Unstable 

. $:$3 Unstable 

.2218246 0281754 I Unstable 

.4376935 

.0295468 

.0032128 

.0295468 1 
1 .1228&9 

.1572428 

.1572428 

.0626296 

Eigenvalues 

1 1.0074074 1.0074074 1.0025086 0.9898667 0.8888889 0.8888389 0.8888887 
2a,2c 1.0160818 0.9852941 0.9790554 0.9760523 0.9532938 0.8888889 0.8064121 
2b 1.0157422 0.9949953 0.9940308 0.9851653 0.9310744 0.8888889 0.8522548 

3aii 1.0124401 1.0046362 0.9945337 0.937j055 0.922&)2e 0.8797199 0.qW39:5 
3ai 0.9694377 0.9640507 0.9574309 3.9551389 0.955'389 0.94001 55 0.7141235 

fiSq-8 EXAMPLE 2 
Class I .  Unstable as r = ___. 

11 8(1--) 
2 

CZass 2. Solutions .%a and 2c are unstable since rl = r2. 
CZass 3. The range is 0 < r < r*, but with r very close to r*, so there are four valid solutions. 

From (C.2), IXJ < 1 for Li, > 0 with ii, = G7 and for Li, < 0 with Li, = -G7, and these solu- 
tions also satisfy (C.4) and (C.6) so we predict stability. 

Selection coefficients: 11 = 0.2, p = 0.36, 6 = 0.488 
Recombination: rl = .005, r2 = .005, r3 = .W95 

.OOOOOOO .0707107 .1338388 .1161612 .1338388 .1161612 

.0000000 -.0707107 :tt:ttt: I .U61612 .1338388 .U61612 .1338388) 2b 

.ooooooo .ooooooo .7071068 

.ooooooo .ooooooo -.7071068 

.8277410 .6985331 .8277410 

.8277410 -.6985331 -. 3277410 
-.8277410 -6985331 -.a277510 

2C 

3ai -.8277410 -.6985331 .8277510 

.a33833 .0366117 .0366117 .a33833 

.0366117 .2133833 .a33833 .0366117' 

.0376834 .0053814 .03768& .4192519 

.4192519 .0376834 .0053814 .05768& 1 .0376834 .4192519 .0376834 .0053814 

.0053814 .0376834 .4192519 .0376834 
3aii No Solutions Exist 

Eigenvalues 

1 1.0061728 1.0061728 1.0000617 0.9876818 0.8888389 0.8888889 0.8888889 
Za,2c 1.0138682 0.9877306 0.9800582 0.9761691 0.9528448 0.3888889 0.8140263 
2b 1.0078081 1.00&41& 0.9998766 0.9875659 0.8958174 0.8838889 0.8818507 
3ai 0.9737436 0.9672149 0.9590359 0.9555496 0.9555496 0.9363983 0.7248958 
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although r < - p+P-s . Hence the central solution is Class I. R is greater than -- P f v - - s  
B P 
2 2 

8(1--) 8(1--) 

still unstable. 
Class 2. Since rl = r2 solutions 2a and 2c are unstable. 

Chss 3. The range under consideration is r* < r < - Pf ' - s  so a total of four valid solutions 
P 
2 

8(1--) 

exist. Those four satisfy (C.2), (C.4) and (C.6). Thus we predict stability. 

Selection coefficients: q = 0.2, /3 = 0.36, S = 0.488 
Recombination: r1 = 0.006, rz = 0.006, r3 = 0.011928 

'6 u7 Equilibrium G7 

1 .ooooooo .ooooooo .ooooooo 
.6324555 .OOOOOOO .OOOOOOO 
-.6324555 .OOOOOOO .OOOOOOO 2a 

2b No Solutions Exist 

2c .ooooooo .ooooooo .6324555 

.7813211 .6297407 .7813211 

.7813211 -.6297407 -.7813211 
3ai -.7813211 -.6297407 .7813211 

-.7813211 .6297407 -.7813211 

.OOOOOOO .OOOOOOO -.6324555 

3aii No Solutions Exist 

Gamete Frequencies 
x = x  8 x2 = x7 x3 = X6 "4 = x5 

.o462824 .0083873 .a62824 .3990479 

.3990479 .0462824 .0083873 .G62824 

.0462824 .3990479 .0462824 .0083873 

.0083873 .0462824 .3990479 .a62824 

Eigenvalues 

1 1.0049383 1.0049383 0.9976198 0.9854990 0.8888889 0.m88889 0.8888889 
2a,zc 1.0115645 0.990i720 0.9811529 0.9762883 0.~~66787 0.8888889 0.8223631 
3ai 0.9780822 0.9705269 0.9608497 0.9557872 0.9557872 0.9324650 0.7366237 

EXAMPLE 4 

Class I. The five conditions in (4.2) are satisfied so this equilibrium is stable. 
P-v-6 

?I 
8(1--) 

2 

Class 2. No equilibria exist as r > - . 

< r < r**. The coefficient of the us term in (3.21) Class 3. The appropriate range is ~ 

8fG-s 
B 

8 (1--) 
2 

(a) is negative so when n5 = 0, there are two positive 0, solutions, when e, = -0, there are 
two negative 0, solutions. Together there will be eight valid solutions. All will satisfy the con- 
dition (C.2).  From (C.4) IX,J, JX,( are less than i for the largest i& solution when i?i5 = 6, and 
for the most negative O6 solution when a5 = -G7. These four solutions also satisfy (C.6). The 
other four solutions do not satisfy (C.4) and so are unstable. 
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Selection coefficients: q = 0.2, /3 = 0.36, 6 = 0.488 
Recombination: rl = .0104; r2 = .01M, r3 = .02%84 

Gamete Frequencies 1 XI = X8 x = x7 x3 = X6 x4 = x5 u5 ‘6 u7 2 Equilibrium 

I 

2 

- 

.0000000 .0000000 .0000000 

No Solutions Exis t  

3 a i  

3 a i i  

.3306752 .1490700 .3306752 

.3306752 -.1490700 -.3306752 -. 3306752 - .1490700 .3306752 
-.3306752 .1450700 -.33067$2 

.2390673 .OS57899 -2390673 

.2390673 - .0857899 -. 2390673 
-.a390673 .0857899 -.2390673 
-.2390673 -.8857899 .2390673 

.2263026 .io63661 . i? .X?tJ~a .lo63663 

.lo63663 .2263026 .106366z .0609&91 

.lo63663 .0609649 .lo63663 .2263026 

.0609649 .l06i66i .2263026 .lo636631 

.U42763 .0759569 .1142763 .19%906 

.1954906 .1142763 .@759569 .U42763 

.1142763 .1954906 .1142763 .0759569 

.0759569 .ii42763 .1954906 .ii42763 

Eigenvalues 

1 0.9995062 0.9995062 0.9869337 0.9759211 0.8888889 0.8888889 0.8888889 
3ai 0.9994567 0.9930844 0.9786195 0.9708758 0.9262588 0.9909323 0.8337191 
3aii  1.000%05 0.9960142 0.9821135 0.9732860 0.9173472 0.8960161 0.8504754 

EXAMPLE 5 

P f q - 6  

8(1--) 
Class 1. Unstable as r1 < ~. 

9 

2 

Class 2. Only the class 2a solutions exist. The value of the quadratic arZ2 + br, + c in (B.7) 
is f0.000056, implying that A, is just slightly less than 1. In fact, from the numerical work, 
A, = 0.9999188. Note that with the above selection values and rl = .0099 but r2 = .0102, then 
A, is just slightly larger than 1. 

Class 3.  Consider the existence and stability behavior for rl = r2 = 0.01, R = 0.0198. This is 

the point rl = ___ . The coefficient of the u6 term in (3.21) (a) is negative so for r1 slightly 

less than ’*-: there is one valid 3, solution producing two equilibria of the form 3, = li,. 

11 
8(1--) 

2 

11 
8(1--) 

2 

Simihly (3.21) (b) gives rise to two valid equilibria of the form 6, < 0, 0, = -G7. These 
solutions will satisfy (C.2), (C.4) and (C.6). We cannot a priori predict whether the remaining 
four should exist here due to the difference between rl and r2. 
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Selection coefficients: r) = 0.2, /3 = 0.36, 6 = 0.488 
Recombination: rl = .GO99, r2 = .0103, r3 = .019996 

1 .0000000 .OOOOOOO .0000000 
.a717798 .OOOOOOO .0000000 
-.a717798 .0000000 .OOOOOOO 2a 

151 

.1250000 .lZ5OOOO .lZ5OOOO .lZgOOOO Unstable 

.2339725 .2339725 .0160275 .0160275) Unstable 

.0160275 .0160275 .2339725 .e339725 

u5 u6 u7 Equilibrium 

1 .0000000 .0000000 .0000@00 

.1000000 .0000000 .ooooooo 
-.1000000 .0000000 .ooooooo 2a 

No Solutions Exist 
zc 

.4445181 .2341716 .4243619 

.444518i -.2341716 -.4243619 
3ai -.4445181 -.2341716 .4243619 

2b I 
-.4445181 .2341716 -.4243619 
.U74182 .008403J+ .ob08655 

3aii -. 1174182 -. 0084034 .ob08655 
-.U74182 .OO84034 -.0408655 

.1174182 -. 0084034 -. 0408655 

Gamete Frequencies 

xi = x8 x2 = x7 x3 = x6 "4 = "5 

.12500OO ,185OOOO .lZ5OOOO .l25OOOO Unstable 

.1375000 .1375000 .1125000 .1125000 
1125000 .1125000 .1375000 .13750001 

.0932090 .a56614 .0982481 .2628815 

,2628815 ,0982481 .0456614 .0932090 
.0?82481 .2620815 ,0932090 .a56614 

.a56614 .og32090 .2628815 .0982481 

.1335187 .1458359 .1143805 .lo62650 

.1458359 .1335187 .io62650 .ilk3805 

.1143805 .lo62650 .1335m .1458359 

.lo62650 .1143805 .1458359 .1335187 

Eigenvalues 

1 1.0001235 0.9996296 0.9876592 0.9765728 0.8888889 0.8888889 0.8888889 
2a 0.9999188 0.9997531 0.9871247 0.9765425 0.8986545 0.8888889 0.8789038 
3ai 0.9972622 0.9891364 0.9745238 0.9678262 0.9352954 0.9071496 0.8136178 
3aii 1.0001069 0.9995003 0.9868492 0.9762168 0.9007831 0.8893363 0.8762050 

EXAMPLE 6;a 
Selection: coefficients: q = 0.2, /3 = 0.37, 6 = 0.45 
Recombination: r, = .001, r2 = .OM, r, e .U01998 

Gamete Frequencies I 
~ ~~ 

"4 = "5 x3 = X6 G6 Equilibrium A u5 

. 0000000 

.0000000 Zb 

. 0000000 . 0000000 2C 

.9268309 

.9268309 

- .9268309 
3ai - .9268309 

.2&3313 

.2#+3313 
3aii -. 2243313 -. 2243313 

.7224403 
-.7224403 

. 0000000 . 0000000 

.86 224 77 -. 8622477 
- *  8622477 
.8622477 

- .2911683 
.2911683 
.2911683 -. 2911683 

. 0000000 . 0000000 

.8117798 
,8717798 

.9268309 
- .9268309 
.9268309 

- .9268309 
.e243313 -. 2243313 
.2253313 -. 2243313 

.2153050 

.0%6950 

.2339725 

.0160275 

.4&4887 

.0172190 

.0172190 

.0010732 

.i446868 

.if513960 

.1613960 

.0325212 

.OS6950 ,2153050 .0546950 
,2153050 .OS6950 .2153050) 

.0160275 .0160275 .2339725 

.a339725 .2339725 .0160275) 

.0010732 .0172190 .4644887 

.0172190 .0010732 .0172190 

.4644887 .0172190 .0010732 

.0172190 .4644887 .0172190 

.O325212 .1613960 .1446868 

.1613960 .0325212 .1613960 

.1446868 .1613960 .0325212 

.1613960 .144686a .1613960 

Eigenvalues 

1 1.0156164 1.0156164 1.0107244 l.ooi5244 0.8938356 0.8938356 0.8938356 
Za, Zc 1.0322466 0.9692474 0.9641817 0.9629365 0.9535827 0.9020%7 0.8066007 
2b 1.0338228 0.9787788 0.9762263 0.9758575 0.9455480 0.8990228 0.8231550 
3ai 0.9389198 0.5354417 0.5281059 0.5281059 0.9268570 0.9%0715 0.72843jO 
3aii 1.0235229 1.0165837 0.9895749 0.9827128 0.9406593 0.8732087 0.8656087 
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EXAMPLE 6b. Simple Unsymmetric Equilibria 
Selection: coefficients: q = 0.2, /3 = 0.37, 6 = 0.46 
Recombination: r1 = r, = r 

. 000 

.001 

.0:2 

. no3 

. C C M J  

,004 

3 4 
1.00000 

0.78677 
0.77376 
0.36096 
0.148Y[ 
0.00393 

EXAMPLE 7 

Selection: coefficients: q = 0.2, p = 0.37, 6 = 0.45 
Recombination: r1 = .OW, r2 = .W, r3 = DO7968 

1 .oooooo 
.969536 

- -969536 2a 

.OooOoO . O o o o o o  

. oooooo . oooooo 

.982962 
- .982962 

2b 

2, 

.982962 
3ai 

- .982962 
.308630 
.308630 

jaii - .308630 
- .308630 

.oooooo .oooooo 

.oooooo .ocoooo 

.oooooo .oooooo 

.938147 .OOOOOO 
- .938147 . 000000 
. OooOOO .969536 

.966415 .982962 
-.966415 -.982962 

.966415 - .982962 

. OooOOO - .969536 

- .966415 .982962 

- .323500 .308630 . ~ 2 y % 1  --. 300630 
.3235OO .308630 

- .3235O0 - .308630 

Gamete Frequencies 
- r _  , % . A A A _ .  

x1 = X8 x2 = x7 x3 = X6 x4 = x5 

.125000 

.246192 

.003808 

.e42268 

.007732 

.e4619 

.003808 
,491542 
.004l98 
.004198 
.000061 
.161720 
.165438 
.165438 
.007405 

.125Q00 

.246192 

.003808 

-007732 
.e42268 
.003808 
.246192 
.004198 
,491542 

.004198 
.165438 

.007405 
.165438 

.000061 

.161720 

.12W00 .125000 Unstable 

.003808 .003808 

.246192 .2461p1 

'242268 'g$zg) Unstable .007732 . 
.003808 .246192 
.246192 .003808~ 

.004198 .491542 

.000061 .004198 

.004198 .000061 

.491542 .004198 

.165438 .161720 

.007405 .165438 

.165438 .007405 

.161720 .165438 

Eigenvalues 

1 1.019315 1.019315 1.018005 1.008063 0.895836 0.893836 0.893836 
2a,2b 1.038295 0.9@102 0.960935 0.960498 0.958334 0.904944 0.795463 
2b 1.038951 0.964473 0.964192 0.963466 0.956852 0.903942 0.7'99064 
3a i  0.926649 0 . 9 2 3 7  0.923968 0.923969 0.923563 0.922257 0.714173 
j a i i  1.026341 1.024690 0.983867 0.975200 0.959958 0.862606 0.860917 
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EXAMPLE 8 
Selection coefficients: q = -0.2, p = -O.M, 6 = -0.728 
Recombination: rl = .004, r2 = .OM, r3 = .007968 

-.8923375 .8080367 -.8523375 

.?A69267 .25042C~ -.1169267 
-.U69267 .2504200 .1169267 
-.U69267 -.2504200 -.1169267 

.si69267 -. 2504200 .1169267 
3aii 
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. O O Z ~ Z O O  .,0239957 ,4496887 .02299571 

.E63025 .1229292 .1563025 e0644658 

.1563025 .Oak658 .1563025 .1229292 

.0644658 .I563025 .1229292 ,1563025 1 . 1 ~ 2 9 ~ 9 ~  .1563025 .0644658 .is63025 

I Gamete Frequencies 

1 .ooooooo .ooooooo .ooooooo 

- .7745967 . ooooooo . 0000ooo 2a 

2b 

.7745967 . 0000000 . 0000000 

.OOOOOOO .4507771 .OOOOOOO 

.OOOOOOO -.4507771 .OOOOOOO 

.ooooooo .ooooooo .77 4367 . ooooooo . ooooooo - .77 4367 

.a923375 .8080347 .8923375 

.a923375 -.8080347 -.8923375 

zc 

3ai -.a923375 -.8080347 .8923375 

.1250000 .I250000 .1250000 .lZ5OOOO Unstable 

.2218246 .2218246 .0281754 .0281754 

.0281754 .0281754 .2218246 .2218246' 

.0686529 .1813471 .0686529 .1813471) 

.2218246 .0281754 .0281754 .2218246 

.OF281754 .2218246 .2218246 .0281754' 

.1813471 .0686529 .1813471 .0686529 

.OF239957 .0029200 .0239957 .4490887 

.4490887 .0239957 .0029200 .0239957 

.0239957 .4490887 .0239957 .0029200 

The range under consideration is 0. < r < r*. Obviously Class 1 and 2 equilibria are unstable. 
Four of the solutions from Class 3 satisfy (C.2), (C.4) and (C.6). Numerical studies indicate 
that in this case one of the eigenvalues from (C.8) is greater than 1. The other four solutions 
are also unstable from (C.2). 

DISCUSSION 

The increased complexity of the three-locus system over two-locus models is 
evident. For two loci (each with two alleles) there are three internal, symmetric 
equilibria, and at most two of these may be stable. In the three-locus symmetric 
viability model discussed in this paper we have shown that there may be fifteen 
symmetric equilibria, and as many as six of these can be stable for a given set of 
recombination values. These fifteen equilibria all exist, if linkage is sufficiently 
tight, for a number of selection models, including symmetric overdominance (Ex- 
amples 1,6 and 7),  and symmetric underdominance (Example 8). 

Examples 1, 6 and 7 show overdominance models in which four of the fifteen 
equilibria are stable. In symmetric equilibria each gamete, and its complement 
(obtained by substituting one allele for another at all loci), have the same fre- 
quency, and each of the four stable equilibria have one of the four pairs predomi- 
nating in frequency. Example 4 shows a feature of three-locus models not found 
in studies of two loci, namely the simultaneous stability of solutions in which 
there is no linkage disequilibrium (Class 1) and the Pour described above (Class 
3ai), making five stable equilibria in all. In this example the region of simul- 
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taneous stability is very small (I = 0.01 - 0.010427), but for a different stability 
regime or if there are many loci the region may be large (FRANKLIN and 
LEWONTIN 1970). There can be six stable symmetric equilibria if recombination 
between loci 1 and 2 is not equal to that between 2 and 3 (Example 5). 

When six symmetric equilibria are stable for the same recombination fractions 
they comprise four of Class 3 and two of Class 2 with the classes characterized by 
different nonzero values of the linkage disequilibrium. This possibility was not 
uncovered by FRANKLIN and LEWONTIN. We have proved for the three-locus case 
that the number of equilibria in such a situation is five. I n  addition, we pointed 
out in Section 8 that there may exist two unsymmetric equilibria which may be 
stable for tight linkage simultaneously with the four stable Class 3 equilibria. 
The implications of this are discussed in our work in preparation. 

How much of the behavior of the three-locus system might have been predicted 
from the extensive analyses of two-locus models? For tight linkage it is known 
that in a suitably interacting two-locus model the equilibrium with D = 0 is un- 
stable, and i t  would have been reasonable to assume that the three-locus analog 
of the two-locus model would also show that the central solution (i.e., all Di, = 0) 
would be unstable for small recombination. In  addition, for loose linkage the cen- 
tral solution is the only symmetric equilibrium which exists, and is stable. The 
three-locus model shows a similar behavior. Similarly, if one pair of loci is tightly 
linked, and the other pairs are loosely linked, we could predict that there would 
be stable disequilibrium between the tightly linked pair and no disequilibrium 
between the remaining pairs. Further we might predict some of the behavior 
shown in Examples 1-4. Here the loci have equal effect, and are equally spaced. 
If linkage is tight enough so that the disequilibrium between locus 1 and 2 is 
stable (as judged by the criteria established for the two-locus model), then zero 
disequilibrium between 2 and 3 would be unstable, hence Class 2a equilibria in 
which D,, # 0, D,, = 0 would be unstable. Similarly 2b and 2c are predictably 
unstable. Hence we would assume that the stable equilibria, if they exist, would 
have D,, # 0, DZ3 # 0. 

Ignoring the effect of the third locus, there will exist an equilibrium with 
D,, # 0 if r1 < 0.1 in Examples 1-4. (This is based on the two-locus theory of 
LEWONTIN and KOJIMA (1960) ) . Using the above argument equilibrium 2a will 
be stable if  rZ > .01 and unstable if r, < .OI. This prediction is in agreement with 
the findings in $ 4 .  

This is about as far as one can go using two-locus theory. The number of equi- 
libria with nonzero disequilibrium between all pairs could not be predicted easily 
a priori, nor the conditions for existence and stability. (From symmetry consid- 
erations we might say that there are at least four such equilibria, and we have 
shown that there are in fact eight). The region of simultaneous stability is a 
feature of the three-locus model which does not follow from two-locus analyses. 

Perhaps the relevant question for multilocus models should not be how much 
can be generalized from the two-locus model. Instead, we might ask how much 
can be inferred from the multiallele model with the number of alleles correspond- 
ing to the number of gametic types in the multilocus model. In fact, when there 
i s  no recombination the models are identical. Since the multiallele theory is com- 



SELECTION WITH THREE LOCI 155 

yletely known the multilocus theory for tight linkage should be deducible. Thus 
with three loci and the symmetric viabilities of this paper, we would predict that 
for I small and p ,  6 , ~  > 0 four symmetric equilibria should be stable, the central 
point unstable, and for general symmetric viabilities two unsymmetric equilibria 
could also be stable. KARLIN and MCGREGOR (1971) have presented similar 
arguments in the context of a general small parameter theory. 

Similarly we might consider the Class 2 equilibria (4.6) as rl tends to zero. 
These equilibria approach the central equilibria of the appropriate two-locus 
model, which are stable for rs large. We therefore infer that for Class 2 equilibria 
to be stable, there must be asymmetry with respect to the way the loci lie on the 
chromosome. In other words, although we cannot tell for what recombination 
values the various equilibria come and go, we can obtain a great deal of useful 
information on which equilibria govern the evolution for tight linkage by con- 
sidering the appropriate multiallele case. 

The body of this paper has been concerned only with symmetric equilibria. 
One of the key distinguishing features of this three-locus work over the two-locus 
work is that two unsymmetric equilibria may exist for tight linkage, and be 
stable. Again this may be inferred from the multiallele theory. This would make 
a total of six stable equilibria for tight linkage. The question of unsymmetric 
equilibria in the three-locus model is an interesting problem, and in our subse- 
quent paper we shall explore the interaction of these with the symmetric equi- 
libria discussed above. 

Thus there are two points of generalization from the work of FRANKLIN and 
LEWONTIN which are worth noting. First, if the three loci are not equally spaced 
(as we would expect in more realistic models) there can be, in addition to the 
stable solutions with all D # 0, equilibria in which one of the adjacent pairs has 
D # 0 and the other is in linkage equilibrium. This will undoubtedly generalize 
to more loci in a complicated manner. Second, unsymmetric equilibria stable for 
tight linkage may exist simultaneously with symmetric equilibria. 

In general, however, our analysis supports the numerical conclusions of 
FRANKLIN and LEWONTIN (1970), who found a class of stable symmetric equi- 
libria comprising 2-l solutions, where n is the number of loci. These equilibria 
are characterized by a high degree of linkage disequilibrium between all pairs of 
loci and correspond in the three-locus model to equilibria 3ai. Our analysis has 
proven the existence of a region of simultaneous stability of the central point and 
the stable Class 3 equilibria which they originally discovered. 

The unsymmetric equilibria for the three-locus model add considerably to the 
complexity of the situation. In a preliminary analysis of Model 2, with small 
recombination values, we have found thirty internal, unsymmetric equilibria, 
some of which, as mentioned above, are stable. 

The method of analysis used in $ 2  and $$ 3 to obtain the symmetric equilibria 
is based on a transformation similar to that used by KARLIN and FELDMAN 
(1970). The method used here can be applied to the two-locus symmetric 
viability model to obtain the unsymmetric equilibria more simply. In principle 
the system of gametic frequencies for more than three loci can be transformed in 
the same way. 
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APPENDIX A 

Existence of the class 3 symmetric equilibria: (6, # 0, ii, # 0 and ii7 # 0) with rl = r2 = r 
and R = 2r(l-r). 

. This implies that r -, R - and rl PS9-8 (i) Consider first values of r such that R ( l -  -) <- 
2 8 2 2  

rl P+rl--s . Define r* as the smaller root of R(1- -) = - 9 P+9-S r(1--) are all less than ___ 
2 8 2 8 

t l r l  

(note r* < i/z) so that in this first range r < r*. (In Model 1, $7, r* = .O(Y50253.) From (3.21) 
(a) there are two valid roots ti,, one positive and one negative. The positive one also validates 
(3.20) (a) and therefore produces two valid equilibria. For the negative root to be valid in (3.20) 
(a) we require 

(L- - -) 
4 2 

This is not automatically satisfied. In fact from (3.21) (a) for (A.1) to hold we need 
n 

1'4. - - j 2  2 1 
(note that (A.2) holds near r = 0). Hence, r < r* always produces two equilibria from (3.20) 
(a) and (3.21) (a) with 0, > 0, ~ 2 , ~  = Li,; and in the same way there will be two from (3.20) (b) 
and (3.21) (b) with 0, < 0, 2, = -C7. In addition if (A.2) holds four more will exist. However, 
for r very close to r*, (A.2) is obviously violated. 

P+7-S (ii) Next consider the range r* 2 r < -- so that in addition 
rl 

8 (1---) 
2 
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Thus from (3.21) (a) two valid 0, solutions exist. From (3.20(a) the positive one is valid. How- 
ever, using the same argument as before, since r > r* the negative ii, solution is invalid. Thus 
in this range, two solutions of the form 0, > 0, 0, = 0, exist. In the same way from (3.20) (b) 
and (3.21) (b) two solutions of the form 0, < 0, 0, = -0, are valid, so that the total cannot 
exceed four here. 

(iii) Now consider (/3+~-6)/8(1--) B < r < r** where r** is the smaller root of ~ P+v-S - - 
2 4 

. (In Model 1, 7, r** = 0.1.) Clearly in this range the constant term of (3.21) (a) and 
R7 

2 
(3.21) (b) is positive (note that if /3 > 6 [single heterozygotes less fit than triple homozygotes] 
r** > ‘/2 so this complete the range of r values). This case is difficult to analyze completely SO 

we are content to consider what happens near the limits of the range. 

- 

B 

2 
When r =  (/3+~-6)/8(1--), 0, = 0 is a valid solution although, since it entails 

= 0, = 0, it is in fact the “central solution.” The validity of the non-zero solution will then 
depend on the slope of (3.21) (a) at us = 0 for this value of r. If the slope is negative this 
solution will be positive and will be valid from (3.20) (a). When r is slightly greater than 

( /3+~-S) /8(1-- )  the slope of (3.21) (a) at U, = 0 will still be negative but since the value at 

the origin is now positive there will be two positive 0, solutions both of which will be valid 
from (3.20)(a) and four valid equilibria will result. Similarly, under these same conditions, 
four valid equilibria with 0, < 0 will result from (3.20) (b) and (3.21) (b). If, however, the 

slope of (3.21) (a) at U, = 0 is positive for  r = ( / 3 / - ~ - 8 ) / 8 ( 1 - - )  the solutions for r slightly 

greater will both be negative and invalid. What we expect therefore depends on the slope of 
?I (3.21) (a) at U, = 0 for r = (/3+~-S)/8(1--). This seems to depend critically on the selec- 
2 

tion parameters in such a way that when 9 is small this slope is negative and all eight equilibria 
exist. (It is important for the stability analysis to note that at the smaller positive root of 
(3.21) (a), in this case the slope, is negative.) 

As T increases to r** the constant term of (3.21) (a) again vanishes. When T is slightly less 
than r** no po6itive 0, roots exist (nor negative roots of (3.21) (b)) so that no valid equilibria 
are possible. At r = r** is is clear that no valid roots are possible. To summarize, in the range 

B 
(/3+~-6)/8(1--) < r< r** there may be eight solutions in the smaller part of the range 

2 
but these disappear as r increases to r* * , 

(iv) If 6 > /3 then consider the range r** < r < e. We have to split this range further 

because the coefficient of u62 in (3.21) (a) has a root Z,, say, which it is easy to see lies in this 
interval and at which it changes sign from positive to negative. Let us first treat r values with 
r** < r < I, so that the coefficient of us2 is positive, while the constant term is negative. In this 
range, then, there is a positive and a negative root of (3,21)(a). But the denominator on the 
right side of (3.20) (a) is negative. Hence the positive root is invalid. For the negative root to be 
valid in (3.20) (a) we must have 

I )  

2 

?I 

2 

27  

r )  

2 
(r-R) (1--) 

(---I P-l-0-6 
‘ 

4 2 

o>a,> 
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On substitution into (3.21) (a) it is seen that the reverse of condition (A.2) must hold for this 
negative root to be valid. This is clearly impossible. Hence in r** < r < 1, no valid roots are 
possible. 

To complete case iv we examine ll 5 r < -- '+'-'. Note that the coefficient of ug in 
27 

(3.21) (a) is a cubic in r. It has three positive roots m, < m2 < m3, and it i s  easy to see that 

r* < m,<r** ,  - P+rl--s < m 2 < i / e ,  m3?4/e. 
27 

Therefore, when r = 1, and (3.21) (a) is linear, the root is positive, and as above, is invalid. For 
r close to 1, the roots of (3.21) (a) are real. Any roots in this range must be positive and again 
from (3.20) (a) cannot be valid. 

In the range r** < r < ___ '+'-* , therefore, there are no valid roots. 
Zrl 

< r < i/e. Again this breaks naturally into the regions Pflr-s < r < m, and P+a-S 
21, 211 

~ 

mz 5 r < '/e where m2 is the second root of the coefficient of us in (3.21) (a). In the first sub- 
region all real roots of (3.21)(a) must be positive. From (3.20)(a) where r is close to 
(/3+7p--6)/21, the roots are invalid. Also, from (3.21) (a) when r is close to m2 no real 6, roots 
exist. In between, for a valid positive 0, we need 

rl 

2 
(r-R) (I.---) 

?I 

2 
The slope of (3.21) (a) when fi, = (r-R) (1--)/[ (/3+7-8)/4 - T] is clearly negative so 

so the inequality is violated and no roots can be valid in the range (/3+q-S)/2q < r < m2. 
It remains to treat the case m, 5 r < '/e. Again near r = m2 (3.21) (a) has imaginary roots. 

In this region any real mots must be negative and, if they exist, will certainly satisfy (3.20) (a). 
At r = '/e the reality of the roots of (3.21) (a) depends on the selection values. If (2(P-S) + 
31))2 - 12(/3+1--S) > 0 eight valid solutions will exist at r = i/e. This condition is clearly 
satisfied if 1 is small and S > ,8 and, of course, P + 1) - S < 0. 
(vi) P + 7 - S < 0. Equilibria (3.6), (3.7) and (3.8) cannot exist. From (3.21) (a) one positive 
and one negative 2, root exist. The negative root always satisfies (3.20) (a) and from (4.3) the 
positive root will also be valid in (3.20) (a). Therefore, eight valid roots always exist. 

APPENDIX B 

Solution where 
us2 = 1 - 8r1(1-7/2) (p+?--S)-l. 

The local stability determinant partitions into a linear term and three quadratics. From the 
linear term the condition that the first eigenvalue be less than 1 is the existence condition for 
(3.6), namely, A, < 1 if 

(3.6): f, = f, = f, = f, = % (1 t f i 5 ) ,  f ,  = f, + e5 = f, = 1/8 ( l ~ u , )  

P+rl--s 

r1 < 8(1-~/2) . . ,  
The roots of the first quadratic X, and A,, say, are less than unity (in modulus) if, respectively, 

and 

(B.3) ~ P+rl--s fi62 - -- 2, + 8 p-rl+s>O 
8 4 

hold. 
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From (B.2) and (B.3) when 6 > q no new conditions are required. When q > 6 and 
/3 - q + 6 < 0, we have A, > 1 so that for stability we do require j3 - q + 8 > 0. In summary 
the conditions that A, and A, both be less than unity in absolute value are: 
(B.4) (a) 
or 

8 > q implies lhzlr ]A31 < 1 for all r1 

where 
P 2  - ( v - S ) Z  + P(9-8) - ( 7 - 8 )  [2(v--s)Z - P21 

4(1--7/2) (P+q--S) 
P 2  - (7-8)Z + P(7-8) I+ ( 7 - S )  ./ [2(11---S)Z - P21 

4(1-7/2) ( P f v - - s )  

C =  

D=-..--..-- 

I t  should be noted that (B.4) (c) allows a gap, C < rl < D, of instability analogous to that 
discovered by EWENS (1968) (see also KARLIN and FELDMAN (1970b)). 

The remaining four eigenvalues are quite complicated to analyze. They are the roots A, 
and A, of the quadratic 

6 

2 
,6A[2 - - - P 

2 
-- 7 -  

(B.5) 

and the roots A, and A, of the quadratic 

___- P+q+s r3(I-q/2)) (1 - 
4 

P+a+-S 
4 

where 

It is easy to see that A, and A, are real. After some algebra the condition that they both be 
less than 1 in absolute value turns out to be 
03.7) 
where U, b and c are the functions (of r l )  

ur22 + br, + c > 0 

The most important property of (B.7) is that the inequality is false if r2 5 rl. The symmetry 
of the model therefore implies that (3.6) and (3.8) cannot be stable together. In particular, if 
rl = r2 neither can be stable. 

The roots of (B.5) are more difficult to analyie in a qualitative way. If the viabilities are 
multiplicative it is easy to see that X, and A, are real and less than unity in  modulus. When the 
more general fitness scheme is in force we can see that for r1 close to zero or near its maximum 
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(P+q-8)/8(1-~/2) the roots are real. Near r, = 0 the condition that they be less than unity is 
(B.9) p--l l--S<o 
while near r1 = (/3+8-8)/8(1--7/2) the conditions are the same as (5.2)'(a) and (5.2)'(b), 
namely 
(B.lO) 
The general conditions on the roots of (B.5) seem complicated to write down. We can say that if 
the selection coefficients do not depart greatly from multiplicative by continuity we expect these 
two roots to be less than unity for very tight linkage. 
(C) Solution (3.7): f, = f, = f, = f, = 1/8 (1 -t. c,), fz = z4 = f, = f, = 1/8 (1 ~ 0 , )  where 
0,2 = 1 - 8r3(1-q/2) (/3+q--S)-1 (all other fii = 0). The first condition for the stability 
of (3.7) is seen to be the existence condition, namely 
(B. l l )  0 < r3 < (P+T--S)/~(~-V/~). 

P - 7 + -S > 0, (rl+r2-r1rZ) > (3/3-38-8)/8(1-q). 

Now corresponding to (B.6) with r,  and rl interchanged we obtain the eigenvalues A, and A, as 

(G)-l{ [I - ~- - - 
4 2 

r3(l-T/2) we have A, (the larger) < 1 if which are real. Substituting 3 = 1 - ~ - P+tl+8 
4 

is negative. But since r,, r2 < 1/2 this is impossible and therefore h, is always greater than unity. 
Thus (3.7) can never be stable. 
(D) Solution (3.8): f, = f4 = 2, = z8 = '/s (1 +. C,), f, = 2, = 2, = 2, = % (1 ~ 0 , )  where 
0,2 = 1 - 8r,(1-7/2) (P+q--S)-l all other Izi = 0. The conditions for stability are as for 
(3.6) with r,  and r2 interchanged. Again, it should be emphasized that (3.8) and (3.6) cannot 
be stable simultaneously. In fact of the seven solutions so far analyzed, for tight linkage only 
(3.6) or (3.8) (not both) may be stable, while for looser linkage (3.4) may be stable. In fact, 
if r2 is sufficiently great relative to r1 we predict (3.6) will be stable. A case is given by Example 
5 of $7. The stability of this class of equilibria was not considered by FRANKLIN and LEWONTIN 
(1970). 

APPENDIX C 

Stability of the 0, # 0, 0, # 0, 0, # 0 solution when P + 7 - 6 > 0. 
The stability determinant splits into a cubic and a quartic. From the cubic we have been 

able to obtain the three eigenvalues, and these three appear to give us most of the information 
we need on stability for tight linkage. In other wards, the numerical examples in  $7 can be 
predicted from these eigenvalues alone, although with less simple selection parameters there may 
be difficulties involving the other four eigenvalues. 

We shall refer to solutions 0, from (3.21) (a) and the relevant remarks for (3.21) (b) are 
easily inferred. 

The first eigenvalue from the cubic is A,, given by 

4 
8 P+?---s rr] 1 

r(1--)  - -- li,+TU6, 2 4 

S P 8 8 r8 

4 4 4 2 2  
where fi = 1 - - (Ifri,) - - (1-0,) - - (1-0,) - r(l--) - -U,. 

Clearly A, > 0 and is less than 1 if 

(C.2) 
P+q--S rv 

i&(- - -) > 0. 
4 2 

P+a-8 P+q--S 

28 28 
That is, if r < ~, for stability 0, must be positive, while if r > - , 0, must be 
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negative. From Appendix A this condition already eliminates four of the eight equilibria 

11 P+.11--s. For which may exist when r < r*, where r* is the smaller root of R(1--) =- 
2 a 

r > r* all the possible equilibria which exist satisfy this first stability condition. 
The remaining two eigenvalues from the cubic are the solutions A, and A, of 

(C.3) g(X) =AzW2 - hE(J+N+L) + N(J+L) - 2 K M  = 0 
where 

9 P+.11--S r(1--) ------f i52 
P+1,+-S J =  1 --- 

4 2 4 

P+v--S rv 
4 4 2 

) f i , Z +  ( - - - - - - - - - ) f i6  
P+T--S L = - ( -  

P+v--s R.11 )fi& + (- - - M = - ( -  ) f i 5  

T P+l?--S 

P+.11--S 
4 4 

fi62. N=l---  P+.ll+s R(l--) _~ 
4 2 4 

P+v--6 , It can be shown that J + N + L > 0. It is important to note that in the region R > - 
(or equivalently r** < r < ~ Ps.ll-s, where r** is the smaller root of - - R )  if 6 > P 

no valid roots exist. Therei-ore in considering the reality of h, and A, we may assume either 

2.11 
P+s--s - 

21, 21, 

> R  
P+1,--s 

21, 
-- (C.4) (a) 

P+??--S 
2.11 

r > - - .  

In both of these cases it is not difficult to show that K M  > 0 so that X, and X, are real. The 
condition that IA,J, Ih,I be less than 1 is therefore that g(1) > 0, namely 

P+q--S P f v - 8  rl~ P+?--S RV 
- -1 + (- - --)/211 

$5' { f i6  { (4 2 4 2 
(C.5) 

P+v--s ) (R-r) (1--) 1 - [-- P+v--S - -1 r.11 [- B f v - 8  - - Rql}> 0. + (4 2 4 2 4 2 

But condition (C.4) is precisely the condition that the derivative of (3.21) (a) be positive at fi,. 
This, therefore, tells us in cases (iii) and (v) of Appendix A which fi, roots could be stable. 

< r < r** this condition informs us that the smaller positive root is In the range P+a-S 
8(1-(.11/2) 1 

< r < '/e the smaller (in absolute value) negative root is unstable while, when ____ 

unstable. 
The conditions, taken jointly, imply that whenever eight equilibria exist, only four can be 

stable. When only four exist the f i s t  three eigenvalues are always less than unity. As can be 
seen from 7 these three eigenvalues seem to be very goad predictors for the complete stability, 
at least in the case where the viabilities are multiplicative and linkage tight. 

The fourth-degree determinant factors into a linear and a cubic. From the linear part we have 

P+v--S 
29 



This is a somewhat strange condition. But for r very small so that fi, is close to +1 (note that 
by the above the equilibrium Li, = - 1/3 cannot be stable), the condition reduces to p f 7 - 
ti > 0. For sufficiently tight linkage this eigenvalue imposes no additional restrains. However, at 
r = (C.7) can never be true so that for very loose linkage equilibria of the form uj # 0, 
u6 # 0, u7 # 0 cannot be stable. 

The remaining stability eigenvalues are the roots of the equation 

A - A f i  2B E 
(C.8) B A + C - - A S  D 1 = O  

where 
/ C + G  2 ( B + F )  H - A f i  

When r is sufficiently small the condition that all three roots of this determinant be less than 
unity reduces to ,G' + 7 - ti > 0. When r = i/z the cubic factors to produce a second eigenvalue 
equal to h, in (C.6). No further analysis of the cubic has been made. It appears that such an 
extended analysis would have to be made numerically. From 5 7, however, it seems that for 
relatively tight linkage, the first three eigenvalues do a good job of predicting stability, while 
for loose linkage h, > 1 allows us to infer that the equilibria are unstable. 


