Skip to main content
. 2025 May 21;12:1583514. doi: 10.3389/fmed.2025.1583514

Table 1.

Performance evaluation of our approach against state-of-the-art methods on CMU-MOSEI and MIMIC-IV datasets.

Model CMU-MOSEI dataset MIMIC-IV dataset
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
MMBERT (45) 87.5 ± 0.3 85.2 ± 0.4 83.9 ± 0.3 84.5 ± 0.3 89.3 ± 0.3 86.7 ± 0.4 85.1 ± 0.3 85.9 ± 0.3
CLIP (46) 88.1 ± 0.4 86.0 ± 0.3 84.7 ± 0.3 85.2 ± 0.3 90.2 ± 0.3 87.4 ± 0.4 86.0 ± 0.3 86.5 ± 0.3
VisualBERT (47) 86.9 ± 0.3 84.8 ± 0.4 83.5 ± 0.3 84.0 ± 0.3 88.7 ± 0.3 86.2 ± 0.3 84.6 ± 0.4 85.2 ± 0.3
UNITER (48) 88.4 ± 0.4 86.5 ± 0.3 85.0 ± 0.3 85.7 ± 0.3 90.5 ± 0.3 87.8 ± 0.3 86.3 ± 0.4 86.9 ± 0.3
LXMERT (49) 87.3 ± 0.3 85.4 ± 0.3 84.1 ± 0.4 84.6 ± 0.3 89.5 ± 0.3 86.9 ± 0.3 85.4 ± 0.4 85.8 ± 0.3
ALBEF (50) 88.7 ± 0.3 86.8 ± 0.3 85.2 ± 0.4 85.9 ± 0.3 90.8 ± 0.3 88.1 ± 0.3 86.7 ± 0.4 87.2 ± 0.3
Ours 90.3 ±0.3 88.2 ±0.3 86.9 ±0.4 87.5 ±0.3 92.1 ±0.3 89.7 ±0.3 88.2 ±0.4 88.8 ±0.3

Bold values indicate the best performance in each column.