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ABSTRACT 

The so-called “Fundamental Theorem of Natural Selection”, that the mean 
fitness of a population increases with time under natural selection, is known 
not to be true, as a mathematical theorem, when fitnesses depend on more 
than one locus. Although this observation may not have particular biological 
relevance, (so that mean fitness may well increase in the great majority of 
interesting situations), it does suggest that it is of interest to find an evolu- 
tionary result which is correct as a mathematical theorem, no matter how 
many loci are involved. The aim of the present note is to prove a n  evolutionary 
theorem relating to the variance in fitness, rather than the mean: this theorem 
is true for an arbitrary number of loci, as well as for arbitrary (fixed) fitness 
parameters and arbitrary linkage between loci. Connections are briefly 
discussed between this theorem and the principle of quasi-linkage equilibrium. 

The “Fundamental Theorem” 

HE “Fundamental Theorem of Natural Selection” (FTNS: FISHER 1930) Tth at the mean fitness of a population increases with time (at least under 
certain assumptions, most notably that fitness depends on the genetic constitution 
at a single locus) has had considerable influence in population genetics, since it 
appears to quantify a central theme of the Darwinian theory. The theorem is, 
however, open to criticism in two ways. First, it is no longer necessarily true as a 
mathematics1 theorem when fitness depends, as it surely must, on the genetic 
constitution at two or more loci (LEWONTIN and KOJIMA 1960; MORAN 1964. 
FISHER’S so-called multi-locus proof (1958) is quite vacuous, and many multi- 
locus counter-examples to the FTNS are now available). Second, when total 
population size is held approximately constant by extrinsic factors, it is not at 
all evident (CROW and KIMURA, 1970) what the biological content of the theorem, 
even if it were true mathematically, really is. 

In order to maintain the FTNS, at least in part, one might attempt to prove it 
tinder certain, perhaps biologically realistic, assumptions. The principle of quasi- 
linkage equilibrium (QLE) (KIMURA, 1965) is such an attempt. This principle 
states, for two loci with two alleles per locus, that with small selective differences 
and rather loose recombination, a function of gametic frequencies (denoted by Z 
later in this paper) soon reaches effective constancy. When this situation obtains, 
Genetics 83 : 601-607 July, 1976 
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the rate of change of mean fitness is essentially equal to the additive gametic 
variance. Since the latter must be non-negative, the FTNS prevails. A precise 
definition of this principle has recently been given by NAGYLAKI (1976), and 
later in this paper we touch upon the relation between NAGYLAKI’S results and 
that given in the iollowing section. 

A second approach to saving the FINS in part is to show that it is true under 
certain restrictions on the fitness values (EWENS 1969; KARLIN 1975). This ap- 
proach is of limited usefulness since difficulties arise in showing that if the fitness 
restrictions “almost” hold, ihen the theorem is “almost” true. Altogether there 
seems to be considerable difficulty in finding a rigorously mathematically correct 
version of the FTNS which is true in a broad range of biological situations. Thus 
while the mathematical validity of a theorem is not necessarily related to its 
biological usefulness, it is of some interest to find some mathematical theorem 
which is true for  an arbitrary number of loci, at least under certain conditions. 

In this paper we prove such a theorem. It concerns the evolutionary effect of 
natural selection on the variance in fitness, rather than the mean. The theorem 
relates to the additive gametic variance, which plays a central role, as noted 
above, in the QLE concept. The theorem is already well known for  one and 
two loci. 

Additive gametic variance principle 

We consider an indefinitely large population mating at random, with fixed 
fitness values, with time considered as iLdiscrete.’’ 
THEOREM. No matter how many loci fitness depends on, how many alleles exist 

at each locus, or what the recombination fraction is between loci, the effect of 
natural selection is always to make the additive gametic variance ultimately 
zero. 

PROOF. Although the proof of this theorem is known for two loci with two 
alleles at each locus, we outline first a form of proof for this case which extends 
readily to an arbitrary number of loci. 
It is useful to adopt a non-standard notation and label the loci A ,  and A,, with 

alleles A,,  and A,,  at the locus A ,  and alleles A,, and A,, at the locus A,. Let 
gamete frequencies be x1 (oE A,,  A , , ) ,  x2 (of A,,  A P I ) .  x1 (of A I ,  A s l )  and x4 (of 
A,, A Z 2 ) .  The standard recurrence relations for  these frequencies can most 
usefully be written (see KARLIN 1975, p. 366) as 

W xl’ = wlxl + D, 
- w x2’ = w,x, - D, 
W ~ 3 ’  = wax3 - D, 
W xq‘ = w4x4 + D. 

Here I@ is the mean fitness of the population, the u)i are the so-called “marginal 
gametic fitness” and D is a term which involves gamete frequencies, the fitness of 
the double heterozygote and the recombination fraction between the two loci. At 
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equilibrium, xi’ r= xi: appropriate summations if (1) then yield, for the equi- 
librium frequencies, 

I;xi (Wi - W) = 0, 
z 2  (WP - W )  + 2 4  (w, - W) = 0, 
5 3  (w3 - W )  +x4 (w, - W )  =o. 

We consider now variances in fitness. The total gametic variance uelG is defined as 

W2TG = 22 x& ( W I  - E-) ’. ( 3 )  

This may be partitioned into an additive and a non-additive component, as fol- 
lows. Define V by 

- 1/2v = x1 (w1- w - m)2 + 5 2  (wz-- w - m - a)2 + 2, (w, - w - m - b)2 

+x4 (w,-W-m-a---b)2. (4) 
For any values of x2, x2- x3 and x4, we may minimize V with respect to m, a and 
b. The minimum value is the non-additive component uPNAG of the total gametic 
variance; the additive component uPAG is then found by subtraction: uZAG= 
u’TG - u Z N A G .  Note that if the minimum value of V occurs at m = a = b = 0,  then 
~ 2 7 3 ,  u 2 x A G  and thus u~~~ = 0. Now the minimizing equations a V /  a a = 
2 V /  2 b = 0 yield 

- x x* (w* - W )  - m - a (z, + z4) - b (z3 + x,) = 0, 

z3(w3-W)+z4(W4-W)-m(x,+z4)-aa4-b(~,+z4) =o. 
5 2  (w2-F) + 5 4 ( W 4 - W ) - m ( z ~ + X q ) - a ( z ~ + z , ) - - b 2 , = 0 ,  (5) 

Using equations (2), we see that at any equilibrium point of the recurrence sys- 
tem (1 j , equations ( 5 )  reduce to 

m + a (2, + 2,) + b (x3 + 5,) = 0, 
m (xP + x4> + a ( x 2  + x,) + b z4 = 0, 
m (x3 + x4) + a 2, + b (x, + x4) = 0. 

If we assume xz > 0 at the equilibrium point, there is a unique solution, (clearly 
m = a = b = 0) to equations (6). This implies immediately that uPAG = 0 at 
equilibrium. (Before proceeding it is of value to discuss the uniqueness of the so- 
lution of (6). In  the present case this can be shown easily by checking that the 
determinant of the matrix of coefficients is non-zero when xz > 0. An alternative 
approach, which we use when generalizing the above result, is to note that, if 
x, > 0, V is a nondegenerate quadratic form in m, a and b and hence admits a 
unique minimum value). 

The proof in the general case follows similar lines. Suppose we have I loci with 
nj alleles possible at the ith locus. Follow the notation established above and A3k 
be the kth allele at the j t h  locus. Suppose the T = nl n, . . . nl gametes are labelled 
in scme dictionary order and let the frequency of the i th such gamete be xL. Then 
the recurrence relations generalizing ( 1 ) are of the form 

(6) 

- 
W x,‘= wz xz. * Dil +- . . . , i = 1,2,. . , T .  (7) 

Here, as above, is the mean fitness and w, a “marginal gametic fitness.” The 
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quantities D,,, Di2, . . . . , involve gamete frequencies, recombination fractions 
between the various loci and multiple heterozygote fitnesses, (see, for example, 
FELDMAN, FRANKLIN and THOMSON 1974, Table 1, for the case of three loci). 
The D values have the property that if the recurrence relations ( 7 )  are summed 
over all gametes containing any specified allele Ajk, the quantities D,,, D,,, . . . . 
cancel exactly and an equation of the form 

w B Xi’ = Z wi xi (8) 
is obtained, where both summations are over all gametes containing the allele Alk. 
(The easiest way to see why such a cancellation occurs is to note that I: X ~ ’  is the 
new frequency of A j k  and that recombinational events, once xl, x,, . . . . , XT are 
given, will change gamete frequencies but not allele frequencies). Thus at 
equilibrium 

Z xi (Lui - W )  = 0, 
all 
x 

allele 
xi (Wi  - E-) = 0. 

Here the summation “all” is over all T gametes while the summation over “al- 
lele” is over all gametes containing any specified allele: if this allele is at the j t h  
locus, there will be T/ni terms in this sum. Equation (9a) is the direct generali- 
zation of (2a) and equation (9b) generalizes (2b) and (2c), in (2b) the allele 
summed over being A,, and in (2c), A12.  We may suppose without loss of gen- 
erality that all alleles at all loci occur with positive frequency at the equilibrium 
point: (if they do not, we simply restrict our consideration to those which do). 

We now turn to the additive gametic variance. The total gametic variance is 

and, as for two loci, may be partitioned into an additive and a non-additive com- 
ponent. Suppose the first gamete is taken as a reference and with respect to it de- 
fine additive components alp, aqq,. . . . , for the it?& gamete (where it is assumed 
that the izh gamete is A,, A,, . . . .). We minimize the expression V, defined by 

% V =  z xi ( w i - W - - m - a l , - a 2 , - . . . ) 2  (11) 
all 

with respect tom and the ajk’s. The minimizing equations yield 
- 

z 
all 

xi (wi - W - m - a l , - a 2 , .  . . )  = o  
- 

2 xi ( w i - W - m -  . . . )  = O  
allele 

where the first summation is over all T gametes and the second is over all those 
contaking any specified allele A,k (it is difficult to devise a simple notation for 
the constants ars which arise in the second summation). Under the assumption 
that only those alleles which arise with positive frequency at the equilibrium 
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point are considered, V is a nondegenerate quadratic form in m, all, al,, . . . . , 
and hence has a unique minimum with respect to those parameters. Comparison 
of (9) with (11) then shows that, at any equilibrium point of the system, the 
(unique) solution of (1 1) is m = all = aI2 . . . . = 0. Thus at any equilibrium 
point the additive gametic variance is zero and the theorem is proved. 
Remark TURNER (1969) has directed attention verbally to the possibility that an 
interesting effect of natural selection is to make certain components of the genetic 
variance zero. The above may be thought of as a quantification of TURNER’S 
sta teinen t . 

If we adopt the usual definition of heritability in the narrow sense as the ratio 
of the additive gametic variance to the total variance, the theorem may be re- 
stated thus: no matter how many loci fitness depends on, how many alleles ap- 
pear at each locus, or what the linkage arrangement between loci, natural se- 
lection always acts so at ultimately to make heritability zero. (This is again well 
known when fitness depends on one o r  two loci). Note that, as with the above 
throrem; this conclusion assumes random mating, discrete time and fixed fitness 
values. 

Remarks on  QLE 

In  the above it has been remarked that there is some relation between the QLE 
principle and the result of the theorem just proved. 

There has been a recent tendency to word the QLE principle thus: for two loci 
and two allcles at each locus, when linkage is loose and selective differences small, 
a state (of QLE) soon emerges in the evolution of the system (1) where the quan- 
tity 2 = x1 x4/x2 x3 becomes essentially constant. But when Z is constant the 
change in mean fitness equals the additive gametic variance. Thus in general we 
may normally expect the change in Z to be sufficiently small so that the change 
in mean fitness is very close to the additive gametic variance, and is hence 
positive. 

To check the theorem of the preceding section numerically I computed itera- 
lions of the recurrence relation (1) in a variety of different circumstances. In 
each genera tion various statistics, including 2 and the additive gametic variance, 
were computed. In  not one case did the QLE principle, as stated loosely above, 
hold. More precisely, the change in mean fitness, both absolutely and relatively, 
was normally considerably less than the change in Z itself, (sometimes by a 
factor of 100 or  1000). 

Clearly a more precise definition of QLE is desirable. This has recently been 
given by NAGLYAKI (1976), and is best discussed by using the “continuous time” 
equation for change in mean fitness (FELDMAN and CROW 1975) : 

2E d Z  d W  - 
d t  PZ d t  - 
-- 

Here E is a measure of epistasis and P a function of gamete frequencies whose 
exact definition is not important for the present argument. Whether o r  not the 
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mean fitness increases depends on the relative magnitudes of the two terms on 
the right-hand side of (12), since the first term is non-negative and the second 
term is unrestricted in sign. This remark was made by FELDMAN and CROW 
( 1970, p. 386) and the present approach really stems from this observation. 

The crucial contribution of NAGYLAKI (1975) is to show that if the parameter 
s is a measure of the selective differences between genotypes, then during most of 
the gene frequency change uZdG and dZ/dt  are of order s2, while E is of order s. 
( P  and Z are of order unity and are not central to the present argument). This 
implies, assuming s to be small, that during most of the time that gene frequency 
changes are substantial the second term on the right-hand side of (12) is of an 
order cf magnitude less than the first term, so that approximately 

This is NAGYLAKLI’S more precise statement of the QLE principle and should be 
used instead of the inaccurate statement that (13) holds because dZ/dt  is small 
compared to d W / d t .  

The result of this paper implies a second order-of-magnitude argument. Sup- 
pose the system (1) is moving towards an equilibrium point at which 2 is not 
unity. Let 6 be a measure of the deviations of the gamete frequencies from their 
equilibrium values. Then the theorem proved above shows that uZAG is of order S2, 
whereas the other two terms in (12) are of order 6. Thus near an equilibrium 
point the second term on the right-hand side of (12) will dominate the first term, 
despite the order-of-magnitude arguments relating to fitness differentials just 
outlined. Thus near an equilibrium point W may decrease, (a result already 
explicit in NAGYLAKI’S argument). More generally, the three terms in (12) are 
respectively of order s26, s2s2 and s36 so that possible decreases in the mean fitness 
will arise when 6 and s are of the same order of magnitude. 

An earlier draft of this paper was considerably improved after discussion with M. W. 
FELDMAN, S. KARLIN, J. F. CROW, G. THOMSON and T. NAGYLAXI. I also thank the referees for 
many useful comments. 
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