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ABSTRACT

Twenty-one populations of the checkerspot butterfly, Euphydryas editha,
and ten populations of Euphydryas chalcedona were sampled for genetic varia-
tion at eight polymorphic enzyme loci. Both species possessed loci that were
highly variable from population to population and loci that were virtually
identical across all populations sampled. Cur data indicate that the neutrality
hypothesis is untenable for the loci studied, and therefore selection is indicated
as the major factor responsible for producing these patterns. Thorough eco-
logical work allowed gene flow to be ruled out (in almost all instances) as a
factor maintaining similar gene frequencies across populations. The Lewontin-
Krakauer test indicated magnitudes of heterogeneity among standardized vari-
ances of gene frequencies inconsistent with the neutrality hypothesis. The ques-
tion of whether or not to correct this statistic for sample size is discussed.
Observed equitability of gene frequencies of multiple allelic loci was found to be
greater than that predicted under the neutrality hypothesis. Genetic differenti-
ation persisting through two generations was found between the one pair of
populations known to exchange significant numbers of individuals per genera-
tion. Two matrices of genetic distance between populations, based on the eight
loci sampled, were found to be significantly correlated with a matrix of environ-
mental distance, based on measures of fourteen environmental parameters.
Correlations between gene frequencies and environmental parameters, results
of multiple regression analysis, and results of principle component analysis
showed strong patterns of association and of “explained” variation. The corre-
lation analyses suggest which factors might be further investigated as proxi-
mate selective agents.

N recent years a large body of data on naturally occurring protein polymorph-

isms has accumulated, making it clear that most diploids animals and at least
some plants are polymorphic at a significant fraction (209%-90%) of their loci
(e.g., Avava et al. 1972; SELANDER et al. 1970; Ricamond 1972; Hamrick and
Arvarp 1972) and some 5%-209, of the loci in a given individual are hetero-
zygous in most species. There has, however, been great disagreement on the
significance of this observed variability. One school, termed by LewonTIiN (1974)
the “neoclassical” (e.g., Kimura 1968; Kimura and Oura 1971, 1974; Yamazaki
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and Maruvama 1973; Warrace, Maxson and Wirson 1971; Sumaw 1970), has
contended that observed polymorphisms are transient manifestations of genetic
drift without selective significance. In opposition, the “balance” school (e.g..
Prarasu, LEwonTin and Hussy 1969; Doszransky 1970; Jouwson 1972 and
1974; Crece and ArLrarp 1972; Avara et al. 1974; Crark 1970, and others) has
argued that in a large proportion of cases the polymorphisms are the consequence
of some form of balancing selection. The controversy has not been resolved, on
one hand because a very low level of gene flow can theoretically maintain a high
level of similarity in the frequency of alleles in two populations at loci that are
subject only to drift and because selection has been very difficult to demonstrate.
On the other hand the amount of variation between loci in the between-popu-
lation variability of gene frequencies is too large to be explained by drift alone,
and related species seem to have allelic frequencies too close for the similarity
to be due to chance.

In this paper we present data on allele frequencies at eight polymorphic loci in
twenty-one populations of the checkerspot butterfly Euphydryas editha Boisduval
and ten populations of the closely related Euphydryas chalcedona Doubleday
and Hewitson. These data are unique in that the ecology of these populations and
the degree of gene flow among them are probably better known than those of any
animal populations aside from man (and possibly a few others such as Spalax—
Nevo and Smaw 1972). Our data convince us that the observed allele frequencies
are not caused by an interaction of mutation, drift and migration, but by some
form of balancing selection operating on these loci or other loci closely linked to
them.

MATERIALS AND METHODS

Populations studied: Adults of E. editha and E. chalcedona were collected in the spring and
summer of 1973 from a series of populations chosen as a representative sample of the geographic
and ecological diversity of these species in California and one section of Oregon. The localities
are shown on the map (see Figure 1) and some of their characteristics listed in Table 5. They are
described in more detail elsewhere (Sincer 1971; Waite 1974; Wuite and SINGER 1974).

Electrophoresis procedures

Proteins were separated using horizontal starch gel electrophoresis and following the method
described by Avara et al. (1972). Starch was obtained from Sigma (Sigma Chemical Co., St.
Louis, Mo.) and was used at a concentration of 12.5 (w/v). Two buffer systems were used: (i),
the discontinuous system of Pourik (1957), gel buffer .08 M tris-citrate, pH 8.6, and electrode
buffer .30 M borate, pH 8.0; with voltage set at 200, gels were stained after the migration front
had moved 6 cm from the origin. (ii), a continuous tris-citrate system described by Avara et al.
(1972); gel buffer, a 1/15 dilution of electrode buffer .034 M, pH 7.0; voltage was set at 180
and gels were stained after 3% hours (no migration front is visible with this system). For one
enzyme (Ak) system (ii) was used; for the others system (i) was used. Gels were run in a cold
room (4°) or covered with trays of crushed ice.

Sample preparation

Wings were removed at the base and the decapitated body thoroughly ground in 0.15ml
of grinding buffer (1 gram of Na,EDTA and 10 grams of sucrose per 100 ml of Poulik’s gel
buffer) in a disposable centrifuge tube (1 ml Clay Adams, Parsippany, N.J.), with a plexiglass
rod ground to a snug fit. For E. chalcedona bodies were ground in 0.2 ml of the same buffer.
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Heads were ground separately in 0.05 ml grinding buffer because one assay, Pgi, was much
clearer when head rather than body extract was used. Body samples were used for all other
assays. Preparations were centrifuged for 2 min at 12,000 g (4°) and the supernatant from
individuals divided among 12 capillary tubes (8 for the body and 4 for the head). These were
sealed, snap-frozen on dry ice, and stored at —20°.

Enzyme assays

Most of the assays were modified from Smaw and Prasap (1970). Biochemicals were obtained
from Sigma. All stains were made up immediately before use and all assays were carried out in
the dark at 37°.

Adenylate kinase (Ak, 2.7.4.3): 0.5 ml 0.1 M MgCl,, 20 gl 8 mM MnCl,, 50 mg glucose, 12 mg
Nicotinamide adenine dinucleotide phosphate (NADP-), 15mg Adenosine 5’-diphosphate
(ADP), 20 mg MTT (MTT Tetrazolinm), 44 units hexokinase, 15 units glucose-6-phosphate
dehydrogenase (G6PDH), 2 mg Phenazine methosulate (PMS—added last) in 50 ml 0.05 M
tris-HCl buffer, pH 7.1.

Glutamate-oxaloacetate transaminase (Got, 2.6.1.1): 200 mg aspartic acid, 20 mg «-ketoglutaric
acid, 10 mg pyridoxal-5-phosphate, 25 mg fast blue BB salt in 50 m] 0.05 M tris-HC] buffer, pH
8.5.

a-Glycerophosphate dehydrogenase (a-Gpdh, 1.1.1.8) and Tetrazolium ozxidase (To): 200 mg
Na-af-glycerophosphate, 15 mg NAD+, 25 mg Nitro blue tetrazolium (NBT), 2 mg PMS
(added last) in 50 ml 0.05 M tris-HCI buffer, pH 8.5.

Hezokinase (Hk, 2.7.1.1): 0.5 ml 0.1 M MgCl,, 56 mg glucose, 12 mg NADP+, 12 mg Adenosine-
5-triphosphate (ATP), 20 mg MTT, 15 units GGPDH, 2 mg PMS (added last) in 50 m1 0.05 M
tris-HCI buffer, pH 7.6.

B-Hydroxybutyric acid dehydrogenase (Bdh, 1.1.1.30): 400 mg NaCl, 0.2 ml 0.1 M MgCl,, 250
mg B-hydroxybutyric acid, 40 mg NAD+, 20 mg NBT, 2 mg PMS (added last) in 50 ml 0.05 M
tris-HCl buffer, pH 8.0.

Phosphoglucose-isomerase (Pgi, 5.3.1.9): 1.5 ml 0.1 M MgCl,, 25 mg fructose-6-phosphate, 12 mg
NADP+, 20 mg NBT, 15 units G6PDH, 2 mg PMS (added last) in 50 ml 0.05 M tris-HCl
buffer, pH 7.1.

Phosphoglucomutase (Pgm, 2.7.5.1): 1.0 ml 0.1 M MgCl,, 100 mg glucose-1-phosphate (disodium
salt; Sigma grade III) 12 mg NADP+, 20 mg MTT, 15 units G6PDH, 2 mg PMS (added last)
in 50 ml 0.05 M tris-HCl buffer, pH 7.6.

Gel interpretation

When bands became interpretable on the gels the reactions were stopped by replacing the
assay medium with 79 acetic acid. Within twenty-four hours all gels were scored and a perma-
nent photographic record taken. These records are available at Stanford for interested investi-
gators. For each enzyme one protein band occurred more commonly than others. This was taken
as the standard protein for that enzyme and given a mobility value of 1.00. Other proteins were
then named according to their mobility relative to this common protein. Thus, the Ak-0.80
protein migrated 809 of the distance moved by the standard (the Ak-1.00 protein). Routinely,
for each butterfly all eight assays were initially carried out on one day using four gels and
samples from only two capillary tubes {(one body extract, one head extract). Thus, there were
more than sufficient samples for repeat checks on interpretation. Fach band observed was scored
by running it on a gel on which a known (named) standard lined up (equal migration distance)
with the previously unknown band. Repeated runs were required for less common variants. The
practice of rumning multiple samples from the same individuals permits us to identify
electrophoretically identical alleles with an assurance not available to those running smaller
organisms on starch.

Genetics

A paper giving details of brood rearing, allozyme appearances, genotype frequencies within
broods, and linkage data is in preparation (Wmrte, McKecuNiE and Enmruice 1975). For six
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loci (Pgm, Pgi, Got, Bdh, To, and Ak) the data show unambiguously that inheritance of the
observed alleles is Mendelian. For the other two loci (Hk and «-Gpdh) the limited data that we
have are consistent with single-locus Mendelian inheritance and further broods are now being
reared.

Note on additional loci and alleles

Throughout all populations sampled a second Hk locus was found to be monomorphic. It is
not included in the following analysis nor is an Mdh locus (cathodal), also believed to be
menomorphic across both species.

At the Pgi locus at least four alleles, in addition to the eight listed in Table 1 for E. editha,
occurred in very low frequencies. Stmilarly at least one additional allele occurred in E.
chalcedona. At the Bdh locus an allele very close to the .58 allele accurred in both species, again,
in low frequency. The alleles in question were electrophoretically too close to other, more
common alleles to score consistently and were therefore lumped with these latter alleles.

Ecology

A matrix of “environmental distance” was constructed for comparison to matrices of genetic
distance (genetic diversity of Nrx 1972 and of Rosers 1972) among the sampled populations
(Table 6). For this environmental matrix we were able to obtain information on altitude,
latitude, longitude, soil type, larval food plant, precipitation, and eight measures of temperature
for each location (Table 5).

Scores used in constructing the matrix of environment distances were based on an additive

point system. Each 1000 feet of difference in altitude counted one point. Each two degrees
difference in latitude counted as one point. The difference between one kind of serpentine soil
and another (scree supporting sparse chaparral vs. shallow soil supporting rich grassland) was
counted as one point, as was the difference between any two non-serpentine soils. The difference
between any serpentine and any non-serpentine soil was counted as two points. Among larval
food plants the possibilities for differences were much more complex: one point was scored for
the difference between annual and perennial plants; one point was given for a difference in
spectes; two points for a difference in genus; and three points for a difference in family; one point
was scored for a size difference; a maximum of two points was scored for the difference between
use of no alternative foodplants, some alternative foodplants, or many alternative foodplants; one
point was scored for the difference between populations which obligately switched foodplants
from prediapause stages to postdiapause stages and those which did not. One point was scored
for each difference of twelve inches in rainfall and for each difference of five degree Fahrenheit
in each of the temperature mneasures. The eight temperature measures used were derived from
the U.S. Dept. of Commerce publication, Climatological Data, as follows. Ten-year averages over
the period of 1963-1972 were calculated for annnal minima and maxima, and for daily minima
and maxima averaged over the specific months corresponding to prediapause larval growth,
postdiapause larval growth, and the adult flight season. Weather stations closest to sample sites
and closest in altitude to sample sites were used. Weather data vary with altitude, latitude, and
longitude.Stations reasonably close to sample sites in latitude and longitude were available, but
net always in altitude. Data for SB (800") were modified from a hay-side station to make them
more variable in the direction of data from a more southern and inland station. Temperature
values for DP (1500") were arbitrarily raised from values of a station at 4200’.

In the correlation and regression treatments eleven of the environmental variables were used:
latitude, altitude, precipitation, and the eight temperature averages described above. The multiple
regression program used was BAR3, of E. J. Burr (University of New England, Australia). Dr.
D. Hay (La Trobe University, Australia) kindly supplied us with his programs for principle
component analysis.

RESULTS

Basic allele frequency and heterozygosity data for E. editha are given in
Tables 1 and 2. The loci fall into two general classes. Most loci have one “major”
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Ficure 1.—California map showing Fuphydryas populations sampled. A line connects each
E. editha site to the code initials of that site (see MATERIALS AND METHODS) and to a pie diagram
indicating in its left half the frequency of the H£-7.12 allele (in black) and in its right half the
frequency of the Pgm-1.00 allele (hatching) of that population. The large demonstration pie
diagram repeats this information for the MI population: H-7.12 allele in a frequency of .35,
Pgm-1.00 allele in a frequency of .82 (see Table 1 for other frequencies). The code initials in
boxes designate sites from which samples of E. chalcedona only were taken. The unlabelled black
dots mark locations of additional known E. editha populations.
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allele which predominates in all populations, other alleles being present at low
frequencies (Pgm, Got, Ak, Bdh, a-Gpdh, To). Two loci (Pgi, Hk) do not show
this pattern. In A%, which is largely diallelic, most populations have one of the
alleles with a frequency in excess of .60, but alternate alleles predominate in
different populations (see Figure 1). In Pgi, a particularly polymorphic locus
with high levels of heterozygosity, the majority of populations do not have any
one allele present at a frequency greater than .60.

The analogous data for E. chalcedona populations are given in Table 3 and 4.
At each of the Hk, Got, Ak, a-Gpdh and To loci one allele predominates through-
out all populations. The Bdh locus has one allele which is predominant in all but
the Oregon population (PD). The Pgm and Pgi loci show higher orders of poly-
morphism with different alleles predominating in different populations.

TABLE 3

Observed gene frequencies of E. chalcedona populations sampled in 1973

5p2 1
Gene Allele PD SB JR MR DP AB MC HH IF EL p(l—p) n
Dgm n 52 53 45 24 20 58 538 50 53 40
70 —_ 0B - - = - = = - — .0061
.80 - 01 04 08 — 01 04 .02 .03 .04 .0089
.87 — 09 08 92 15 12 19 12 22 22 0264
94 06 39 46 43 38 37 39 43 26 31 0344
1.00 33 2 26 .19 25 29 26 31 40 37 .0187
1.06 48 07 11 08 22 .16 .09 a2 .05 .03 1296
1.14 13 15 02 — — 05 03 — .03 .03 0434
1.22 — — .03 — — — — — —_— —_— .0265
Pgi n 52 53 49 26 18 60 58 50 55 36
.02 — .02 — — — ) | — — —_— .0144
.31 .01 — .04 — .03 — — —_ —_ — .0057
.35 _ = = = = - 0 - o — .0080
41 A4 04 04 02 .03 06 04 07 04 .04 .0026
.61 56 51 49 40 31 581 56 51 46 46 .0012
81 20 40 41 56 58 39 29 37 40 .32 .0194
1.01 — 03 02 02 05 04 05 .05 .09 .10 0182
1.13 _ - - = = = 0 — — 08 0535
1.26 —_— —_ = = = — 0B - = = .0041
HE n 52 53 46 27 17 51 58 55 53 38
1.00 4y 13 07 - - — 09 05 .06 38 2407
1.12 51 87 .93 (.00 1.00 100 .89 95 94 62 .2365
1.24 — —_ — — — — .02 — — — 0173
Got n 52 53 46 26 19 59 58 51 56 41
40 g - - — — 03 — — — - .0052
.60 02 02 .02 .02 — .06 .02 — .02 .01 0146
1.00 92 98 97 96 100 89 97 98 96 .73 0841

1.40 05— 01 02 — 02 01 .02 .02 26 1344
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TABLE 3—Continued

5p° 1
Gene Allele PD SB JR MR DP AB MC HH IF EL p(l—p) n
Ak n 53 53 46 25 20 58 538 52 55 37
58 — —_ - 02 - - - 0 —  — 0152
.80 .08 — 03 06 02 05 06 06 .05 — 0175
90 — = - - — ! —_ - - — .0088
1.00 92 91 93 8 98 89 91 93 .95 1.00 .0007
1.20 -— 09 04 06 — 05 03 e .0199
Bdh n 53 53 45 23 19 60 58 51 54 41
40 02 07 — — 05 03 — 02 — — .0100
58 80 23 22 43 26 18 18 20 .19 43 1553
1.00 18 .70 78 57 69 78 82 78 .80 57 .1456
1.40 —_— = = —_— = - - — 0 — .0094
a-Gpdh n 52 53 46 25 19 49 58 51 55 40
85 — — .01 .04 — .01 _— — — — 0123
20 _ - - 02 - — 01 T 0153
1.00 1.00 1.00 98 .94 100 99 99 .98 100 1.00 .0190
1.10 — — n — N | )2 .0093
To n 53 53 4 27 20 60 58 51 55 41
15 —_— = - - — ] —_ = = = .0083
26 —_ - - - — 01 0t — - - .0076
1.00 1.00 .97 1060 1.00 1.00 97 .98 1.00 1.00 1.00 0194
1.65 N | K e p— .0067
1.85 -—_ — - - — 01 .0 _ - — .0076

Heterozygosity 32 27 2 26 23 25 25 25 23 33

TABLE 4

Observed heterozygosity of E. chalcedona populations sampled in 1973

Population locus PD SB JR. MR DP AB MC HH IF EL

Pgm A48* .70 .69 54 .80 .66 .69 .68 .69 50*
Pgi 53 .55 .63 .65 .67 54 57 76% 54 56
HEk 98* 26 13 .00 .02 .00 21 12 .10 71
Got 15 .04 .07 .08 .00 19 .05 04 .07 37
Ak 12 15 15 .28 .05 19 A7 .10 a1 .00
Bdh 34 40 36 42 32 38 .29 31 .30 46
a-Gpdh .02 .00 .04 .08 .00 .02 .02 .02 .00 .00
To .00 .06 .00 .00 .00 .03 .03 .00 .00 .00

* Significantly different from Hardy-Weinberg expectation.

Gene Flow

One of the major effects confounding the interpretation of data as supporting
or opposing a *‘no selection” position is the degree of gene flow among populations.
A very small amount of gene flow can effectively prevent differentiation of two
populations if the only significant evolutionary force acting on the populations is
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drift. In fact, as has been pointed out by LewonTin (1974), if the product Nm
(where IV is effective population size and m is migration rate) is of the order of
10 or greater, that is 10 migrant individuals per generation irrespective of popu-
lation size, then populations will be essentially identical genetically. Very little
migration will keep populations genetically similar in the absence of differential
selection. Our knowledge of the biology of E. editha, a species whose population
structure comes remarkably close to that conceptualized by the classic two-
dimensional stepping-stone model (KiMura and Werss 1964) (which is not true
of most Drosophila species) leads us to believe that Nm > 1 is entirely unrealistic
for this species and that for the great majority of populations, Nm < 0.01 is more
likely. Estimates of NV for many of these populations and for the JR populations
over fifteen year’s time may be found in EnrricH et al. (1975).

Most of these populations typically number 200 to 3000 butterflies. Most
possible stepping-stone populations in between those studied have been found and
are shown by dots on Figure 1. The estimates of Nm have been made taking into
consideration the existence of known stepping-stone populations and the probable
existence of others.

Evidence on individual movement comes largely from continued intensive
study of the Jasper Ridge populations (Exrricu 1961, 1965; Lasine 1964, 1966,
1968; SingeRr 1971). Populations JRC and JRH have a very similar ecology with
indistinguishable adult flight times and are separated by only 500 meters of
terrain, which includes no barriers to dispersal. At least half of the intervening
land is suitable habitat. In twelve years of mark-release-recapture work 52/2989
(0.017) male and 23/473 (0.048) female recapture events were of individuals
that had moved between areas (these include transfers to and from area JRG,
which lies between JRC and JRH). There is good evidence to indicate that in
most cases in this organism, individual movement does not result in gene flow
(for further discussion of this see EarricH et al. 1975). Thus we would estimate
gene flow (Vm) at Jasper Ridge to be an absolute maximum of 30. The point to
be made here is that these populations are the only two in this study subject to
enough gene flow to affect observed allele frequencies. At one time they were
thought to be one panmictic unit; in fact gene flow between them is quite limited.

‘We have two other indications of levels of gene exchange. Of 2173 males and
296 females marked at WSB in six years only one male has been captured at
JRH (6.4 km away), and there is some chance that this individual was accident-
ally transported. The population UO is only 4 km from LO and individuals at
LO are known to make movements of 250 m—400 m with a frequency of 0.085
(Warte and LeviN, manuscript in preparation). Thus occasional interchange of
individuals is conceivable. These levels of migration (see also quantitative esti-
mates for the DP population by GiLeerT and SinGer 1973) are among popula-
tions which are geographically and ecologically very close and here we need to
make an important distinction.

The majority of E. editha populations fall into very differsent eco-geographic
groups. It is between these groups that we think gene exchange is highly unlikely
since they are isolated usually by much greater distances than those discussed
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above, and they have very different flight times and ecology. For example, two
relatively close populations, MI and PZ, are 19 km apart but are in totally
different ecological situations (flight at MI ends 2-3 weeks before flight begins
at PZ,; females choose different oviposition plants). Gene flow between these two
populations seems inconceivable. GiLBERT and SiNGERr (1973) consider it almost
impossible for gene exchange to occur between DP and JR, two populations
exhibiting quite a different biology but not separated by a great distance, about
65 km.

The populations of this present study are from a variety of these eco-geographic
groups separated by what are probably insurmountable barriers to gene flow.
The Central Valley of California is one such obstacle. We think that estimates of
the parameter Nm at less than 0.01 are reasonable when considering levels of
gene exchange among populations of E. editha. Not so much is known about the
possibilities of gene exchange in E. chalcedona, although we do know that it is
more vagile than E. edithe (Brown~ and Exrricu 1975).

The Neutrality Hypothesis

What evolutionary forces can explain the patterns of variation in gene fre-
quency shown in Tables 1-4? We believe that the answer is that the major
patterns are due to balancing selection.

First of all, gene flow, as indicated above, cannot be responsible for most of the
numerous examples of similarity in gene frequency among populations. A
measure of the degree of overall differentiation of populations with respect to any
one allele is the standardized variance of its frequencies across population
(F = 8Sp*/p(1—p) — 1/n. This statistic has been calculated within species for
each allele and is shown in Tables 1 and 3. Thus, those populations with a very
even spread of allele frequencies have low standardized variances. LEwoNTIN
(1974) has pointed out that, under circumstances where long-distance dispersal
is at a low level, as a very good approximation, ¥ = 1/(1+/Nm). Hence we can
calculate from our data values of the migraticn parameter Nm which might be
expected if drift and migration, not selection, were the only evolutionary factors
contributing to the differentiation among populations of E. editha.

Considering just the major alleles at each of the eight loci, those alleles present
in all populations—usually at quite high frequencies—these estimates range
from a high of 61.1 for the very evenly spread Pgm-1.00 allele to a low of 1.3 for
the highly variable K4-7.00 allele (with F uncorrected for sample size these
values become 28.6 and 1.2). These levels of migration are obviously several
orders of magnitude greater than what we estimate to be a maximum for the
average population of E. editha—values of Nm less than 0.01. If selection is not
operating to maintain the even distributions we observe then this evenness could
only be expected with levels of migration that, all evidence indicates, has not
been approached among E. editha populations. Average local migration as high
as one individual per generation does not occur, yet this is the amount required
under a neutrality hypothesis to account for the evenness observed at the Hk
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locus, the most variable of the eight studied. Local gene flow of 61 individuals
per generation would be required under neutrality to account for the evenness of
distribution at the Pgm locus. Our data, therefore, suggest rejection of the neu-
trality hypothesis. Nm values thus calculated (Nm = (1/F) — 1) for the major
alleles of E. chalcedona range from 3.2 to 1427.6 (2.8 to 52.5 uncorrected for
sample size) and the argument applies, though less strongly for this species.

In the case of JRC and JRH there were very similar gene frequencies at 7 of
the 8 loci and we might expect this in light of the possible gene flow between
these two adjacent populations. At one locus, however, Bdh, a difference of 0.17
occurred in the frequency of the Bdh-1.00 allele, a difference significant at the
0.01 level and persisting in 1974 (Table 7). It is difficult to imagine how these
data could arise if only drift and migration were involved. In the case of Bdh at
Jasper Ridge we appear to have selection maintaining differentiation in spite of
gene flow, while at other locations selection seems to be maintaining similarity
in the absence of gene flow. This is precisely what would be expected on the basis
of patterns of differentiation in non-allozymic characters in other organisms
(Enmrricu and Raven 1969).

In pursuit of a more specific assessment of our data with regard to the neu-
trality hypothesis we did the calculation for the LewoNTiN-KRAKAUER (1973)
test (Table 8). For the LEwoNTIN-KRAKAUER test we estimated £=2.0. This is
a conservatively large value since smaller values of £ (justified as data depart
from a binomial distribution) result in larger values of the statistic.

Results of this test when corrected and when uncorrected for sample size were
calculated and both are presented in Table 8 for the following reason. It was
found that in the majority of cases subtracting 1/7: the correction factor (Cavarri-
Srorza and Boomer 1971) from each standardized variance $?/p(1—p) had the
effect of increasing the statistic in question. It is not conservative to “correct”
upward a statistic that approaches significance with increasing size. Yet, within

TABLE 7

Genetic differentiation at the Bdh locus between C and H Jasper Ridge populations of
Euphydryas editha (in 1973 and 1974)

1973 1974
H C
Alleles: 0.40 — — — 0.01
0.58 0.02 0.04 0.004 —
1.00 0.77 0.60 0.811 0.66
1.40 0.21 0.36 0.184 0.33
Sample size: 82 50 114 51
Gene numbers: 1.00 126 60 185 67
0.40
0.58 38 40 43 35
1.40
x2 (1df) 7.73* 8.50**

*

*p < 0.01
«p < 0.005
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TABLE 8

Lewontin-Krakauer test of homogeneity of variance of allele frequencies of twenty-one
populations of Euphydryas editha and ten populations of E. chalcedona sampled in 1973

Tewontin-Krakauer statistics*
E. editha E. chalcedona

Alleles tested Corrected Uncorrected df Corrected Uncorrected df
All alleles 32.90 21.28 30 10.75 7.35 33
Most common allele at
each locus 20.33 14.63 7 6.97 4.96 7
Second most common
allele at each locus 18.47 14.76 7 6.25 5.20 7

* All of these are significant at P <C .01.

limits which include sample sizes of 10-200, this is the effect of the correction
factor. To be cautious we have based our conclusions on the statistics without
correction factors.

In both species, when all alleles are considered, there are clear indications of
heterogeneity of standardized variances of allele frequencies, implying the action
of natural selection on at least some of the observed alleles. If standardized
variances of only the predominant allele of each of the eight loci are considered
they also are found to be heterogeneous. The same is true if standardized vari-
ances of the second most common allele are compared, a method used by Nevo
(1973). Drift, mutation, and migration cannot account for the magnitude of the
differences among variances of the loci sampled. A larger sample of loci could
only have increased the observed heterogeneity.

The rigorous validity of the LEwonTIN-KRAKAUER test requires restrictions on
the population structure that are most likely not met in any natural situation.
The extent to which given deviations from these restrictions influences the test
statistic is not precisely known (Ewens and Feroman 1975). Our results should
therefore be regarded as indicative rather than as statisticaly significant. The
Ewen’s (1972) test for selection was applied locus by locus. One locus (E. chalce-
dona, Pgm) was significant (P<.05). This gives us further confidence in the
indications from the LEwoNTIN-KRAKAUER test.

While some loci show great changes in gene frequency from one population
to another (E. editha: Pgi, Hk, Bdh. E. chalcedona: Pgm, Pgi, Bdh) others show
uniform frequencies in all populations (E. editha: Pgm. E. chalcedona: Hk. Both
species: Got, Ak, a-Gpdh, and To). One cannot invoke the argument that simi-
larities in the gene frequencies at some loci in these populations are due to virtual
panmixia in the face of clear differentiation at other loci. This contradiction has
been noted by others (e.g., PRakasy, LEwonTtin and Hussy 1969; CHRISTIANSEN
and FrRYDENBERG 1974; Avaraetal. 1974).

Another approach to testing the neutrality hypothesis is that of Jomwson and
Feipman (1973). They plot the “equitability” of allele distribution against the
number of alleles and compare experimental results to those which the neutrality
hypothesis predicts. Where % is defined as the number of alleles at a locus in
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frequencies of .01 or more and z; as the frequency of each allele up to z; the
expression of £5x;? is a measure of the “evenness” of allele frequency distribution.
Calculation of £ and £3x;2 for each population rather than for each species seemed
reasonable because of large differences between populations in proportion of
individuals heterozygous at a given locus and over all loci (see Tables 1 and 3).
We find for Euphydryas populations precisely what Jounson (1973) found for
Drosophila species (Figure 2). For loci with more than four alleles the observed
allele frequency distributions are more “equitable” than would be the case were
all alleles selectively equivalent. The effect that lumping alleles might have on
this distribution is unclear, especially since the alleles observed may represent a
nonrandom sample of those present. There is no reason to believe that amino
acid substitutions that entail charge differences are, on the average, selectively
equivalent to those that do not.

As a further argument against the neutrality hypothesis consider effective
number of alleles per locus 1/(1—H) where H =3 heterozygosity of n loci
divided by ). Omra and Kimura (1973) have estimated the effective number of
electrophoretically detectable alleles as n=/1+8/Nu, where [V is effective popu-
lation size and w is mutation rate. Whereas we observe n=1.33 for E. editha with
population sizes of roughly two hundred to three thousand, Avara et al. (1974)
observe n=1.22, with N several orders of magnitude larger. While it is not pos-
sible to demonstrate past sizes of natural populations it nonetheless appears that
populations of very different sizes possess very similar numbers of effective alleles
per locus. This fact implies that such alleles are maintained by some nonrandom
force, i.e., selection.

Finally, one may simply examine the data in Tables 1-4 and ask the following
kind of question. “If mutation and drift are the major forces acting on the Got
locus in Euphydryas, what is the probability that in seventeen isolated (omitting
WSB, JRH, CR and UO) E. editha populations and in ten isolated E. chalcedona
populations the frequency of the allele Goz-1.00 is .73 or higher?” No adequate
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Fisure 2.—Equitability of allele frequency distribution. Explanation in text.
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statistical test is available for this hypothesis since we cannot accurately estimate
founder effects. But since it is highly probable that many thousands of generations
have passed since the two species became isolated and that several thousand
generations have passed since the conspecific populations became isolated (some
have evolved quite different characteristics) a founder effect of the persistence
necessary to explain the observed gene frequency similarities seems quite
unlikely.

Environmenial Correlations

A different approach to the question of selection vs. neutrality is provided by
examining correlations between matrices of genetic (“diversity’’ of Rogers 1972;
and Ner 1972) and environmental distance (Table 6). Construction of the
environmental matrix is discussed under MATERIALS AND METHODS. If selection
were an important factor in determining gene frequencies environmentally
distant populations should also be genetically distant. If drift were overriding
there should be no correlation in populations that are isolated by the criteria
given in the section on gene flow. When all 210 pairs of populations are con-
sidered the genetic-environmental distance correlations are highly significant:
r =561 for RocERrs’ index and r = .443 for NEr's index. When completely iso-
lated populations are considered (omit WSB, JRH, CR, and UO so that Nm of all
remaining pairs is less than 0.1) these correlations change very little (to .545
and .427) and remain significantly different from zero with P<10-¢. Were there
theoretical justification for believing that levels of gene flow of Nm<0.1 might
have significant effects on gene frequencies then the above results would be con-
sistent not only with the selectionist hypothesis, but also with a neutralist
hypothesis that might assume gene flow to correlate (negatively) with environ-
mental distance, resulting in spurious correlations between environmental and
genetic distance. These correlations and an analogous treatment for E. chalcedona
will be further considered in a second paper. The point to be made here is that
the correlations came out strongly positive and highly significant.

Strong correlations were found between allele frequencies and various environ-
mental variables measured (Table 9). These will be further considered in a
second paper (McKecunie, Eariica and WaiTe 1975). For the 21 E. editha
populations multiple regression analysis was carried out for all alleles using
eleven environmental variables (as described above, omitting foodplants and soil
types). In Table 10 are summarized the significant results of: (1) a stepwise
regression procedure described by Draper and Smrra (1966) using a 209%
significance level for rejection of partial variance ratios, and (2) straight multiple
regression using all eleven variables. Most alleles showed no significant
“explained” variance component under this analysis. But, some alleles (twelve
in all, notably, Pgi-1.00, Hk-1.00 and Got-1.00) showed statistically significant
levels of explained variation with reasonably high levels of multiple correlation
(R?) in the stepwise model. Of most interest perhaps is an R? value of 0.75 for the
HFk-1.00 allele when only three environmental variables, altitude, latitude and
average daily maximum temperature during prediapause life were incorporated
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TABLE 10

Muliiple regression analysis of E. editha allele frequencies across 21 populations
with eleven environmental variablest

Stepwise model (R? refers to

sequential inclusion of independent variables) Al} eleven variables
Locus and allele R SE ¥ = SE
Pgm 087 PRE: 0.14 0.051 0.91 0.023 8.51*
Tmax 0.32 0.046
LAT 0.43 0.043
ADX 0.50 0.342 4.08
Pgi 040 POS, 0.42 0.022 0.86 0.016 5.14*
POS,, 049  0.021
ADx .80 0.015
PPT 0.80 0.014 16.21**
1.00 Tmin 0.57 0.133 0.89 0.095 6.95*
POSx 0.70 0.115
ADn 0.75 0.107
POSn 0.79 0.100
PPT 0.83 0.093 15.11**
Hir  1.00 ALT 0.38 0.267 0.93 0.103 11.09*
LAT 0.67 3.200
PRE, 0.75 0.181 16.73**
112 ALT 0.39 0.265 0.93 0.132 10.66*
LAT 0.69 0.198
PREX 0.74 0.183 16.07**
1.24 ADx 0.62 0.006 0.80 0.007 3.18
PPT 0.72 0.005 23.02**
Got 0.36 PREn 0.14 0.0017 0.85 0.001 4.76
PREx 0.43 0.0015
Tmin 0.49 0.0014
Tmax 0.59 0.0013 5.76*
1.00 Tmin 0.46 0.036 0.87 0.026 5.48*
LAT 0.53 0.035
POSn 0.69 0.029 12.82**
1.40 Tmin 3.26 0.020 0.83 0.014 3.93
LAT 0.34 0.019
PPT 0.42 0.018 4.03
Bdh 040 ADx 0.55 0.011 23.42** 0.82 0.010 3.80
a-Gpdh 1.00 AD, 0.26 0.024 0.81 0.018 3.4
PPT 0.37 0.022
AD, 0.49 0.021 5.42*
71.10 ADn 0.26 0.024 0.81 0.018 3.57
PPT 0.38 0.023
ADX 03.52 0.021 6.17*
* p<0.01
** 5<0.001

+ Table includes only those regressions which gave a significant (p<{0.05) variance ratio F
(mean square due to regression/deviation mean square).

T ALT: altitude; LAT: latitude; PPT: annual precipitation; Tmin: average annual minimum
temperature; Tmax: average annual maximum temperature; PRE , POS_ and AD,, are average
daily minimum temperature for prediapause larvae, postdiapause larvae and adult, respectively;
PRE,, POS, nd AD, are average daily maximum temperature for prediapause larvae, postdia-
pause larvae and adult, respectively (see MATERIALS AND METHODS).
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into the regression. A backwards regression procedure for this allele (DrRAPER
and Smrra 1966) incorporating altitude, latitude and average daily maximum
temperature during adult life gave an R? of 0.74. A markedly improved standard
error and an R? of 0.93 were obtained for the H%-7.00 allele when all independent
variables were used.

Also at each locus principal components of allele frequency variation were
regressed on both the eleven environmental variables and on the principal com-
ponents of the variables after “studentization”. No marked change or increase in
levels of correlation or multiple regression occurred, except for a simplification
of patterns of variation at each locus. We interpret the highly significant associ-
ations of environmental parameters with gene frequency variations as evidence
of gene frequency determination by direct selective effects of the environment.
Given the known distribution of populations of this species, and given the pres-
ence of alleles which show highly significant levels of “explained” variation
under multiple regression, in virtually every sampled population, such associa-
tions would not be expected if allozyme fitness differences were neutral. Were
more accurate climatic data available (stations closer to sample populations) we
would expect observed correlations to increase in value, but the problem of
spurious correlation makes extreme caution necessary in the detailed interpre-
tation of such statistics.

Conclusions

The results of this study are quite clear: allozyme variation at a sample of loci
in Euphydryas editha and E. chalcedona certainly cannot be the result of a
drift-mutation interaction. Qur assumption, then, must be that selection is the
controlling force. We have been able to reject the neutrality hypothesis unam-
biguously for two reasons. First it has been possible to demonstrate the genetic
basis of the variation by appropriate crossing experiments. Secondly (and most
importantly) our relatively detailed knowledge of the population structure and
general ecology of these organisms has permitted us to eliminate gene flow as a
factor in maintaining gene frequency similarities. Although in this paper we
have focused primarily on these similarities within species, in a subsequent paper
(McKecun~ie, Egriice and Warre 1975) we will discuss similarities and differ-
ences in allozyme pattern which exist between the two species.

While the investigation of two species cannot lead to out-and-out rejection of
so-called “non-Darwinian evolution’ we would contend that there is little reason
to believe, and no data to suggest, that allozyme variation is nonadaptive. To the
contrary, most of what we know about enzyme function and evolutionary
processes would lead one to hypothesize that the vast majority of amino acid
residue substitutions in an enzyme would have an effect—albeit sometimes
slight—on function and thus on the fitness on an organism. And all of the data
in the literature are compatible with that hypothesis.
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