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ABSTRACT 

Genetic drift will cause a migration-selection cline to wobble about its 
expected position. A rough linear approximation is developed, valid when 
local populations are large. This is used to calculate effects of genetic drift 
on clines in a stepping-stone model with abrupt and with gradual changes of 
selection coefficients at a single haploid locus. Among the quantities calculated 
are measures of slope, standardized variation of gene frequencies around their 
expected values, and correlation among neighboring populations with respect 
to deviations from the expected gene frequencies. These quantities appear to be 
primarily functions of N s  and Nm for a given pattern of selection. Computer 
simulation gives rough confirmation of these results. Standardized variances 
of gene frequencies and correlation of neighbors differ along the cline in the 
case of smooth changes in selection. In no case is pathological behavior of gene 
frequency deviations found near the boundaries of selective regions. Local 
behavior of gene frequencies OI nearby colonies is approximately predicted 
by a simple adaptation of the stepping-stone theory of KIMURA and Wmss. 
Approximate measures of the lateral variation of the midpoint of a cline and 
the probability of non-monotonicity are also calculated and discussed. 

NVESTIGATIONS of the theoretical effects of geographic structure of popula- I tions have followed two different approaches. The study of the correlation of 
frequencies of neutral alleles in neighboring populations in the face of genetic 
drift was begun by WRIGHT (1940,1941,1943) and WL~~COT (1948,1969) and 
continued using different methods by KIMURA and WEISS (1964). On the other 
hand, FISHER (1937, 1950) and HALDANE (1948) derived patterns of gene 
frequency produced in an infinitely dense population by the deterministic inter- 
action between migration and natural selection. References to more recent work 
along these lines are given respectively by KIMURA and OHTA (1971) and by 
SLATKIN (1973). 

In this paper, I will attempt to combine the two approaches, asking by how 
much genetic drift will cause a migration-selection cline to wobble about its ex- 
pected position. The same question has been addressed in a computer simulation 
study by HASTINGS and ROHLF ( 1974). The accompanying paper ( SLATKIN and 
MARUYAMA 1975) examines the same questions using an approach which is very 
similar, but not identical, to mine. Both of these papers will be discussed below. 
Figure 1 shows such a cline, in which each local “stepping-stone” is of finite 
Genetics 81: 191-207 September, 1975. 
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FIGURE 1.-A typical generation in a cline in which Ns = 1, s/m 0.625, and N = 20 in the 
case of a gradual change of selection coefficients. The dashed line shows the expected cline when 
N =  00. 

size. Genetic drift will cause the actual gene frequencies to vary from their 
expected values, much as shown in the figure. Two quantities will be of general 
interest. One is the variance ( V )  of the frequency at a given position around its 
expected value. The other is the correlation between the gene frequency devia- 
tions in neighboring populations (+) . The variance V will serve as a rough indi- 
cation of the distance of the solid line in Figure 1 from the dashed line, and I 
will be a rough guide to the lateral extent of these patches of deviation of ob- 
served from expected gene frequency. 

Other questions of interest include whether drift has an effect on the expected 
shape of the cline, whether special phenomena occur as we cross a sharp environ- 
mental boundary, and how variable will be the lateral position of the observed 
cline. All of these questions will be addressed by a crude approximate numerical 
calculation verified by computer simulation. None of the results turn out to be 
particularly startling or counterintuitive. 

THE MODEL 

In all simulations and calculations presented here, it was assumed that there 
were 20 colonies arranged linearly. The model organism is haploid, with a single 
locus which has two alleles, B and b. Each generation begins with an infinite 
number of newborns in each colony, so that the status of each colony i can be 
represented by the gene frequency pi of allele B.  These individuals then migrate. 
In each colony, a fraction m of the individuals are replaced by m/2 immigrants 
from each of the two neighboring colonies. Since population sizes are infinite at 
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this life stage, the gene frequencies are changed deterministically. If p+* is the 
gene frequency in colony i after migration, we have 

i = 2 , .  . ., 19. (1) 

The two terminal colonies each receive a proportion m/2 of immigrants from 
their single neighbor: 

m m 
p1* = (1-  -1 pl + 3 Pz 2 

n pt0* = m p19 + (1- 3) p20. 
2 

1 1 
2 2 

Next, selection takes place, the fitnesses of the two genes being 1 -I- - si : 1 --si. 
The selection coefficient s i  can be different in different colonies. This particular 
parameterization of the fitnesses was chosen so that a selection coefficient of s in 
favor of B has the same effect as a selection coefficient of -s in favor of b. The 
change in gene frequency by selection is also a deterministic process occurring 
in an infinite population. If pi’ is the gene frequency in colony i after selection, 

1 
2 

pi* ( 1  +-si) 

1 +si (pi* - -) 
(3) pi‘ 

1 ’  
2 

The generation is completed by genetic drift, which occurs by having only N 
adults survive density-dependent population size regulation in each population. 
The effects of this on the genetic composition is equivalent to drawing N indi- 
viduals, sampling with replacement (independent Bernoulli trials) from a 
population with gene frequency pi’. Since the gene frequency in the infinite 
number of offspring of these surviving adults will be the same as in the adults, 
the generation is now complete. 

Formally, the model is a WRIGHT model with migration and selection. There 
are only two ultimate outcomes of evolution possible in this model: fixation of B 
in all populations or  fixation of b in all populations. But if selection is not too 
weak, this fixation may be long delayed. In the interim, the segregating set of 
populations will usually show a pattern typical of a “noisy” cline. It is this 
asymptotic distribution of unfixed cases which we are trying to obtain. 

Needless to say, the exact distribution cannot be obtained explicitly nor can it 
be computed numerically, since it involves ( N +  1 ) 2o state probabilities. Nor can 
the associated diffusion approximation be solved, either explicitly or numerically. 

An approximation 

If we are to get any information at all on this problem, it must come either 
from computer simulation or from relatively crude approximations. I now 
present such an approximation. It involves essentially the same approach pre- 
viously used in different contexts by BODMER (1960) and SMITH (1969) : that of 
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linearizing the process around its equilibrium frequencies and obtaining a 
multivariate normal approximation to the desired distribution. In some respects 
it is similar to the approach used by BODMER and CAVALLI-SFORZA (1968) for cases 
without selection. I have also used the same approximation (FELSENSTEIN 1974) 
elsewhere to treat a case of the interaction of linkage, natural selection, and 
genetic drift. Bear in mind that the “equilibrium” frequencies are those which 
apply during the period of persistence of the cline. 

If we represent the gene frequencies in the different colonies as a vector p, our 
model is of the form 

p(t+l) f (p) + e‘t’ (4) 

where f is a function incorporating equations (1) , (2) , and (3) , and where e is 
the vector of changes due to genetic drift. If we know the expectation of p and 
call this q (note that q is not 1 -p) we can reparameterize our gene frequencies 
as 

p(t) q + x(”, ( 5 )  
and can rewrite (4) as 

so that 

g(x> = f ( q  + x> - q. (7) 

We now assume that N is very large, so that each population’s gene frequency 
stays close to its expected value, so that the xi are small and we can ignore powers 
and products of the xi. Doing that, we will find from (7) that g can be approxi- 
mated by a linear transformation A of x: 

( 8 )  

(9) 
which simply confirms that p is still the equilibrium in the linearized process. 
The covariance matrix Bet) of e ( t )  will in the actual process be a function of the 
current position xct) of the process. But if xCt) is small we can approximate it by 
the covariance matrix B at the point x = 0. Then since in any case 

(10) 

X ( t + l )  = Ax(‘) + e( t ) .  

We know that E ( e ( t ) )  = 0, so that if the process is stationary, 

E(x) = ( I -A)- lE(e)  = 0: 

E (x e’) = E (ex’) = 0, 

we have the following equation for the covariance matrix C = E (x x’) 
using equations (8) and (10) : 

C = A C A T  -t B. (11) 
The matrix A approximates the deterministic forces of selection and migration. 
It is the Jacobian matrix of the function g. This turns out to be: 

A = D M ,  (12) 
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where 

.M = 

m m  I - -  - 
2 2  

m m - 1 - m  - 
2 2 

0 

m m - I - m  - 
2 2 

m m - 1 - m  - 
2 2 0 

m n 1 -- 
2 2 
- 

and D is a diagonal matrix whose ith diagonal element is 
1 

1 [ l  .+si (qi* - , 1 1 2  

B is also diagonal, with 

bii = qi ( 1  - q i > / N .  

In the original process (4). for sufficiently large N the actual distribution of e 
will approach a multivariate normal distribution. We therefore take e multi- 
variate normal in the approximate process (8). This process is then a multi- 
variate normal random walk with linear return to the origin. It is well-known 
that in such a case x will have a multivariate normal distribution with mean 0 
and covariance matrix C. Thus to characterize our approximation to the distri- 
bution of x, and hence of p, we need only calculate C by solving equation (11 ) . 
This can be done numerically once N ,  m, and the si have been specified. The 
method used here is described in the APPENDIX. 

Results from the approximation 

The approximations to q and C have been calculated for two general cases, 
The first is a symmetric-step pattern of selection: 

s i  = -/ -: i = 1,2, . . ., 10 
i = 11,12, . . . ,20.  

c 
For this pattern of selection calculations have been done for all 27 combina- 

N = 10,20,40, 
Ns  = 0.8, 1.6, 3.2, 

and s /m = 2,l and i /e. 

tions of the following parameter values: 
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Figure 2 shows the numerical values for a typical case, that with N = 20, 
s = 0.04, and m =. 0.08. The values displayed are the equilibrium gene frequen- 
cies qi, the correlations betweenpopulations rii = cij/(cii cij)M, and the stand- 
ardized variance Fi = c i i / [q i  (1-qi)]. (Remember that the qi are not true 
long-term equilibrium frequencies but hold only during the period of persistence 
of the cline). 

The other general pattern of selection was a gradual change in selection 
coefficient, so that s k  changed linearly: 

sk = (2k-21)s/1O7 
so that the values of the s i  are 

-1.9~, - 1 . 7 ~ ~  - 1 . 5 ~ ~ .  . . ., 1.5~, 1.7s, 1.9s. 
The approximations were calculated for 28 combinations of the values 

N = 10,20, 40, 
Ns = 2,4, 8, 

and s /m  = 20, 10,5, and 2.5, 
the combinations N = 40, Ns  = 2 and N = 10, Ns = 8 being omitted. Figure 3 
gives the qi, Fi and rij for a case with N = 20, s = 0.02, and m = 0.02. This is 
not one of the 28 cases. 

It is not practical to present all of these numbers for all combinations of 
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FIGURE 2.-Mean gene frequencies ( 4 )  , standardized variances of gene frequencies [ F ) ,  and 
correlations a t  various distances ( r )  in the case of the symmetric-step pattern of selection with 
N = 20, s = 0.08, and m = 0.08. Each correlation is plotted at the point midway between the 
corresponding populations. Vertical scale is logarithmic for all variables except gene frenquen- 
cies. 
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FIGURE 3.-Same as Figure 2 except that the case shown is that of a gradual change of selec- 
tion coefficients, with N = 20, s = 0.02, and m = 0.02. 

parameters. In Tables 1 and 2, the values of qll, FI1, and r11,12 are presented for 
all 28 cases for the two patterns of selection respectively. These give some in- 
dication of the slope, variance around the expected gene frequency, and lateral 
extent of the “patches” of deviation respectively. 

A number of patterns are apparent from Figures 2 and 3 and Tables 1 and 2. 
The Figures show the typical patterns of F and r along clines. In a cline involv- 
ing an abrupt change in selection, (Figure 1) the standardized variances F are 
very nearly constant throughout the length of the cline, with a slight tendency 
to be higher in the region of transition from one selective regime to the other. 
The correlation between successive populations is also nearly constant, with a 
slight tendency to rise near the center of the cline. The correlations at longer 
and longer distances become less and less constant, tending to be higher near 
the center of the cline. Therefore if we think of “patches” of deviation from the 
expected cline, the patch size will be somewhat greater near the center of the 
cline. But the most interesting feature is that on Figure 2, the vertical spacing 
between the curves for rI, r2, . . . is nearly constant. Since the vertical scale for r 
is logarithmic, this means that the one-, two-, and three-step correlations (as well 
as higher-order ones) are very nearly in a geometric progression: I, r2, rs, . . ., 
although the value r changes slightly over the length of the cline. In fact, this 
local geometric behavior, combined with the slight increase of r in the center 
of the cline, explains the greater and greater inhomogeneities of the higher-order 
correlations. The most interesting corollary of these patterns is that correlations 
continue relatively smoothly across the transition from one selective regime to 
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another. There is therefore no marked tendency for populations in the two 
halves of the cline to drift independently of each other. Local excesses or de- 
ficiencies of gene frequency are exported by migration as readily across the 
selective transition as they are between populations in the same half of the 
cline. There is, of course, a slight dip in rl across the transition, but it is not 
large either in this specific case or with any of the values of N ,  m, and s ex- 
amined. A concise way of thinking of this result is that there is no preferential 
tendency for patches of deviation to end near changes of selection coefficient. 

The cline involving a smooth change in selection coefficients shows most of 
this behavior, except that F and rI  are no longer approximately constant along 
the cline, being markedly larger in the center. Thus the patches of deviation 
from the cline tend to be longer in the center, and also the individual gene fre- 
quencies will appear to have wandered farther (as measured by F )  from their 
expected values in the center than at either end. Note that some F values are 
greater than one. This is impossible if the gene frequencies are to remain in the 
interval from 0 to I. If qi of the populations are fixed for B and the rest have 
lost it, cii = g, (1 -gi), and the variance cannot be greater than this if the mean 
gene frequency is qi.  It will be explained below that these excessive values of F 
are artifacts of the approximations used. In this case of gradual change of selec- 
tion coefficients, we see again the local geometric behavior of the correlation co- 
efficients, and the lack of pathological behavior of correlations across changes 
in selective regime. 

I. Slope, as measured by qll: 

Tables 1 and 2 both show the following patterns: 

(1) qll depends only on m and s and not at all on N ,  and furthermore 
(2) qll is mostly dependent on the ratio s/m, increasing with this ratio, with 

very little dependence on m and s otherwise. 

11. Variance, as measured by the standardized variance, F :  
(3) F depends on all three variables: N ,  s, and m, but 
(4) it depends on s and m mostly through Ns and Nm, increasing for fixed Ns 

(5) for a given s and m it is exactly inversely proportional to N .  
as the value of s /m increases, and 

111. Lateral extent of patches of deviation from the cline, as measured by r :  
(6) r is dependent only on s and m, being independent of N ,  and 
(7) it is mostly dependent on these through their ratio s/m, decreasing as this 

ratio increases. 
Patterns (1 ) , ( 5 ) ,  and (6) are all straightforward consequences of the way 

that the approximations were calculated, N entering into the calculation of the 
variances and covariances as a constant divisor, and not entering into calculation 
of the gene frequencies at all. When N is small we expect significant departure 
from this pattern, as the arguments based on linearization will fail as gene 
frequencies depart farther from their expected values. For example by decreas- 
ing within-population variation, genetic drift should reduce the average eff ec- 
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tiveness of selection. Therefore for small N we should expect to see a shallower 
cline than with large N .  Nor can F be exactly inversely proportional to N .  If it 
were, for small enough N ,  F would exceed 1, as happens in Table 2’. But if gene 
frequencies are to remain in the interval [O ,  11, F cannot actually exceed 1. 
Thus we expect F actual values not to rise as much when we decrease N ,  or fall 
as much when we increase N .  a s  do these approximate values. 

It is worth noting that the approximate dependence of g and r on s/m and the 
approximate dependence of Ir on Ns and N m  imply that all properties of these 
clines can be predicted from a knowledge of Ns, N m  and the pattern of selection 
coefficients. This will not surprise anyone familiar with this behavior in single 
panmictic populations. 

HASTINGS and ROHLF (1974) have already simulated clines for a roughlv 
linear pattern of selection. They measured the proportion of colonies at or near 
fixation. This increased as a function of both m and N .  Their conclusions are 
perfectly consistent with mine. As m increases, pattern (2) predicts that colony 
mean gene frequencies will move away from fixation, and pattern (4) predicts 
a smaller standardized variance around these expectations. As N is increased. 
pattern ( 5 )  predicts a smaller variance, which will have the effect of reducing 
the number of fixed colonies. HASTINGS and ROHLF’S conclusion that the correla- 
tion of gene frequency with geographic position also increases with m and N 
presumably reflects the decrease of standardized variance with increasing m 
and increasing N (patterns 4 and 5 )  , as well as the increase of r with m (pattern 
7). 

SLATKIN and MARUYAMA (1975) come to many of the same conclusions as I 
have. This is encouraging, since their approximations assume s and m small, but 
allow smaller values of N than do my approximations. Specifically, they verify 
the intuitive argument given above for the effect of N on the slope of the cline. 
Their results show pattern (4), depending mostly on Ns and Nm. They find 
approximately exponential decline of correlations. 

It is also interesting to compare my values of rij with the formulas of KIMURA 
and WEISS (1964) for the neutral case. We can approximate their linear pressure 
m m  by 

l - m n , =  ( I - - $ ) / [ l  1 + S i ( 4 i - +  1 
4 

which must be different at each point of the cline. Using MARUYAMA’S (1970) 
more exact formulas, we have 

a =  (1-m,) (l-m) (17a) 

( 17b) and ,8 = (l-m,) 4 2 .  

KIMURA and WEISS had ignored the product m m,, an approximation reasonable 
in their context but not usable here. Inserting (17) into KIMURA and Wmss’s 
equations (1.6)-( 1.9), we can calculate approximations to the approximations 
r11,12 and F,, for the cases in Tables 1 and 2. We find that these rough approxi- 
mations show the same general patterns as the values in the Tables, except for 
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the inverse proportionality between F and N (which does not show up since 
KIMURA and WEISS took into account that part of the departure from linearity 
which their model also exhibited). The KIMURA-WEISS value of I is a good ap- 
proximation for small s/m in Table 1. For N = 10, Ns = 0.8, and s/m = 0.5, 
value of r11,12 from the KIMURA-WEISS approach is 0.4971, compared to 0.4658 
in Table 1. But for s/m = 2, the approximation is poorer: 0.2063 compared to 
0.2601. However, the approximation to Table 2 is never good. Thus there seems 
to be some sign that the KIMURA-WEISS mathematics are not doing as badly as 
might be expected, given the great difference in models. We may speculate that 
for gradually sloping clines with locally constant selection, the local behavior 
of the gene frequencies looks like that in the cases treated by KIMURA and WEISS, 
the role of mutation (or “long-range” immigration) being played instead by 
selection. 

COMPUTER SIMULATIONS 

A series of simulations of these cases were carried out using the CDC 6400 
computer at the University of Washington Computer Center. The model de- 
scribed above was used. There was only one departure from the model: immigra- 
tion into the terminal populations ( I  and 20) from the subterminal ones (2 and 
19) occurred at rate m rather than m/2 as shown in equation (2) above. But in 
all of the simulations for the cases presented here, populations 1, 2, 19, and 20 
always remained fixed or nearly fixed for the appropriate allele, so that this 
discrepancy between simulations and approximations can have had little effect. 

In each replicate run, each colony was started fixed for the locally favored 
allele. After a preliminary period of 100 generations, there was a period of 
100 generations in which the adult gene frequencies were recorded. (Deter- 
ministic iteration of equations (1)-(3) shows that for the parameter values 
chosen, an initial period of 100 generations is enough to bring gene frequencies 
in the central part of the cline reasonably near their equilibrium values.) Mean 
gene frequencies, variances, covariances, and correlations between all pairs of 
populations were calculated. For the purposes of calculation all generations were 
considered to be independent sample points. 

The results are shown in Tables 3 and 4 for the same parameter values used 
to generate Tables 1 and 2. Comparing Tables 1 and 3 and Tables 2 and 4, it is 
apparent that the approximate values of q and F were too large and the values 
of r were too small. This can be verified by simple sign tests on the differences 
between the approximations and the simulations. 

We can make internal comparisons in Tables 3 and 4 to see if the patterns 
(1 )- (7) appear, and whether the deviations from patterns (1 ) , (2), (4), ( 5 ) ,  
and (7) are in the direction expected based on Tables 1 and 2 and the intuitive 
arguments given above. We do this by looking at triples or pairs of numbers 
which are expected to show no trend according to the null hypothesis, and seeing 
how often the rank orderings 123 and 12 (or 321 and 21) show up, compared 
to their expected frequencies of 1/6 or 1/2 under the null hypothesis. For each 
of these a probability of significance was obtained from a binomial distribution 
with p = 1/6 or 1/2, and these probabilities were combined by FISHER’S (1970, 
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p. 99) procedure of comparing S (-2 log, pi) to a x2 distribution with 2n de- 
grees of freedom. 

With respect to q, we find no evidence for any trend in N once s and m are 
fixed. There is therefore no evidence for departure from pattern (1) , even though 
we have reason to expect some departure. Pattern (2), the dependence on s/m, 
holds but nearly shows a significant departure in the direction expected. For F 
we find significant departure from pattern (4) in the direction expected based 
on Tables 1 and 2. Likewise we find the expected departure from pattern ( 5 )  
based on the fact that F cannot exceed unity. For r, patterns ( 6 )  and (7) both 
hold up, but with some suggestion that the departure from dependence on s/m 
(which we expect given the results of Table 2) is seen in Table 4. 

On the whole, the general picture which we get from Tables 1 and 2, and from 
the associated intuitive arguments, is confirmed by the simulations, although 
some of the departures from the rough patterns, departures which we expect 
based on Tables 1 and 2, are too small to be detected. In many of the runs in 
Table 3 with s/m = 0.5, the “wrong” alleles found their way into terminal or 
subterminal classes, but they did so at very low frequencies. Neither end effects 
nor the slight difference in migration rates into the terminal colonies between 
the approximations and the simulations could therefore have had any noticeable 
effect. 

In a crude sense, despite the observed departures from this pattern. the values 
of q, F, and r are primarily functions of Ns and Nm, as predicted. 

Variability of the midpoint and slope 

One quantity of special interest is the point at  which the cline reaches a gene 
frequency of 0.50. If this point is expected to be between colonies i and i + 1, the 
midpoint of the cline can be interpolated as i + y, where 

y =  (pi+i-O.5) / (pi+i-pi). (18) 
If, as in the cases treated in Tables 1-4, the midpoint is expected to lie halfway 
between i and i+ 1 , we can develop an approximation for the variance of y. We 
have the means, variances and correlations of pi and pic1, and can make a large- 
sample approximation by the “delta method”. 

Letting D = pll - 0.5 and S = pll - plo, 
D 
S 

Var ( y )  = Var (-) 
- - 

1 D D 
S SZ S 

N -  ~ Var (D) 4- - Var (S) I- 2 - C O ~  (D,S). 

But 
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(recalling that Var (pll) = Var (plo) ), 

Cov (S,D) Var(pll) - cov(p11, plo)  

= Var(pll) (l-rlo,ll), 

and 

so that 

Using r11,12 instead of r,o,ll (which should involve little error in the case of an 
abrupt change in selection coefficients) we can calculate uv from (19) for all the 
cases in Table 1. This goes from a minimum of 0.23 when Ns = 3.2, N = 40 and 
s/m = 2 to a maximum of 0.82 when N s  = 0.8, N = 10, and s/m = 0.5. But if 
we standardize a, by multiplying it by the slope we find that Fav maintains a 
surprising constancy, being 0.30-0.34 for all cases in which N s  = 0.8, 0.21-0.25 
for N s  = 1.6, and 0.15-0.20 for Ns = 3.2. This equivalent to comparing a, to 
the characteristic length of the cline (SLATKIN 1973). 

Since q, F,  and r are approximately functions of only Ns and Nm, the same 
will be true of U, and?%,. Since q and r are functions primarily of s/m, and since 
for a fixed s and m, F decreases in inverse proportion to N ,  we expect that U, and 
Sa, will be inversely proportional to N% This is borne out by the values just 
given. A more careful investigation of -sb, would seem warranted. 

The complementary but somewhat different approach of SLATKIN and 
MARUYAMA (1975) to the question of the variability of the midpoint of a cline 
is another useful approach to this question. 

Another question we can ask about the cline is whether it will always be 
monotonic. To answer this requires looking at the whole cline, but a rough in- 
dication can be had by looking at two successive colonies. If the difference 
p l l - p l o  is always positive, we will not find local reversal of the cline in this 
region. It is not difficult to calculate a rough index of monotonicity by compar- 
ing the mean of p l l  - p l o  to its standard deviation: 

- 

Using the values in Table 1 to compute this, we find that it varies from a low of 
1.26 for Ns = 0.8, N = 40, and s/m = 0.5 to a high of 3.89 for N s  = 1.6, 
N = 40, and s/m = 2. In general, it is roughly a function of Ns and N m ,  in- 
creasing with increasing s/m and being proportional to N n  for fixed s and m. 
This quantity would also repay further study. 
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Persistence of the cline 

In none of these simulations was there any sign that we were approaching 
fixation of the entire cline. If the cline is sufficiently long that it contains at 
either end a series of populations which will almost always remain fixed for the 
locally favored allele, the medium-term distributions discussed above might 
remain relevant for a very long time. If Ns > > 1, the occasional “wrong” allele 
which wanders into one of these terminal populations would be virtually certain 
of rapid elimination. The longer the cline, the larger Ns, and the smaller Nm, 
the more distant the prospect of utimate fixation would be. 

Intuitively, it seems likely that the medium-term distribution would be 
relevant to natural populations. However, we have no quantitative theory to 
back this up. An adequate theory of rates of fixation of clines would be useful 
in other respects also. HANSON (1966) has shown that local pockets of selection 
can maintain locally adapted gene frequencies if migration is below a certain 
threshold. Clearly genetic drift can cause such pockets of local adaptation to 
disappear. It would be interesting to quantify the effects of drift on the per- 
sistence time of these pockets. The methodology used in this study does not 
seem to lend itself to this end. 

This research was supported by U.S.A.E.C. Contract AT(45-I) 2225 TA 5 with the University 
of Washington. 
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APPENDIX 

Culculution of the Linear Approximations in Tables 1 and 2 
For a given N ,  m, and s, the qi were first found by using equations (1)-(3), equating the pi’ 

to the pi, and solving these nonlinear simultaneous equations. The method of numerical solution 
was the standard Newton-Raphson iteration. This amounts to assuming that N = E, since the 
qi will be functions only of m and s, so that the finiteness of N cannot have any effect on q i .  

Given the qi, we can use (12), (14), and (15) to calculate D, M, and B. We now wish to solve 
for C in equation (11). Suppose that we can get eigenvalues and eigenvectors of A D M, so 
that for some U 

(A-1) A = U A U-I, 
with A diagonal. 
Multiplying (11) by U-1 and by (U-1)T 

U-1 C(U-1)T = U-1 A C AT(U-1)T 4- U-1 B (U-1)T 
= A U-lC(U-1)T A 4- U-1 B (U-1)T. (A-2) 

If we let H = U-1 C (U-1)T and K = U-1 B (U-I)T, 
we have 

H =  A H A + K ,  (A-3) 
so that 

h . .  1 J  = k../(l-hi 11 X j ) .  (A-4) 
So once we are given U and A we can calculate U-1, obtain K, then use (A-4) to get H, then use 

C = U H U T  (A-5) 
to get C. This is precisely what was done. 

Obtaining U and A from A required several steps, since A is not symmetric. However D-% 
A DM = D M  M DM is symmetric, and we can use standard computer programs to obtain its 
eigenvalues and eigenvectors. It has the same eigenvalues A as A. Suppose that the eigenvectors 
are given by P, so that 

(A-6). 

(-4-7) 
so that U = DM P. Thus to obtain eigenvalues and eigenvectors of A we first construct DM 
M DM, get its eigenvalues and eigenvectors, then premultiply the eigenvectors P by D%. This is 
a standard procedure for using symmetric-matrix computer programs to get eigenvalues and 
eigenvectors for a product of two symmetric matrices. 

DM M DM = P A P-1. 
Then premultiplication by DM and postmultiplication by D-34 reveal that 

D% PA P-ID-M = D  M = A = UAU-1, 


