MULTIVARIATE ANALYSIS OF GAMETIC DISEQUILIBRIUM
IN THE YANOMAMA!

PETER E. SMOUSE anp JAMES V. NEEL

Department of Human Genetics, University of Michigan Medical School,
Ann Arbor, Michigan 48109

Manuscript received July 2, 1976
Revised copy received November 29, 1976

ABSTRACT

The gametic disequilibria between all possible pairs of loci were examined
for a set of eight codominant loci in each of fifty Yanomama villages, using a
multivariate correlation analysis which reduces the results to a single measure
of departure from multiple-locus-gametic equilibrium. Thirty-two of the fifty
villages departed significantly from multiple-locus gametic equilibrium. The
largest contributions to the departure from multiple-locus equilibrium were
due to the disequilibria between MN and Ss and between Rh(Cc) and Rh(Ee),
indicating the effects of tight linkage. After removing the effects of these
obvious sources of disequilibrium, sixteen of the fifty villages still remained
significantly out of equilibrium. The disequilibrium between any particular
pair of loci was highly erratic from village to village, and (with the exception
of the MN-Ss and Cc-Ee disequilibria) averaged out very close to zero overall,
suggesting a lack of systematic forces (epistatic selection). The departure from
equilibrium in any one village is in excess of that expected from random
sampling alone, and is attributed primarily to the fission-fusion mode of village
formation operetive in the Yanomama and the fact that a single village consists
of a few extended lineages. Village allele frequencies are highly correlated
across loci, and most of the non-independence is accounted for by large correla-
tions in the average allelic frequencies of different loci for related villages. It
is suggested that these correlations also are due to territorial expansion and
population growth. For the tribe as a whole, all but the tightly linked markers
of the MNSs and Rh complexes are approximately uncorrelated, and large
departures from multiple-locus Hardy-Weinberg expectation are primarily due
to substantial Wahlund variance within the tribe. There is no need to postulate
a role for selection in these disequilibria.

T HE genetic structure of any human population should reflect the demographic

forces which operate on that population. For several years, members of our
group have been involved in the study of the Yanomama and other Indian tribes
of South America. The objective of these multidisciplinary studies has been to
elucidate the genetic organization of relatively undisturbed tribal populations
engaged in hunting, gathering, and early agriculture. Most of these tribal popu-
lations are highly fragmented into small demes (villages), each consisting pri-
marily of a few extended lineages( NekL 1967). Our major objective has been to
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delineate the magnitude of interdemic microdifferentiation, as measured by
single-locus genetic indicators such as WricHT's (1943 et seq.) Fyr measure
(NeeL and Warp 1972) and various statistical analogues (Spierman, NEEL
and L1 1977), and by multivariate analysis of anthropometric (SpIELMAN et al.
1972; SpieLman 1973b) dermatoglyphic (RoTHHAMMER et al. 1973), and dental
(BrewERr-Carias, LE Branc and NegL 1976) criteria. The amount of microdif-
ferentiation encountered has been considerable; the various types of characters
(SpieLMmaAN 1973a; Spierman, Micriazza and NeenL 1974) and different sorts
of measures (NEEL, RortrmammeR and LiNcoes 1974; Spienman, NEsL and L1
1977) have consistently yielded comparable magnitudes and patterns for this
variation. Our initial expectation was that the very dispersive forces leading to
marked microdifferentiation should also lead to considerable departures from
Hardy-Weinberg equilibrium within single villages. As has been forcefully
pointed out by NeeL and Warp (1972), however, this is not at all what one
observes. It appears that mating is sufficiently random within any one village
that most villages are reasonably close to the Hardy-Weinberg equilibrium. Inas-
much as a single generation of random mating is sufficient to restore single-locus
H-W equilibrium, it appears that a test of departure from this condition is not a
very sensitive indicator of the internal genetic disruption of these highly stochas-
tic gene pools.

The present paper is an attempt to construct a more sensitive gauge of the in-
ternal disruption of these demes. The sort of fission-fusion dynamics mentioned
above should lead to gametic disequilibrium within single villages, due to mix-
ture of differentiated gene pools (Ne1 and Lt 1973). Even under random mating
within villages, the decay of this disequilibrium occurs only asymptotically. With
periodic disruptions, one might expect to find individual villages in a semi-con-
tinuous state of gametic disarray, even while single-locus frequencies conform
fairly closely to Hardy-Weinberg expectations, as they are known to do (NEEL
and Warp 1972).

The objectives of this paper are threefold. We wish: (1) to determine the de-
gree of disequilibrium within the Yanomama, a large unacculturated tribe of
southern Venezuela and northern Brazil, a people very little disturbed since pre-
Columbian times; (2) to partition this disequilibrium among various components
(within villages, among villages, etc.), so as to separate the effects of subdivision
per se from those due to demographic forces within single villages; and (3) to
gauge the extent to which the within-village disequilibrium for any pair of loci
is consistent from village to village, in order to determine whether there are any
directional forces operative.

STATISTICAL METHODS

The procedures we shall use are somewhat unusual, and a few words about general strategy
are in order at the outset. The usual procedure is to test the disequilibrium for each pair of loci
in each population, usually in the hope of uncovering some indication of selection. For the 50
villages and 8 loci reported here, this represents [50(8) (7) — 2 = 1400] separate test criteria,
no more than 50 of which are independent. Qur objective here is to use disequilibrium to gauge
the internal disruption of the village gene pools, and we are only secondarily concerned with
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any specific pair of loci. By reducing the whole problem to a smaller set of test criteria, we hope
to obtain a measure of the magnitude of the demographic forces operative on these populations,
which forces are not locus-specific.

We find it convenient to collate the notation at the outset. All but the more obvious terms
are listed in Table 1.

Correlation structure

Consider a locus with two codominant alleles (A4, and A,). We define a variable Y, which
takes the values (1, 15, 0) for the genotypes (4,4, A,A,, A,4,). A second locus with codomi-
nant alleles (B, and B,) yields a second variable Y., which takes the values (1, 15, 0) for the
genotypes (B B,. B\B,. B,B.). A similar variable can be defined for each codominant Jocus. The
genotype of an individual can thus be vepresented by a vector Y' = (Y,, . .., Y); for example,
the genotype (A,4,, B.B.,. C,C,. D D) would yield the vector Y’ = (1, 0, ¥, 1).

If there are J; individuals sampled from the it village, we can compute a mean vector Y;
and a covariante matrix S,

J, J, - _ .,
~ Py Y, P (Y, —Y) (Y=Y
o .8, = . 1
Y, 7 S =T (1)
TABLE 1

Partial list of symbols used and their meanings

Y;; = the genotypic vector representation of the j'" individual in the i'» population

Y, = the mean vector for the {*" population

Y, == the mean vector for the c'" cluster

Y, = the mean vector for the total population

S, = the estimated covariance matrix for the ith population
S, == the pooled within-village covariance matrix

S, = the among-villages covariance matrix

S, = the among-clusters covariance matrix

S, == the among-villages, within-clusters covariance matrix
S, == the total covariance matrix

V. =E(S,) Vy=E(S,) V.=E(S,) V,=E(S,) V,=ES,)

FH = a measure of departure from random union of multiple-locus gametes
D,,. = the gametic disequilibrium between the h'® and £t loci

ry = the estimated correlation between the Att and £th loci

R; = the estimated correlation matrix derived from S;

R = the estimated correlation matvix derived from Sy,

R, = the estimated correlation matrix derived from S,
R, — the estimated correlation matrix derived from S¢
R, = the estimated correlation matrix derived from Sy
R
R

r = the estimated correlation matrix derived from S,
. == the correlation matrix with a constant value r, in all off-diagonal positions
r, = avalue chosen so that det R, = det R, used as a measure of general departure

from multiple-locus independence
Z = a test criterion for independence of sets of loci
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Considering all 7 = 50 villages, the overall mean vector 171, and covariance matrix S, are given
by

1o, 1, - -,

I ¢ 23 (Y=Y (Y= Yo)

YT = T 5 ST = (N _ 1) ? (2)
= T

I
where N= = J,.
=1

It is also convenient to define a variety of other matrices and mean vectors. We may com-
pute a covariance matrix Sy, which is the average within-village matrix

.
PIRGESIET
Sw=

=T 3)

and a matrix 8, describing the variation pattern among villages

I — — - —
'iil ]L (Y, " YT> (Y, — YT),
S, = d=1) (4‘)

The relationship between S, on the one hand, and 8, and S, on the other, is given by
(N=1)S; =TS, -+ (N—1)Sy . (5)

For certain purposes it is convenient to recognize clusters of closely related villages and it is
thus expedient to compute the weighted mean ?(, of a cluster of villages (see p. 740 for definition
of clusters). This allows further subdivision of the “among-villages” component S, into a com-
ponent describing the village to village variation S, within a cluster and a component describing
the cluster to cluster variation S.. The matvix S is related to S;, and S, by

I — - - —

I=1)8,= 2 Ji (Yi = Yy) (Yi—Yy)
I . — — .

= 2 7 (Y- Y) (Y=Y

) o (6)
-+ 21 ]C (Yc - Y'l’) (YU - YT>

= (I - C)SV -t (C o 1)50 N

where C is thg number of clusters and J, is the sample size from the ¢t cluster.

These mean vectors and covariance matrices have some useful relationships to familiar para-
meters, Consider the genotypic frequencies for a pair of loci (Figure 1).
The elements of the vector Y’ = Y,, Y,) are (ignoring the population subscript)

Y, =1(X,) + 1% (X.) + 0(X,) =P, = f(A,)
Vo= 1(X,) + % (X.) + 0(X,) = P, = f(By) 7
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Troure 1.—Two-locus zygotic frequencies (X;;) and genetic variables (¥, Y.).

In general, Y, = P, the vector of observed allelic frequencies. The elements of the covariance
matrix S; can be elaborated in much the same fashion. Considering only the A and B loci, and
dgnoring the population subscript, these elements are

su=X. (1 =P+ Xo (Y5 —P)* + X, (0—P)*

—~ —~ X“
=.oL=P 1Py -

s =X5 (1 =P (1 —P,) + ...+ Xsy (0= D) (0—P,)

e
I
[

= =Xt %X F 1 X + 14 Xe] — PPy

X
4

=...=P,(1—P.) -

c= X, (1= P24+ X, (1 — P2+ X, (0—P,)?

(8)

In order to simplify these expressions further, it is necessary to deal with the implications of

nonrandom mating. The two-locus zvgotic array is generated from a two-locus gametic array
(AB, AB,, AB,, A,B,) with gametic frequencies (P ., P,,, P,,. P.,). The process of zygote
formation may be viewed as being composed of two parts; (1) a portion (1 — ) of zygotes
is formed by random union of gametes, and (2) a portion FH is formed by union of iden_tical
gametes. Under these conditions, we expect the zygotic frequencies shown in Table 2. A similar
line of argument has been empleyed by Farconer (1961) to deal with inbreeding at a single
locus. The parameter [ is not to he confused, however, with an inbreeding coelficient. It simply
measures a departure from random mating. which might be due to population subdivision, assor-
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TABLE 2

Two-locus zygotic frequencies, as observed and as expected from two locus gametic frequencies

Zygotic genotvpe Observed frequencies Fxpedted frequencies
A1A1B131 ‘Xn P:n(l'—E) + EPH

A,A BB, X, ‘PHP (=)

A,A,B,B, X,, p:L,(1—F) + 5P,
A,ABB, X,, 2P, P, (1—F)

A A B B Xz: 0(1)11P:3 +P12P21)(1~E)
AlA;B;B'_ X23 QPIL,P::(l—E)

A:A:BJBI, Xm 1)211(1"5) + Bpﬁll.
A,4,B,B, Xio 2P:11)::<1‘E)

A:A:B:B: X:::’ p:::(.I‘"E) + Bp::

A portion E of the zygotes lead to two locus homozygotes, and a portion (1) are formed
by random mating.

tative mating- or other {eatures of the breeding system. Substituting from Table 2 into (8), we
obtain the observed elements of the covariance matrix

(1+E) [)] (1 I;J) Suo T (1_55) (1 ;)_,)

Suzﬁgflbm (9)

with

D, :Ijn,p:: o Z)JZ};ZI P
the observed disequilibrium between the two loci. The computed covariance matrix 8; is ai
estimate of the parametric matrix V; = {¢,, }. where
”il%gipmu«pm h=k
| (10)
Uinie = ~—~—Q——— D[;,]; h#* k.

The matrix S,;- is a weighted linear combination of the S,. and an estimate of the corresponding
weighted combination of the V. The matrix V,; is defined as

,é(1~nv
Vy = (N—=1) . (11)

The matrix S, is an estimate of the matrix V. = {1, }, where

1+
Urnie = ( 51) P/L (1 Ph) h=k

(12)
A},]; }l # /L .
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with P, the tribal average allele frequency for the A-th locus, and with the covariance measure
Ay, defined by

_WN—D 5 (1)
Ay = N 1) Diy; N=1)

[ TO (13)

The term 5,},5 is the Ak-th element of V., and ¢, is the corresponding element of V, the
“among-populations” covariance matrix, estimated by S . The diagonal elements g,2 of 'V are
the usnal Wanrunnp (1928) variances, while the off-bagonal elements are the corresponding
covariance terms. The matrices V,, and V. are estimaied by S, and Sy, respectively, and de-
scribe allelic frequency variation and covariation among and within clusters. ’

For our purposes, the key consideration is that the [} measuxes can be factored out of Sy,
Sy and the S;, by computing correlation matrix equivalents. I'or the i'h village, we have

;;,]; . thf1 “}- EJ /24 S ,_P,L__ ----- , (14)
pn Qh Py Q/; (1 + Eli ) 2/4‘ \/’pzl, Qh P, Qz.:

where Q, = (1 —P,) and Q== (1 — P}, The B3 terms also cancel out of Ry, Ry, and Ry.
The correlations of these matrices arve simply two-locus allelic {frequency correlations among
villages, among clusters, and among villages-within clusters, respectively.

Test criteria

Anperson (1958, Ch. 9) has given asyraptotic x? procedures for testing the independence of
sets of multivariate normal variables. Since our scaling device leads asymptotically to normality,
we shall also use these test criteria. By doiug so, we are adding an additional degree of approxi-
mation, If the matrix R is partitioned into sections corresponding to G < H sets of variables

7{11 1{13 cee RLG

R= |R. R.. ... Ry (15)

. . .
RGI R(:"_’ ... R(-’(r‘ 9
S et

then the test of the hypothesis that the off-diagonal submatrices have zero elements is given by

M log Z~x* Z :ﬁﬁ—!—w (16)
= | Ry,
g—=1 |
where H  is the dimension of R, and
H— X H
g=—1 i/ G
M= N-3/2-— ' f=% = 2 HY]. (A7)
“3(H* — g§1 H;)

If G = H, each “set of vaviables™ consists of a single character (representing a single locus), and
we need a test of the hypothesis that all correlations are zero

=M’ log [R|~x, '

(18)
A1) p=wpa@—n1 .

M= N-3/2—
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We shall have occasion to use the test in both forms. If the matrix R is diagonal (all off-diagonal
elements are zero), then perfect gametic equilibrium obtains. If (18) is significant, recourse to
(16) should allow us to pursue the source of the disequilibrium.

Although the determinants of the R-matrices provide an economical summarization of the
information about correlations among a set of loci, they are a bit unwieldy for ready interpre-
tation. As an aid to communication, we find it useful to carry the summarization one step further,
and therefore define an “effective correlation” (r,) as follows. For any particular matrix R of
rank (k), there exists a matrix R,, with a constant correlation r, in all off-diagonal positions,
such that det R = det R,. The effective correlation r, is therefore that constant value which
yields the same determinant as ihe actual set of correlations encountered and can be used to sum-
marize the whole set. The value of r, is related to det R by the polynominal (see Homx~ 1964,
p.71)

detR=detR, = (1 —ro)f+ kr.(1 —r,)¥* . (19)

Although we shall use det R for testing, we shall routinely report r,. Although (19) is a poly-
nomial in r,, there is a single solution on the [0, 1] interval, and it is this sclution we shall re-
port. The Z-value of (17) does not readily admit of such a clear-cut translation and we shall
report it as calculated.

RESULTS

We report here the disequilibrium within and among a set of 50 villages, for
most of which allelic frequencies have already been published. We have grouped
these 50 villages into a set of nine clusters (or groups) defined by Warp and
MicLiazza (personal communication). These clusters are based on historical,

VENEZUELA

T

BRAZIL

Fieure 2.—Territorial extent of nine clusters of Yanomama villages.
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cultural and linguistic information [see also Warp (1972); SpiermMaN, MicLI-
azza and NeeL (1974); Warp (1976) ], and exhibit considerable geographic co-
hesiveness as well. We have utilized here only those individuals in each village
with a complete set of characterizations for the eight codominant marker systems
[MN, Ss, RhC, RhE, Hp, Gc, Serum Alb, and PGM,], so that our sample sizes
are sometimes smaller than reported elsewhere for these same villages. The vil-
lage, cluster, and tribal allelic frequencies are listed, for reference, in Table 3; a
map of the clusters is presented in Figure 2.

TABLE 3

Allelic frequencies for 8 loci and 50 Yanomama villages

Cluster & Village Size M N C E Hp-1 Ge-1 Alb-N PGM-1
Namoweitari
03A 45 0.600 0.100 0889 0189 0.922 0922 0889 0878
03B 27 0593 0.019 0889 0.185 0.944 0944 0944 00907
03C 28 0.589 0.125 (0982 0179 0.839 1.000 0.893 0.929
08ABC 165 0518 0.064 0936 0258 0845 (0976 0906 0.942
08UVW 138 0558 0152 0996 0.080 0.909 0971 0938 0971
1T 31 0.355 0477 0919 0177 0790 0952 0919 1.000
Pooled 434 0537 0105 0949 0179 0.876 0967 0917 0946
Shamatari
03D 23 0826 0065 0978 0.196 0.674 0.978 1.000 0.978
. 03H/11J 71 0704 0176 0958 0176 0641 0746 0993 0873
11G 52 0.798 0.106 0885 0212 0.625 0750 1.000 0942
11HI 124 0.798 0.120 0956 0250 0.786 0903 0984 0.923
11YZ 100 0795 0125 0980 0235 0870 0900 0.925 0.920
15QR 108 0.870 0.093 0875 0213 0.685 0958 0.870 0.926
Pooled 478 0801 0121 0936 0221 0736 0.879 0.950 0.920
Padamo
080 30 0.633 0.100 1.000 0167 0.867 0717 0900 00983
08Q 47 0649 0053 0915 0309 0511 0915 0947 0.989
08R 56 0.705 0268 0866 0339 0768 0857 0946 0973
Pooled 133 0.669 (0154 0914 0289 0.699 0846 0936 0.981
Wanaboweitari
03E 24 0583 0.125 0896 0250 0917 0979 09358 1.000
03F 14 0679 0179 0821 0321 0750 0929 1.000 0.929
03G 28 0,500 0.107 0911 0.196 0.893 0982 0.839 0.964
031 24 0.667 0.188 0.979 0.104 0854 1.000 0958 (.875
08N 34 0809 0132 0971 0.147 0985 0956 0912 0.941
08S 48 0448 0.094 0979 0229 0.823 0917 0927 0.990
08T 25 0.620 0100 0960 0220 0.820 0940 0.880 1.000

Pooled 197 0599  0.124 0.9;4- 0203 0871 0954 0919 0.962
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TABLE 3—Continued

Cluster & Village Size M S C E Hp-1 Ge-1 Alb-N PGM-1
Ocamo
031 53 0.877 0302 0858 0208 0708 0849 0962 0.962
08J 26 0.615 0250 1.000 0096 0865 0.846 0.942 0.904
08L/11P 79 0.753 0253 0968 0108 0911 0962 0981 0.956
08K/15M 77 0487 0117 0987 0071 0851 0903 0974 1.000
11K 44 0909 0205 0943 0273 0864 0977 0909 1.000
1M 28 0.661 0268 0946 0.196 0920 0911 1.000 0.964
Pooled 307 0710 0221 0951 0147 0852 0915 0964 0971
Sanema
03U 36 0514 0278 0958 0.042 0861 0.653 0.681 0.819
08D 30 0467 0067 1000 0000 0867 0683 0733 0.950
08E 38 0.724 0471 0921 0.079 0934 0.882 0.605 0.974
08F 30 0583 0.160 0950 0.050 0.850 0.867 0600 0.917
081 59 0475 0.068 0.975 0042 0932 0864 0932 0949
Pooled 133 0547 0.132 0961 0044 0.896 0.801 0.738 0.925
Parima
08XY 120 0575 0.288 0921 0033 0912 0.854 0.971 0.988
11ABC 147 0483 0207 0990 0010 0796 0915 0997 1.000
11D 50 0380 0.180 1.000 0000 0880 0900 0.740 1.000
118 39 0.474 0.090 0987 0.038 0872 0667 0821 1.000
11U 28 0446 0.161 0946 0196 0875 0.893 0.929 0.964
11V 27 0574 0222 0963 0.148 0907 0.630 0.778 1.000
11X 43 0407 0070 1.000 0058 0988 0.733 0942 1.000
15H 41 0451 0.183 0927 0073 0854 0878 0951 0927
Pooled 495 0488 0199 0966 0.044¢ 0871 0.843 0926 0.989
Yanam
03KP 71 0.648 0324 0859 0.162 0880 0.894 0915 1.000
03LMN 58 0543 (0302 0759 0.172 0845 0793 0.966 1.000
03Q 30 0.733 0533 0750 0217 0883 0.833 0.967 1.000
03RS 41 0.671 0220 0.793 0207 0780 0.744 0988 0.988
03T 30 0.750 0.250 0817 0217 0.650 0.733 0.983 0.867
Pooled 230 0.650 0317 0802 0187 0.824 0813 0957 0.980
Ninam
03W 64 0.828 0328 0.695 0336 0.797 0922 0961 0.961
03X 69 0.768 0.087 0681 0297 0804 0797 0978 0.942
151, 78 0.622 0179 0.788 0244 0596 0.795 0917 0.840
150 23 1.000 0370 0717 0413 0739 0457 0957 0957
Pooled 234 0.759 0212 0724 0301 0.726 0797 0951 0915
Overall Pooled 2701 0.635 0.171 0917 0167 0822 0.876 0.924 0.954
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For purposes of later reference, we should remind the reader that the C and E
markers of the Rk system are, for all practical purposes, absolutely linked, as are
MN and Ss of the MNNSs system. Each of these complexes (Rh, MNSs) 1s un-
linked to the other loci. These latter are also unlinked, except for the Ge and Alb
loci, which are thought to be about two centimorgans apart (WEITRAMP, Ruck-
NAGEL and GErsHowITZ 1966). We knowa priori that there will be disequilibria
within the Rk and MNSs complexes [this is almost always so], but the unlinked
loci are expected to be uncorrelated, except for stochastic factors. The Ge-Alb
pair is less predictable, and will bear watching as we proceed. ‘

The correlation matrices Ry and R, are listed in Table 4. The former are in
the upper triangular portion of the matrix and the latter in the lower triangular
portion. The matrix R, measures the overall disequilibrium within the tribe,
whatever the source. With the exception of the large correlation between MN
and Ss and that between RA-C and RA-E, all of the correlations of Ry are quite
small, including that between Gc and Alb, suggesting that for the whole tribe,
the various loci are quite close to statistical independence. To determine the
impact of subdivision on disequilibrium, it is necessary to examine the other
R-matrices. If villages had been formed by random sampling from a “‘super-gene-
pool,” itself in a state of gametic equilibrium, then we should expect no particular
correlation in village allelic frequencies across loci, and R, should be diagonal.
As long as further fusions and migration are random, this situation should persist
through time. Most of the off-diagonal elements of R, are appreciably different
from zero, however, indicating that the villages were neither constructed nor
maintained in random fashion. Since fission has occurred along familial lines in
dichotomous fashion, and since fusion and migration follow previous sociopoliti-
cal alliances, this is entirely to be expected.

A natural expectation from the dichotomous fission-fusion model described
above is that the matrix R,, representing the correlations of cluster allelic fre-
quencies at different loci, should be strongly nondiagonal, while the matrix Ry,
measuring the correlations of allelic frequencies among villages-within clusters,
should have smaller off-diagonal elements. These latter two matrices are listed in
Table 5, R; above the diagonal and Ry below the diagonal. The expected patterns

TABLE 4

Interlocus correlation matrices: (a) total population correlations above the diagonal and
(b) among-village correlations below the diagonal

MN Ss Cc Ee Hp Ge Alb PGM
MN 1 0.175 —0.070 0.132 —0.053 0.002 0.010 —0.018
Ss 0.197 1 —0.068 0.000 —0.005 0.026 0.0563 0.036
Cc —0417 —0.387 1 —0.568 0.011 0.024 —0.026 —0.011
Ee 0.594 —0.037 —0.586 1 —0.047 0.005 0.036 0.001
Hp —0.366 0.063 0.342 —0.450 1 0.035 —0.071 0.101
Gce —0.025 —0.230 0.264 0.038 0.186 1 0.040 0.018
Alb 0.185 0173 —0.167 0.234 —0.218 0.120 1 0.007

PGM —0.271 0.174 0.132 —0.239 0.343 0.145 0.119 1
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TABLE 5

Correlation matrices: (a) among-clusters variation above the diagonal and
(b) within clusters variation below the diagonal

MN Ss Cc Ee Hp Ge Alb PGM
MN 1 0.031 —0.422 0.727 —0.823 —0.125 0433 --0.582
Ss 0.398 1 —0.529 —0.098 0.005 —0.555 0.332 0.515
Ce —0.418 —0.207 1 —0.613 0.509 0511 —0.287 0.268
Ee 0.338 0.048 —0.515 1 —0.775 0.102 0.479 —0.495
Hp 0.140 0.111 0.129 —0.043 1 0.329 —0.443 0.463
Ge 0.074 0.004 —0.028 —0.035 0.088 1 0.211 0.014
Alb —0.097 0.042 0.001 —0.091 —0.038 0.057 1 0.220
PGM 0.035 —0.079 —0.040 0.053 0.258 0.228 0.045 1

are observed, although the correlations of Ry are not as small as one might expect.
It appears that there is patterned infra-structure even within clusters.

The matrix Ry is given as the upper triangular portion of Table 6, and is the
average pattern within the 50 villages. Unless there are systematic forces opera-
ative, all off-diagonal elements should be close to zero. With the exception of the
correlation between MN and Ss and that between RA-C and RA-E, all elements
of the matrix are quite close to zero, including that for the Ge-Alb pair. The large
internal correlations of the MNSs (0.172) and Rh (—0.566) complexes are
entirely expected, and provide a measure of the effects of very tight linkage.
There is no tendency for these disequilibria to decay. Aside from these two easily
explained exceptions, there is essentially no evidence for systematic pressures in
the “average village.” [ The other disequilibria range only from —0.048 (Hp and
Gc) to+0.072 (Hp and PGM).] The average village is an abstraction, of course,
and we should expect individual villages to depart from this ideal for purely sto-
chastic reasons. The individual villages might well be considerably out of equi-

TABLE 6

Interlocus correlation matrices: (a) average within-village correlations above the diagonal,
and (b) average absolute within-village correlations below the diagonal

MN Ss Cc Ee Hp Ge Alb PGM
MN 1 0.172 —0.000 0.051 0.002 0.007 —0.027 0.016
Ss 0.333 1 -—0.018 0.005 —0.015 0.065 0.034 0.021
Cc 0.154 0.151 1 —0.566 —0.048 —0.022 0.604 —0.031
Ee 0.178 0.136 0.535 1 0.016 —0.001 0.000 0.030
Hp 0.130 0.138 0.123 0.117 1 0.009 —0.044 0.072
Ge 0.121 0.130 0.128 0.116 0.143 1 0.024 0.001
Alb 0.107 0.096 0.110 0.107 0.104 0.152 1 —0.009

PGM 0.118 0.087 0.093 0.120 0.111 0.101 0.089 1
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librium. The departure of individual villages from this average may be described
in various ways, one of which is to define the average absolute r-values

I
.2 ]1|r1hk]
=1

(20)

=
which are given as the lower triangular portion of Table 6. The results clearly
indicate large departures from equilibrinm in any one village.

Another means of assessing the departure of individual villages from gametic
equilibrium is to examine the effective correlation values for each village. The r,
values for the (8 X 8) matrices are listed as r, in Table 7. The x? tests were com-
puted according to (18), and those tests exceeding the « = 0.01 level are indi-
cated. We have also listed the r.-values for R,, R¢, Ry, Ry, and Ry at the bottom
of the table, and those for the pooled within-village matrix separately for each
cluster in the body of the table.

The impressions gained from examination of Tables 4, 5, and 6 are borne out
by the effective correlations at the bottom of Table 7. The matrix R, departs
markedly from the independence condition (r, = 0.387), and the anticipated dif-
ference between Ry and Ry is obtained (r, = 1.000 vs r, = 0.247). We should
point out that since there are nine clusters and only eight loci, the virtual singu-
larity of R, is not a structural feature; rather it is an indication of strong corre-
lations among the cluster allelic frequencies for different loci. The Ry and Ry
matrices more nearly approach the uncorrelated state (r, = 0.154 and r, = 0.162,
respectively). We should mention here that Sy dominates S; (equation §), Vi
dominates V; (equation 13), and thus Ry dominates Ry.

The r.-values for individual villages are all larger than that for Ry; many
are considerably larger. This finding is consistent with the observation that all
of the average absolute values [I‘Tk| are quite large. A careful examination of the
50 R; matrices would indicate that the disequilibrium between any pair of loci is
highly erratic from village to village, but tends to average out overall. The pooled
within-village matrices for the various clusters represent averages for a small
number of villages, and should yield smaller effective correlations than single
villages, but larger values than Ry. That this is so is indicated by the results in
Table 7.

The departures of all of these r;-values from zero are somewhat enhanced by
the internal correlations of the MNSs and/or Rh systems. We may remove the
linkage factor from consideration by treating each of these linked pairs as a “set,”
and using the Z-criterion of (16). We have not translated Z into r., and have
listed the appropriate values (as computed) in Table 7. All of the conditional test
criteria (unlisted) were smaller than the corresponding unconditional test
criteria (also unlisted), and this is indicated in the table by the fact that fewer of
the former are significant. A comparison of r, and Z is rather cumbersome, but
it is useful to recall that the independence condition is indicated by r. = 0 and
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TABLE 7

Standardized measures for all correlation mairices

Correlation measures

Sample
Source of correlation size (V) ry z r, 7y T, Ty
Wanaboweitari
03E 24 0471*  0.098* 0.231 0.302 0.483* 0.515*
03F 14 0532 0.057 0.437 0.528 0.473 0.558
03G 28 0.302 0.390 0272 0.229 0.206 0.170
031 24 0.337 0.288 0.243 0.238 0.293 0377
08N 34 0.235 0.464 0.176 0.230 0.161 0.137
08S 48 0.210 0.598 0.148 0.193 0.119 0.157
08T 25 0.318 0.363 0.233 0.331 0.182 0.268
Pooled 197 0.083 0.866 0.068 0.075 0.072 0.085
Ocamo
03J 53 0.384* 0.320* 0.270* 0.274* 0.218 0.228
0871 26 0.306 0.380 0.198 0.209 0.280 0.277
08K/15M 77 0.268* 0.343* 0318 0.314* 0.299* 0271*
08L/11P 79 0.199*  0.700 0.143 0.138 0.103 0.127
11K 44 0.340* 0.300* 0.332* 0.251 0.316* 0.258
1M 28 0.284 0.442 0.165 0.199 0.297 0.263
Pooled 307 0.191* 0.754* 0.119* 0.121* 0.116* 0.104*
Sanema
030 36 1.000* 0.125* 0251 0.251 0.320*  0.320*
08D 30 0.308 0.487 0.283 0.283 0.263 0.263
08E 38 1.000* 0.108* 0.395* 0.395* 0.378* 0.378*
08F 30 1.000* 0.102* 0.411* 0.411* 0.282 0.282
08I 59 0.242* 0513 0.190 0.160 0.217 0.147
Pooled 193 0.336* 0.791 0.121*  0.119* 0.095 0.099
Namoweitari
] 03A 45 0.413* 0.207* 0.257 0.283* 0.345* 0.339*
03B 27 0.442* 0.226 0.296 0.321 0.209 0.245
03C 28 0.289 0.472 0.179 0.288 0.106 0.207
08ABC 165 0.215* 0.617* 0.184* 0.203* 0.161* 0.183*
08UVW 138 0.175* 0.608* 0.146* 0.160* 0.154* 0.164*
1T 31 0.397 0.272 0.324 0.308 0.382* 0.331
Pooled 434 0.150* 0.883* 0.086* 0.088* 0.081* 0.083*
Shamatari
03D 23 0.245 0.492 0.143 0.189 0.250 0.179
03H/11J 71 0.204 0.689 0.158 0.152 0.133 0.125
11G 52 0.382* 0.458* 0.275* 0.254 0.290* 0.278*
11HI 124 0.234* 0.726 0.127 0.114 0.154* 0.143
11YZ 100 0.276* 0.641 0.136 0.134 0.145 0.146
15QR 108 0.293* 0.623* 0.165* 0.186* 0.154 0.176*
Pooled 478 0.186* 0.927 0.059* 0.053* 0.060* 0.054*
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Correlation measures

Sample
Source of correlation size (N) r, z r, Ty T, s
Parima
08XY 120 0.328* 0.502* 0.208* 0.207* 0.168* 0.166*
11ABC 147 1.000* 0.479* 0.05t 0.051 0.066 0.066
11D 50 0.340*  0.751 0.202 0.202 0.152 0.152
118 33 0.197 0.617 0.144 0.190 0.180 0.166
110 28 0.377 0.160 0.311 0.330 0.269 0.302
11V 27 0.449* 0.177* 0341 0.325 0.457*  0.452*
11X 43 0.228 0.624 0.197 0.166 0.208 0.177
15H 41 1.000*  0.285* 0.224 0.224. 0.164 0.164
Pooled 495 0.211* 0.902* 0.070* 0.075* 0.073* 0.073*
Yanam
03KP 71 0.482*  0.625 0.152 0.120 0.209 0.176
03LMN 58 0.411* 0585 0.235 0.178 0.182 0.134
03Q 30 0.493* 0513 0.250 0.197 0.293 (0.239
03RS 41 1.000* 0.331 0.180 0.180 0.118 0.118
03T 30 0.437*  0.271 0.261 0.231 0.330 0.312
Pooled 230 0.358*  0.865 0.086 0.079 0.101 0.094
Ninam
03W 64 0.458*  0.613 0.164 0.160 0.166 0.165
03X 69 0.250*  0.494 0.205 0.197 0.139 0.152
15L 78 0.389*  0.540 0.202*  0.202* 0.183 0.186
150 23 0.428* 0332 0.347 0.358 0.324 0.334
Pooled 234 0.283* 0.769* 0.114* 0.122* 0.114* (0.127*
Padamo
080 30 (0.338 0.275 0.368* 0.346 0.253 0.264:
08Q 47 0.257 0.450 0.254 0.243 0.237 0.228
0S8R 56 0.298* 0.319 0.206 0.283*  0.206 0.202
Pooled 133 0.176* 0.694* 0.118 0.157*  0.119 0.129
Among Villages 0.387* 0.191* 0287* 0334* 0286 0.271*
Among Clusters 1.000*  0.000* 0.652* 0.690* 0.692* 0.735*
Within Clusters 0.247*  0.607* 0.196* 0.168* 0.145* 0.124*
Within Villages (Pooled) 0.154*  0.976* 0.030* 0.030* (0.036* 0.033*
Total Yanomama 2701 0.162*  0.945* 0.046* 0.057* 0.047* 0.045*

* Nominally significant at the & = 0.01 level.

r, =r, from (8 X 8) correlation matrix.
Z = conditional correlation measure.
Ty, Ty Ty T5=r, values from reduced (6 X 6) matrices involving [MN, Cc], [MN, Eel],

[Ss, Ccl, and [Ss, Ee], respectively.
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Z =1, while maximum correlation (disequilibrium) is indicated by r. =1 and
Z=0.

To gauge the degree of correlation among ‘“‘unlinked” markers, it is convenient
to remove two columns and two rows from the various R-matrices. If we were to
use MN and RA-C, but not Ss and RA-E, the internal correlations of the two com-
plexes would be removed {from consideration, and we would have a (6 X 6)
matrix of correlations between “unlinked” loci. The determinant of this reduced
matrix can be used to construct a test criterion, according to (18), and to derive an
r.-value. It is by no means clear whether we should use (MN and RAh-C), (MN
and RA-E), (Ss and RA-C), or (Ss and Rh-E), however, and the results will differ,
depending on the choice. We have, therefore, listed the corresponding r; values
for all four of these strategies as 7, rs, 74, and r;, respectively, in Table 6. Although
these values are not statistically independent among themselves, they may be
compared with the values listed for r,.

As a general rule, 7y is greater than r,, s, 7y, or r;, indicating inflation of the
former by the internal correlations of the MNSs and Rk complexes. This result
was foreshadowed by the Z-measures, but is more easily conveyed in this latter
vein. After we account for the obvious correlations in these linked complexes,
both Ry and Ry approach the uncorrelated state. This correction, however, has
very little impact on R,, R¢, and Ry, thus indicating that the decay processes af-
fecting disequilibria within populations do not apply to allelic frequency corre-
lations across loci and among populations.

Within villages 03RS, 03U, 08F, 11ABC, and 15H, the only R/ haplotypes
recovered are Ce and cE, so that this system is in a state of maximum disequi-
librium. We have set r;; = —0.99 whenever necessary to test r, or Z [—M’ log
(0) = 7. No adjustment was necessary for r., rs, r4, or s, since the offending
correlation was removed from the matrix. An examination of Table 2 will show
that some villages are fixed for one locus (or sometimes more). We have removed
all such loci from consideration, and have computed the r.-values and test-criteria
on the reduced matrices.

DISCUSSION
Complex systems

The largest correlations among the eight loci are those internal to the MNSs
and RA complexes. Most of the purely technical difficulties of the analysis are en-
countered in the process of trying to “extract” these internal correlations from
the various measures of departure from equilibrium. It might appear that this
situation is an unfortunate aftermath of our entirely arbitrary decision to treat
these complex systems as pairs of “tightly linked” two-allele loci. Although the
question of which treatment is used is largely a matter of taste, it does seem ap-
propriate at this juncture to describe how the analysis should proceed if these
systems were treated as four-haplotype loci. In a more general vein, it seems ad-
visable to extend the treatment to the multiple-allelic case.
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Consider first the three allele-case. We define a pair of Y-variables for such a
locus, and assign Y-values to the six genotypes

AA AA AA, AA AA, AA
Y. 1 "1 o0 0 0 (21)
Y. 0 1% 0 1 v 0,

which leads to
s= 8 ba-p =T E G0 -0 (22)
(1+6) V. m
[E o PQ Fio —

(1-P)(1 - Q)

Correlations of either Y, or Y. with the Y-values of other loci lead to standard
disequilibrium measures, on the pattern of (14). The internal correlations of
(22) do not relate to disequilibria.

The extension to four alleles (the present case) is obvious, and leads to

Fya — — _‘N’:’l_}_@__ﬁw_ Ty = ~PR p (23)
1=P)1-Q) (1—P)(1—R)

] a

V-9 iR

where P = f(A,)), Q=1f(A4.), R=f{(A,)), and S=f(4,) =[1—P—Q—R].
Again. correlations with the Y-variables of other loci lead to standard disequi-
librium measures, on the pattern of (14).

The test criterion (18) is inflated by the correlations of (22) or (23), which
cannot be zero and are not disequilibria. We must have recourse to the condi-
tional test criterion (16). and are no better off than we were with the two-locus
treatment. The strategy for obtaining an r.-value is the same, but instead of
(2 X 2) = 4 choices, we have (4 X 4) = 16 choices to consider.

Two other considerations, in addition to the above, led us to opt for the two-
locus treatment. The first consideration is one of sampling. Multiple haplotype
systems almost always exhibit low frequencies for all but one or two haplotypes,
and that is certainly the case for the MNSs and R systems. As a consequence,
particular haplotypes are often missing, reducing a potential (3 X 3) matrix to a
(2 X 2) matrix. no larger than that of the two-locus treatment. The second con-
sideration is that the four-haplotype treatment requires unambiguous resolution
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of all genotypes into haplotypes. This is generally difficult for double heterozy-
gotes. A decision on Rh is possible for the Yanomama, because all “double hetero-
zygotes” were typed with anti-f, which yields a positive test for (CE//ce) and a
negative result for (Ce//cE). No such resolution is possible for the (MS//Ns)
and (Ms//NS) genotypes. We have chosen the easiest (two-locus) route, but
others may prefer the alternative. The analytical problems are the same in both
cases.

Distributional approximations

We find it particularly convenient to use the multivariate normal test criteria
given by ANpERsoN (1958) and listed above. Because our (1, 1/2, 0) scoring de-
vice leads to approximate multivariate normality only in the limit, it is probable
that the nominal «-levels are much smaller than the actual values. To check the
adequacy of the asymptotic approximation, we have conducted a limited number
of Monte-Carlo trials. Using the observed allele frequencies of a particular village
(Y; =P;), we have generated an array of multiple-locus gametes (assuming
gametic equilibrium), and combined them randomly into zygotes. We have then
drawn individuals at random (both with and without replacement), and com-
puted the test-criteria.

The results are easily summarized. For samples of size N = 120, the actual
probability of exceeding the nominal (a= 0.05) critical value is seldom more
than 0.07; for samples of size NV = 30, the comparable value may be as high as
0.10. For N = 120, the observed probability of exceeding the nominal («= 0.01)
critical value is seldom more than 0.02, while the comparable figure for N = 30
is sometimes as high as 0.04. The exact figures vary a bit, depending on the mean
vector employed, but the above yields a reasonable picture of the overall pattern.
We have therefore noted only those test criterial exceeding the nominal (a =
0.01) level, and would expect to exceed this level no more than 59 of the time,
given that the null hypothesis is correct. In fact (16/50) = 32% of the single
village Z-criteria are significant at this level, and we therefore reject the null
hypothesis.

Implications

The fission-fusion dynamics inherent in Yanomama village demography lead
to considerable gametic disequilibrium within single villages. With the excep-
tion of the internal disequilibria of the MNSs and Rk systems, there is no con-
sistent pattern in the sign (+ or —) of any particular disequilibrium from village
to village, suggesting the absence of systematic forces (epistatic selection). This
observation follows from a comparison of the symmetric elements of Table 6. The
matrix Ry departs significantly from the independence condition, but the values
of r,, 73, 4, and r; are all less than 0.04, scarcely an exciting departure from zero.
On the other hand, while we see no need to invoke epistatic selection, we certainly
cannot exclude it as a possible explanation of these small average correlations.

The r.-values for R4, Re, and Ry are all large and highly significant, and
clearly indicate nonrandomness in the fission-fusion process. The r;-values for
R7, on the other hand, are fairly close to those of Ry, indicating essential inde-
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pendence of different loci for the whole tribe. The cause of this apparent anomaly
is that R, contributes 49 sets of information to Ry, while Ry contributes 2651 sets,
so that the large correlations of R, are diluted. That disequilibrium which does
exist is largely hidden by sample lumping, and depends for its elucidation on the
ability to subdivide the population properly. We cannot but wonder, along with
SinNock (1975), how many populations, human and otherwise, have yielded
negative evidence of gametic disequilibrium simply because too little attention
was directed to the sampling frame.

The results of our analyses indicate that the internal genetic disruption of
single villages is both substantial and pervasive. For the tribe as a whole, corre-
lations are small. This is not to say that the Yanomama are in multiple-locus H-W
equilibrium. We already know (NEEL and Warp 1972) that F;r = 0.045. On the
whole, however, departure from multiple-locus H-W is more due to the Wan-
LUND (1928) effect than to gametic disequilibrium.

While the results presented are specific for the Yanomama, we suspect they
are reasonably typical of undisturbed tribal populations at this cultural level. In
a future paper, we shall examine the disequilibria of more acculturated (and
more disrupted) tribal groups, by way of comparison. We will also explore some
of the implications of these findings for treatments which measure selective
disadvantage in terms of departure from some multi-locus optimal genotype.

The authors would like to express their appreciation to Ms, M. Park, whose programming
efforts reduced this large task to manageable proportions. We also thank Dr. P. MoLw for critical
comments which have improved the manuscript. The formulation presented here, as well as any
errors of omission or commission, remain the responsibility of the authors.
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