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ABSTRACT 

The geographical structure of a finite population distributed continuously 
and homogeneously along a circular habit is explored. Selection is supposed 
to be absent, and the analysis is restricted to a single lacus with discrete, non- 
overlapping generations. Assuming every mutant is new to the population, the 
rate of decay of genetic variability is obtained, and the probability that two 
homologous genes separated by a given distance are different alleles is calcu- 
lated. If moments of the migration function higher than second are neglected, 
the eigenvalue equation is shown to be a simple trigonometric one, and the 
Fourier series giving the transient and stationary probabilities of allelism are 
summed in terms of elementary functions. The proportion of homozygotes, the 
effective number of alleles maintained in the populatioq and the amount of 
local differentiation of gene frequencies are discussed. 

I. INTRODUCTION 

HE rate of approach to homozygosity and the amount of genetic variability 
Tmaintained by mutation in CI finite population are important classical prob- 
lems in population genetics and evolutionary theory. Taking into account 
geographical structure makes these questions richer in interest and more appli- 
cable to  natural populations. A good review of the history and applications of this 
subject is presented by MARUYAMA (1972). 

MARUYAMA (1970a, 1970b, 1971a) has analyzed stepping-stone models of 
finite populations in one and two dimensions. He has also employed perturbation 
theory to calculate the asymptotic rate of decay of heterozygosity and the prob- 
ability of allelism for continuously and homogeneously distributed finite popu- 
lations in circurar and linear habitats in the limiting cases of large populations 
and large habitats (MARUYAMA 1971b). For a torus-like two-dimensional space, 
he has given a Fourier expansion of the equilibrium probability of allelism, and 
has inferred the algebraic form of the dominant eigenvalue controlling the rate 
of decay of genetic variability without mutation for the “torus” and square from 
numerical calculations (MARUYAMA 1972). 

The model treated in this paper is that of MALBCOT (1967; 1969, pp. 64-69), 
with the formulation of MARUYAMA (1971b, 1972). We shall suppose that diploid 
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monoecious individuals are distributed continuously and homogeneously along a 
circular habitat. They migrate in such a manner that the population density 
remains constant and uniform. Generations are discrete, and at the end of each 
generation every individual is replaced by a new individual iormed by the ran- 
dom union of gametes from the immediately surrounding region. We shall 
restrict ourselves to a single locus without selection, and assume every mutation 
is new to the population. We use the term “circle” to designate any closed curve 
which is demographically homogeneous due to the uniformity of the population 
density and the migration pattern. Although the primary aim of the analysis is 
the conceptual understanding of the genetic structure of a population occupying 
what is (mathema tically, at least) the simplest finite habitat, specific biological 
applications may be possible. As examples, one may think of individuals distrib- 
uted around a mountain, lake, or the shore of an island. Amphibians or shallow- 
water organisms in a large, deep lake or around an island would also reside in a 
“circular” habitat. 

In Section 11, we shall expound the model in detail and separate the probabili- 
ties of allelism in the nonequilibrium and equilibrium cases. In Section 111, we 
shall derive equations for the eigenvalues controlling the rate of decay of genetic 
variability and for the eigenfurnctions which describe the genetic structure of 
the population. The equilibrium probability that two homologous genes separated 
by a given distance are the same allele will be deduced in Section IV. If moments 
of the migration €unction higher than second are neglected, we shall show that 
the eigenvalue equation becomes a simple trigonometric one, and the Fourier 
series for the transient and stationary probabilities of allelism will be summed 
in terms of elementary functions. 

11. FORMULATION 

Let individuals be distributed along a “circle” of length L with constant linear 
density p. From any point on the circle, we measure the distance x along the 
circle, positively in one direction (say, counterclockwise) and negatively in the 
other. We denote the probability that an individual migrates a distance between 
x and x + A x  (- 00 < x < co) in one generation by m ( x ) A z .  We do not assume 
m is symmetric. The homogeneity of the problem permits the use of a migration 
function depending only on displacement, rather than initial and final positions. 
Let + (5) Ax designate the probability that the separation between two individuals 
changes by a distance between x and x -t Ax (-CO < x < co) in one generation. 
Then 

+(x) = -m ?m(r)m(lt. + Y ) d Y .  (1) 
(If m(-x) = m ( x ) ,  then ( 1 )  agrees with MARUYAMA’S (1971b, Eq. (2-1)) 
definition.) The substitution z = y - x in 

m 

+(-5) = j- m(y)m(-x + y ) d y .  (2) 

.(-x) =.(x) ( 3 )  

- m  

shows that T- is symmetric: 
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Let f ( t , x )  represent the probability that two homologous genes separated by a 
distance x at time t are the same allele. Then f ( t , O )  is the proportion of homozy- 
gotes. Evidently, f ( t , x )  is periodic in x with period L: 

Considering f on the intewal -L/2 i x 5 L/2, (3) implies f is even in x: 

Together, (4) and ( 5 )  permit us to restrict our attention to the interval 
0 5 x 5 L/2, and extend our solution by evenness and periodicity. We assume 
selection is absent, the mutation rate per generation for  every gene is U ,  and 
every mutant is new to the population. We define 

f ( t , x+ jL)  = f ( t , x )  , j =  *I, 22,.  . . . (4) 

f(t,--s) =f ( t ,x )  ( 5 )  

where 6 is the Dirac delta function. The unidimensional version of MARUYAMA'S 
basic equation (3-1) (1972)  reads 

Equation ( 7 )  may be understood as follows (see also MALBCOT 1967).  For two 
genes in generation t + 1 to be ideniical in state, they must be descended from 
the same gene or identical genes in generation t ,  and no mutation must occur. 
Hence, ( 7 )  must have the factor ( 1  - u ) ~ .  The first term of the integral is the 
probability of descent from identical genes separated by a distance between 
x - y and x - y - Ay, taking into account the probability that the separation 
changes to x. The probability that the same gene is sampled twice in an interval 
of length Ax is (2pAx)-', and the separation at time t must be between jL and 
jL 4- Ax, where j = 0, 1, ' 2 ,  . . . . If the two genes are descended from the 
same gene, the probability of identity at time t is unity, not f ( t , O ) .  Therefore, 
we must correct the first term in the integral in (7) by adding 

[ ~ ~ ] r ( x - i L ) A x .  
j=- m 2pAx 

Noting that the AT cancels out in this expression and recalling ( 6 ) ,  we see at once 
that we have derived the second term in ( 7 ) .  

The probability of nonallelism is 
h(t,x) = 1 - f ( t , x )  . 

h(t,z) = H ( t . x )  + h,(x) , 

(8) 

( 9 )  
We put 

where H ( t , x )  -+ 0 as t -+ m. Thus, H ( t , x )  and h,(x) are the transient and sta- 
tionary parts of the probability that two homologous genes separated by a distance 
x are nonidentical alleles. Clearly, if U = 0, the population tends to homozygosity, 
which implies h, (x) = 0. Substituting (8) and ( 9 )  into ( 7 )  , and employing the 
obvious fact (easily proved from ( 1 )  and (IO) with I replaced by m) that 
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leads to 
W 

H ( t +  l ,z)+h,(z)= 1 - ( I  -u)2+(1 -u)2 J r ( y ) . { H ( t , z - y ) +  h m ( z - y ) } .  
- m  

.{I- [&-Y)/(2p)l}dy. (11) 

h,(z) = 1-(1-U)2 + (1-u)Z j- ~(y)h,(2-y).{l-[s(z--y)/(2p)l}dy. (12) 

As t + w, we get from (1 1) die integral equation describing the stationary 
behavior of the population: 

- m  

Substracting (12) from (11) yields the difference-integral equation for the 
transient function H :  

(13) 
CO 

H(t+l ,  z) = (1-U)2 J r ( y ) H ( t ,  z--y).{l-[6(z--y)/(2p)l}dy * 
- m  

Equation (13) will be analyzed in the following section; Eq. (12) in Section 
IV. 

111. T H E  DECAY O F  GENETIC VARIABILITY 

The eigenvalues h and eigenfunctions $ (2) which determine the transient 
behavior of the population are defined by the decomposition 

The general solution is an arbitrary linear combination of terms of the type 
(14). The expansion coefficients multiplying the various eigenfunctions may be 
calculated from the initial value H(0,z)  of H ( t , x ) .  Writing 

and substituting (14) and (15) into (13) yields 

H ( t , x )  =X"(z) . (14) 

(1 - U ) ' K ,  (15) 

(16) 
Equations (15) and (16) show a t  once that the effect of mutation is merely to 
reduce all the eigenvalues of the mutation-free problem by the same factor 
(1 - U)  z. For geographically unstructured populations, if the individuals are 
monoecious, this result follows directly from a simple modification of the work 
of KIMURA and CROW (1964) ; for dioecious organisms the statement is approxi- 
mately valid for low mutation rates, and is proved by MAL~COT (1969, p. 40). 

K$(.> = - m  h 4 $ ( ~ 7 ) { 1  - 6(z -y ) / (2p ) I}dy .  

Equations (4) and (5) permit us to expand $ in a Fourier cosine series: 
m 

$ (z) = EnanCOS (2nTx/L) , (17) 
n=O 

where E~ = 1/2; E, = 1, n = I, 2, . . . ; 

- -L/2 

In the first term of (16), we employ (1 7) to expand $ (z - y )  , observing that, 
due to ( 3 ) ,  the sines do not contribute. The delta function term in (16) may be 
reduced by recalling (4) and (6). We find from (16) and (18) , then, 
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with 
m 

R, = J r (x) cos (2n~x/L)  dx . (20) 
-CO 

But (10) gives R, = 1. Hence, (1 7) and (19) give the solution 

$(x) =- $(O) [ -+ 1 z R,cos(~~Tx/L) 
pL 2p R, - K 

where p = 1 - K. 

eigenvalue equation 
For a nontrivial soluiion, + ( O )  # 0. Putting x = O in (21), we obtain the 

1 R, pL=-+ z -. 
2p ,='R,-K 

For each eigenvalue K, computed from (22), we may calculate the corresponding 
eigenfunction $, (x) from (21). We shall order the eigenvalues so that I K , + ~ ~ <  1 ~ ~ 1 ,  
z' = 0, 1, 2, . . . . We proceed now to discuss some limiting cases. 

1. Dense population 
with 

fixed L, the eigenvalues approach the values required to produce singularities in 
(22). and the corresponding nearly singular terms in (21) approximate the 
eigenfunctions. For the leading eigenvalue and eigenfunction, this argument 
yields 

where N is the population size. This agrees with the perturbation calculation of 
MARUYAMA (1971b). The other eigenvalues are close to the Fourier components 
(20). Since we shall usually have I R, + I < 1 R, 1, this means for i = 1,2, . . . 

Notice that from (20) we have 

In (22), on the right-hand side only K depends on p. Therefoye, as p -+ 

Po =: 1/(2pL) = 1/(2W, $o(x> =: $O(O), (23a) 

K, =: R,, $% ( 5 )  $, (0) cos (2irx/L). (23b) 

IR,/ I 7 r(x) Icos(2n7rz/L) Idx I 7 r(x)dx = 1 . 
- m  - m  

Thus, (15) and (23) show that jx,/ < 1 ,  i = 0, 1, 2, . . . . This means that 
H ( t , x )  + 0 as t -+ w, as required, and (23) is an acceptable approximation for 
the eigenvalues. 

2. Panmixia 
Let u2 be the variance of the probability density r-. (From (1) it is straight- 

forward to prove that u2 is twice the variance of m.) The dimensionless parameter 
k = TU/L will be very useful. If k 2 1, (20) leads us to expect (due to the rapid 

oscillation of the cosine) I R, I < < 1 < pL (pL 2 2, n # 0). Therefore, we arrive 
at (23a), as we must. For the higher eigenvalues and eigenfunctions, observe 
that the sum in (22) is negligible unless K %  is fairly close to R, for  i = 1,2, . . . . 
But then I R, I << I implies that the higher eigenfunctions may be neglected 



782 T. NAGYLAKI 

after a few generations. In  the limit k + w, Ri + 0, and only the expected pan- 
mictic solution (23a) survives. 

3 .  Large habitat 

(i.e., k << l ) ,  expanding the cosine in (20) in a 
Maclaurin series shows that we may neglect the contribution to Rn of moments 
of r higher than second. The resulting simplification of (21) will still be con- 
vergent. Further justification is provided by the numerical example at the end 
of this section, and by the agreement with the continuous time results of Section 
V. Since the cosine in (20) will oscillate more and more rapidly as n increases, 
generally, R, will be a decreasing function of n (e.g., if r is a normal distribution, 

the denominator of the sum in (21) informs us that for the smaller eigenvalues 
(larger i )  , more of the contribution comes irom large n than for the leading ones. 
But expanding the cosine in (20) shows that higher moments of r are more 
significant for high n than for low n. Therefore, we conclude that our approxi- 
mation, as is biologically desirable, is best for the leading eigenvalues and eigen- 
functions. This will also be obvious a posteriori. 

With p fixed and L-t 

n ) . We have chosen the ~i to decrease with increasing i. Consequently, R = e-2n2k2 

To second order, (20) yields 

Substituting (24) into (21), we obtain 
R, =: 1 - 2n2k2. (24) 

where c2 = p/(2k2). If c is not an integer, and 2 j ~  i t i 2( i  + 1 ) ~  for some 
integer j ,  

(26) 
cosnt - 1 - x cos{c[(2j+ l ) ~ - t ] }  -- - __ - - 

n=l  nZ- e- 7 2c2 2 c sin cx  

(GRADSHTEYN and RYZHIK 1965, p. 40). Here we have [ = 2 ~ x / L ,  0 i z 5 L/2, 
i = 0. Therefore, (25) simplifies to 

where (Y = 4k2pL/n = 4xpa2/L is a dimensionless constant which, provided dis- 
tance is measured in the natural units of habitat size, completely determines the 
solutions in this approximation. Putting z = 0 in (27), we deduce the simple 
eigenvalue equation 

The abscissae at the points of intersection in Figure 1 give the eigenvalues. From 
Figure 1 we see at once that 0 < ci < i + %, and hence 0 < pi < 2k2 (i + +$)z ,  

i = 0, 1,2, . . . . Since pi < 1, our approximation must fail for sufficiently large i 
and is most accurate, as stated above, for small i. 

If there is no mutation, the asymptotic probability of nonallelism is propor- 
tional to #o (z) . Therefore, with a normalizing constant of the appropriate sign 

QC =: cot C X .  (28) 
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cot Ca 
FIEURE 1.-The eigenvalues from Eq. (28).  

(determined by the initial conditions, not by the homogeneous equation (27)  ) , 
$,,(x> must be positive definite. Since 0 < co < % and 0 5 x 5 L /2  in (27), this 
is indeed the case. 

Equations (27) and (28) reduce considerably in two important special cases: 
a) a >> 1: 

This means either the population is large, or nearly panmictic, or both. From 
Figure 1, we see that 

with 0 < y i  << 1. Substituti~g (29) into (28) leads to 

and hence 

C i . = = i + ? $ ,  (29)  

(30)  

(31) 
qi =: l/(iTrLY), i =  1,2,. . . . (32) 

Then (27) and (31) yield (23a), while from ( 2 7 ) ,  ( 2 9 ) ,  and ( 3 2 ) ,  we obtain 
€or i = 1,2, . . . 

ps 2 2k2i2 , (33) 
Ijiz.(x) =: Ijii(o>coS(2inx/L) . (34) 

di $- V i >  = 1 / ( 7 r V J  9 

CO = 770 = l/dG, 

Since (24) holds for  k << 1, (33) and (34) agree with (23b). 
b) a!<< 1:  

Now the habitat must be extremely large relative to the p ~ p u l a t i ~ ~  density 
and the variance of the migration distribution. From Figure 1 and expanding 
(28) it is easy to prove 

c t = ( i + % ) [ i -  (./7r>], i = 0 , 1 , 2  ,..., (35 1 
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1 .  sin [ (2i + 1 ) 7Tx/L] 
4 i  + 1/) $ i ( X )  = $ i ( O )  {cos[(2i+l)Trx/L] 4- (37) 

For i = 0, by an elegant semibiological argument, MARUYAMA (1971b) obtained 
(36). In (37), the second term dominates unless (2; + 1) nx/L is very close to m, 
n = 0, 1, 2, . . . . Consequently, MARUYAMA'S less precise formula. qO(x) 
(const.) sin (7~s/L),  is adequate for x 2 A/ (2,). 

Finally, let us compare the largest eigenvalue computed from (28) to a numen- 
cal calculation of MARUYAMA (1971b). With k = 0.140 and pL = 50, for three 
different migration functions, he obtained 0.0072 5 p0 5 0.0076 (MARUYAMA 
1971b; Figure 1). Then (Y = 1.257. We have selected this as an especially 
unfavorable example: the simplications (a) and (b) do not apply here, MARUY- 
AMA'S analytical methods also fail, and k is not sufficiently small compared to 
unity to expect the neglect of the higher moments of the migration function to  
make only an insignificant difference. From (28), we get c = 0.364, and conse- 
quently p0 = 0.00523, about 25% smaller than MARUYAMA'S value. 

IV. THE STEADY STATE 

We begin by rewriting (12) in terms of the stationary probability of allelism, 
(38) f m ( x )  rr 1 - hm(x) * 

Using ( 10) and (38), (12) becomes 

f m b )  = (1- - )2~r(Y)( fm(x-Y) '+  -cQ [I - fm(o) l / (2p )~(x -Y)}dy .  (39) 
The Fourier analysis employed in Section I11 gives 

as is obvious by making the replacements $ (O)+ - [ 1 - f m  (0) ] and K+ (1 - u ) - ~  
in (16) and (19). Equation (40) is just Eq. (3-9) of MARUYAMA (1972). Setting 
x = 0 and solving for f m  (0) in (40) yields 

where 
m EnRn s= z 

n=o 1 - (1 - u)'R, 

If p and L are fixed and we let the mutation rate U + 0, we find from (42) 
S -  1/(4u) f O ( 1 )  , (43 1 

(44) 

(45) 

whence we obtain from (41) 

so that (40) leads to 
1 - fm(0) - 4pLu + O(u*)  , 

f m ( x )  .- 1 + O ( u )  . 
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Since the total population size, N ,  is finite, we know that if there is no mutation 
the population must eventually become homozygous. Equation (45) confirms 
this fact, and adds the information that for weak mutation the equilibrium 
probability of nonallelism is proportional to the mutation rate. 

The important limiting case of an infinite habitat is easy to deduce from (40). 
As L-+ CO, we put s =2nx/L, and obtain from (20) and (40) 

m 

R ( s )  = J r(x)cossxdx, 
- m  

the Fourier cosine transform of I, and 

ds. (47) (1 - U)"l - fm(0)] R(s)cos sx !- 1 - (1 - u)"(s) f m ( x >  = 
2XP 

Equation (47) is a more general version of the result of MAL~COT (1955), in 
whose Eq. ( 3 )  the integral should be multiplied by 1/2. From (47) one obtains 
(MAL~COT 1969, pp. 83,84; MAL~COT uses the variance of m) for U << 1 

ZVU -- 2 - 

Let us return to (40) and assume that the habitat is sufficiently large (k < < 1 ) 
for the approximation (24) to be permissible. Then (40) becomes 

1 7  

l-fm(0) 1 cos(2nax/L) -+ 2 
2k2pL [2b2 n=l b2 + n2 

fm(x> - 
where 

1 - (1 -u)2 U b2 = N- 

2k2(1 - U ) '  kz ' 

(49) 

the last relation being valid for U << 1. But (GRADSHTEYN and RYZHIK 1965, 
P. 40) 

(51) 2 c o s n t  - = cosh[b(a-t)I - - 1 , o <  t <  2 x *  
n=l b2 + n 2  2b sinh br 2b2 

Substituting (51) into (49) with [ = 2xx/L, we obtain for 0 5 x 5 L/2 

1 - f w ( 0 )  cosh{ba[l - (2x/L)]} 
Sinh b7r f m ( x >  ab 

Setting x = 0 in (52), we find 

and hence (52) will read 
1 cosh{ brr [ 1 - ( 2x/L) ] } 

fm(x)  ab 4- CO& br sinh bx 

cosh{bx[l - (2x/L)]} 
ab sinh bx 4- cosh b7r 0 i x i L / 2 .  - - ' 

(54) 

(55) 
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In a slightly different notation, and with the approximate form of b, ( 5 3 )  is stated 
by MARUYAMA (1970b). It is instructive to compare the decay eigenfunctions 
(27) to the stationary solution (55). The trigonometric functions for the decay 
problem correspond to the hyperbolic function in equilibrium. The dimension- 
less constant CY completely determines the eigenfunctions since (28 )  allows the 
calculation of c as a function of (Y, but b is a known independent dimensionless 
parameter in the steady-state case. Note that according to (55), f z  (z) is positive 
definite, as it must be. 

As in Section 111, we continue with the consideration of some biologically 
important limiting cases of our solution: 
1. p, U, L fixed; u -+ 0: 

mutation rate 
Equation (50) shows that b + 0, so (50) and ( 5 5 )  give immediately for low 

1 ,+ (u /2)  (L/u)2 [l - (2z/L)]2 
1 + 4Nu + (u /2 )  (L/u) f a ( X >  - 7 

in agreement with (44) and (45). 
2. p, U fixed; k -+ 0~ : 

result of MALBCOT (1969, p. 76) and of KIMURA and CROW (1964), 

3. p, U fixed; k+ 0: 

Equation (50) again implies b + 0, so in the panmictic limit we obtain the 

fm(z) - 1/(1 f 4 N u )  . (56b) 

From ( 5 0 ) ,  for a large habitat b + 00, and therefore we deduce from (55) 

Also, 
a b = 2 v 2 p u v l  - (1 -u) ' ( l  - u ) - l z 4 p o v U ,  (58 )  

where the last formula holds for u << 1. For a very large habitat, x / L  < 1 - 
( z /L )  and we may neglect the second exponental in (57). With the low muta- 
tion rate formulae (50) and (58), this leads to (48), as it must. 

Finally, a measure of the amount of genetic variability maintained in the 
population is the probability fF0 that two homologous genes drawn at random are 
identical. It reciprocal is the effective number of alleles in the population (CROW 
and MARUYAMA 1971). By averaging over the positions of the two genes, one can 
prove the intuitively reasonable formula 

Employing (55) to perform the integration, and recalling ( 5 3 ) ,  we find 

(60) 

= [l -fm(0)]/(4Nu) if u << 1 ,  (61) 

- [1 - f m ( O ) l  (1 - 
2N (2u  - uZ) 

f m  = 

as demonstrated generally by CROW and MARUYAMA (1971). 
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V. RELATION TO T H E  DIFFERENTIAL EQUATION APPROACH 

If we neglect moments of r ( y )  higher than second in (7), we can easily 
derive a difference (in time)-differential (in space) equation for f .  A better 
approximation is to rewrite (7) for an infinitesimal change At in t and to let 
At -+ 0. Then ( 7 )  will read 

W 

f ( t  + At, X )  = (1 - uAt) * r(At ,r)  { f ( t ,  X - y) 
- m  

+ [At/(2P) 1 [I1 - f (t ,  0 ) l G  - y) l d y  7 (62) 

where r(At ,  y )  is the migration function for time interval at. Following M A R U -  

YAMA (1971b) in taking the limit At + 0, with the assumption that moments of 
r (At ,  y) higher than second are o ( A t )  we find 

L L 
1 - f ( t 7 0 )  ] s ( x )  , - - -<~ig.  (63) 

af U?. az f  

at 2 ax* 2P 2 -  
-=-2uf+-  -+ [ 

Applying the derivation between (8) and (13), we deduce from (63) , instead 
of (13) and (39), the differential equations 

Equation (64) was given by MARUYAMA (1971b) without mutation, while (65) 
is due to MAL~COT (1967). 

Let us write, in analogy with (14), 

H ( t , x )  =ept+(x)  , - p = p 3 2 u .  (66) 

Then p will correspond to the same quantity employed in Section 111. Substi- 
tuting (66) into (64) , we obtain 

As above, the solutions of (65) and (67) must be even and periodic. From (17) 
and (40) we infer the boundary conditions 

-(;) d+ = o ,  

-(k) d f m  = o .  
dx 

dx 

We integrate (67) between - E  and 7, 0 < E,T << L, and let E,V + 0. This yields 

U* d+ +(O) 
2 dx dx 2P ' - [2 (O+) -- (0-)] =- 
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or, taking into account the evenness of $, 

Similarly, (65) leads to 

It  is an easy matter to show that (27), (28) and (55) are the unique solutions 
of the boundary value problems (67), (68), (71), and (65), (69), (72), 
respectively. 

VI. DISCUSSION 

Let us consider the implications of the equilibrium result (55) for the pro- 
portion of homozygotes, fm(0) , the effective number of alleles maintained in the 
population, ne = l/Tm (CROW and MARUYAMA 1971), and the degree of local 
differentiation of gene frequencies. From (53) , 

f m  (0) = ( 1 #+ abtanh h) -l, 

ne = bii- (ab + coth bT) . 
while (53) and (61) yield 

(73) 

(74) 

In discussing local differentiation, we shall follow the method of MARUYAMA 
(1974). If faa is not too close to unity, we expect significant local differentiation 
whenever 

fm/fm(0) = tanh b~/(/(bX) << 1 , (75) 

whereas the population will be near panmixia if this ratio is close to 1.  When m, 
and hence fm(0) 2 fm, are almost 1, (75) is a very insensitive measure of local 
differentiation. The ratio 

however, will be close to or significantly greater than 1 according to whether 
population is nearly random mating or not. The assertions below follo'w directly 
from Eqs. (73) to (76). 

If ii-b = vzL/u < < 1 , then 
l/fm(0) = I/& = ne = 4Nu + 1 , 

If, in addition, 4Nu > > 1 , (77) shows that the population will be quite hetero- 
geneous (as measured by the effective number of alleles or the homozygosity) 
and close to panmixia (since fm(0) fm << 1). If 4Nu < < 1, however, the 
amount of genetic variability at equilibrium will be very small, and the popula- 
tion will be approximately panmictic only if a = 4ii-pu2/L > > 1. 
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If rrb = v/uL/a >> 1, then 
l/f,(O) = I/(rrb&J = 1 + 4pu&, (79) 

ne ( ~ ; L / u )  4 4 N u .  (80) 

Thus, if the habitat is sufficiently large ( L  >> u/v /u ) ,  there will always be a 
great deal of genetic variability and local differentiation of gene frequencies. If, 
also, 4puVu < < 1, most individuals will be homozygous, but for different alleles. 

We shall comment briefly on the applicability of the methods employed in 
this paper to other types of habitats. If the habitat is inhomogeneous awing to 
the existence of boundaries (e.g., “line” or square), at least in its present simple 
form, Fourier analysis does not yield a solution. For the “torus” (MARUYAMA 
1972), an analogous Fourier expansion does hold, but higher moments of the 
migration function cannot be neglected because, if they are, the eigenvalue 
equation and the equation determining the local homozygosity in the steady 
state become divergent. This is probably the underlying reason for the failure 
O f  MARUYAMA’S (1971b) large-habitat approximation in this case. Therefore, in 
two dimensions, he was compelled to resort to numerical methods (MARUYAMA 
1972). 

improved the clarity and readability of the manuscript. 
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